• Keine Ergebnisse gefunden

Conclusions

In this thesis, the magnetization dynamics due to a spin polarized current and propagating spin waves in magnetic nanowire and circular disc are investigated by experiments as well as by micromagnetic simulations. The experimental work have been performed by using a homodyne detection scheme with a cryogenic sys-tem to control the sample sys-temperature. The micromagnetic simulations have been done by using a object-oriented micromagnetic framework explained in Chapter 2.5. This thesis is mainly consists of two parts. In the first part, the magnetic vortex core dynamics excited by the spin polarized microwave currents in a mag-netic disc are investigated. The interaction between propagating spin waves and magnetic domain walls are studied in the second part.

A homodyne detection scheme is a versatile tool to investigate the magnetic vortex core dynamics. The homodyne signal can be used to identify the full mag-netic state of the vortex structure (polarity and chirality) using a specific geometry.

To identify this vortex state, the 1 µm Py disc with a notch to break symmetry is used. Since the homodyne signal is very sensitive to the phase shift between the microwave current excitation and the magnetoresistance response. The polarity of the vortex core is determined from the phase difference between two polarities

93

and the chirality is also determined by using an symmetry disc structure. From the field and angle dependence measurements, the unexpected higher resonance frequencies, which indicate the strong pinning effect are observed at the certain magnetic field and angle. To confirm the pinning effect, homodyne signals are measured with different temperatures and injected microwave powers. Combined with the trajectory of the vortex core calculated by micromagnetic simulations, a two dimensional pinning map is drawn. Since the phase shift give us informa-tion about the driving force of the vortex core, the Oersted field contribuinforma-tion is distinguished by analyzing the magnetic field and angle dependent phase shift measurements. In our case, the Oersted field contribution is about 75 % of the force exerted on the vortex core gyration.

The vortex core dynamics with the large displacement of the vortex core due to the in-plane external field is observed. Due to the strong shape anisotropy and the combination of the spin torque effect the Oersted field effect make the nonlin-ear trajectory of the vortex core. This nonlinnonlin-ear dynamics are obtained from the position dependent homodyne detection measurements on a circular disc without symmetry breaking. The amplitude of the homodyne signal increases when the vortex core is closed to the electric contacts since the Oertsted field effect is from the inhomogeneous current distribution due to the thickness differences between the disc and electric contacts. Moreover, the homodyne signal is averaged out when the vortex core gyration is nonlinear. This nonlinear regime is measured the frequency sweep homodyne detection measurement.

All information (resonance frequency, the amplitude of the vortex core gyra-tion, and the phase shift) are obtained from the fitting of the homodyne signal.

The analytical expression of the vortex core motion is shown in Chapter 3.4.

Since the Oerted field contribution is dominant in our case, the modified Thiele’s equation including a spin transfer torque term and Oersted field term is explained.

The interaction between propagating spin waves and the magnetic domain walls are numerically investigated. First, the doamin wall velocities as a function of the spin wave frequency is calculated. At the certain frequency, a significant domain wall motion against the spin wave propagation due to the magnetostatic energy gradient is observed. Second, there are two different mechanisms to move and depin the domain wall. One is the momentum transfer from spin waves to

the domain wall accompanied strong spin wave reflection. The other mechanism is the collective domain wall oscillation mediated by the internal modes of the domain wall at the certain spin wave frequencies.

As the other spin wave generation method, the oscillating Oersted field in a magnetic nanowire is numerically investigated. For the case of that the domain wall is magnetized along the nanowire, a propagating spin wave is not observed.

However, the nonlinear dynamics at the certain spin wave frequency is obtained.

For the case of that the domain wall is magnetized perpendicular to the naowire due to the strong applied field, coherent propagating spin waves are observed.

At the high frequency range, one is observed that the spin wave propagating is allowed for only one direction.

Outlook

From the experience and the results obtained during this work, many other ex-periments promise exciting results in future.

The main key issue of the domain wall motion is to measure the nonadiabaticity β. As shown in Chapter 3.4, the homodyne signal depends on the nonadiabaticity β. Thus the effect of the nonadiabatic spin transfer torque effect induced vortex core dynamics in magnetic discs or ellipse are able to determine the β value. In order to reduce the Oersted field effect from the inhomogeneous current distribu-tion, an elliptic magnetic disc is suggested.

The vortex core position dependent homodyne detection allows us to scan the pinning site in a magnetic disc. Our efficient method of characterization in con-junction with structural investigation such as high resolution electron microscopy will open a path to the identification of the defect types and resulting materials improvement for devices with reliable dynamical switching.

Spin wave assisted domain wall motion generates new concept for race track memory [Park04, PHT08] without any Joule heating. However, a key issue is to generate strong propagating spin waves. In this point of view, the spin torque

oscillator and the point contact device are suggested as the sources of the spin waves. These can be investigated by using OOMMF.

[Aha00] A. Aharoni. Introduction to the Theory of Ferromagnetism., Clarendon Press; Second Edition, 2000.

[AXFA+05] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Alkinson, D. Petit, and R. P. Cowburn, Magnetic domain-wall logic., Science 309, 1688 (2005).

[Back08] D. Backes.Spin Structure of Domain Wall and Their Bahaviour in Ap-plied Field and Current., Ph.D. thesis, Universität Konstanz, 2008.

[BaPr99] J. Bass and W. P. PrattJr., Current-perpendicular (CPP) magnetore-sistance in magnetic metallic multilayers., J. Magn. Magn. Mater. 200, 274 (1999).

[Bedau08] D. Bedau,Domain Wall Dynamics in Magnetic Nanostructures., Ph.D.

thesis, Universität Konstanz, 2008.

[Ber78] L. Berger,Low-field magnetoresistance and domain drag in ferromagnet., J. of Appl. Phys. 49, 2156 (1978).

[Ber84] L. Berger, Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic film., J. of Appl. Phys.55, 1954 (1984).

[Ber92] L. Berger, Motion of a magnetic domain wall traversed by fast-rising cur-rent pulses., J. of Appl. Phys. 71, 2721 (1992).

[Ber98] G. Bertotti. Hysteresis in Magnetism., Academic Press, San Diego, 1998.

97

[BKDM+08] S. Bohlens, B. Krüger, A. Drews, M. B. G. Meier, and D.

Pfannkuche, Current controlled random-access memory based on magnetic vortex handedness., Appl. Phys. Lett. 93, 142508 (2008).

[BKHK+] D. Bedau, M. Kläui, M. T. Hua, S. Krzyk, U. Rüdiger, G. Faini, and L. Vila, emphQuantitative Determination of the Nonlinear Pinning Potential for a Magnetic DomainWall., Phys. Rev. Lett. 101, 256602 (2008).

[BKKR+07] D. Bedau, M. Kläui, S. Krzyk, U. Rüdiger, G. Faini, and L. Vila, Detection of Current-Induced Resonance of Geometrically Confined Domain Walls., Phys. Rev. Lett.99, 146601 (2007).

[BKWK+08] O. Boulle, J. Kimling, P. Warnicke, M. Klaui, U. Rudiger, G. Ma-linowski, H. J. M Swagten, B. Koopmans, C. Ulysse, and G. Faini. Nona-diabatic Spin Transfer Torque in High Anisotropy Magnetic Nanowires with Narrow Domain Walls., Phys. Rev. Lett. 101, 216601 (2008).

[Bloch31] F. Bolch, Zur Theorie des Austauschproblems und der Remanenzer-scheinung der Ferromagnetika., Z. Phys. 74, 295 (1931).

[BMKD+08] M. Bolte, G. Meier, B. Krüger, A. Drews, R. Eiselt, L. Bloclage, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge, K. W.

Chou, A. Puzic, and H. Stoll, Time-Resolved X-Ray Microscopy of Spin-Torque-Induced Magnetic Vortex Gyration., Phys. Rev. Lett. 100, 176601 (2008).

[CASB+04] S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, and H. A. Padmore, Vortex Core-Driven Magnetization Dynamics., Science 304, 420 (2004).

[CCC10] R. L. Compton, T. Y. Chen, and P. A. Crowell,Magnetic vortex dynam-ics in the presence of pinning., Phys. Rev. B 81, 144412 (2010).

[CCP02] M. Covington, T. M. Crawford, and G. J. Parker, Time-Resolved Mea-surement of Propagating SpinWaves in Ferromagnetic Thin Films., Phys.

Rev. Lett. 89, 237202 (2002).

[CLTA07] G. Consolo, L. Lopez-Diaz, L. Torres, and B. Azzerboni,Magnetization dynamics in nanocontact current controlled oscillators., Phys. Rev. B 75, 214428 (2007).

[CoCr06] R. L. Compton and P. A. Crowell, Dynamics of a Pinned Magnetic Vortex., Phys. Rev. Lett.97, 137202 (2006).

[Comsol] http://www.comsol.com/

[CWVW+08] M. Curci, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand, V.

Sackmann, H. Stoll, M. Fähnle, T. Tyliszczak, G. Woltersdorf, C. H. Back, and G. Sch ¸t z, Polarization Selective Magnetic Vortex Dynamics and Core Reversal in Rotating Magnetic Fields., Phys. Rev. Lett. 101, 197204 (2008).

[DCBlock] Marki Microwave, DC Block DCBM29F29 manual.

[DG535] Stanford Research System, Digital Delay Generator - DG535 manual.

[Dira26] P. A. M. Dirac, On the Theory of Quantum Mechanics., Proceedings of the Royal Society of London, Series A 112, 661 (1926).

[Drews09] A. Drews, Danamics of magnetic vortices and antivortices., Ph.D the-sis, Universität Hamburg, 2009.

[EWRK+10] M. Eltschka, M. Wötzel, J. Rhensius, S. Krzyk, U. Nowak, M. Kläui, T. Kasama, R. E. Dunin-Borkowski, H. J. van Driel, and R. A. Duine, Spin Torque Investigated Using Thermally Activated Magnetic Domain Wall Dy-namics., Phys. Rev. Lett. 105, 056601 (2010).

[Fohr11] J. F. Fohr, Spin dynamics in non-magnetic metals., Ph.D. thesis, Tech-nischen Universität Kaiserslautern, 2011.

[Fowl97] M. Fowler, Historical Beginnings of Theories of Electricity and Mag-netism. (1997).

[GBCH+03] J. Grollier, P. Boulenc, V. Cros, A. Hanzić, A. Vaur Ès, and A.

Fert, Switching a spin valve back and forth by current-induced domain wall motion., Appl. Phys. Lett. 83, 509 (2003).

[GCS03] K. Y. Guslienko, R. W. Chantrell, and A. N. Slavin,Dipolar localization of quantized spin-wave modes in thin rectangular magnetic elements., Phy.

Rev. B 68, 024422 (2003).

[GHYN+11] M. Goto, H. Hata, A. Yamaguchi, Y. Nakatani, T. Yamaoka, Y.

Nozaki, and H. Miyajima,Electric spectroscopy of vortex states and dynamics in magnetic discs, Phys. Rev. B 84, 064406 (2011).

[Gilb04] T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials., IEEE Trans. on Mag. 40, 3443 (2004).

[GINO+02] K. Yu. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Eigenfrequencies of vortex state excitations in magnetic submicron-size discs., J. Appl. Phys. 91, 8037 (2002).

[GM01] K. Yu. Guslienko and K. L. Metlov, Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field. Phys.

Rev. B 63, 100403 (2001).

[Gusl01] K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Field evolution of magnetic vortex state in ferromagnetic discs., Appl. Phys.

Lett. 78, 3848 (2001).

[Gusl06] K. Yu. Guslienko, Low-frequency vortex dynamic susceptibility and re-laxation in mesoscopic ferromagnetic dots., Appl. Phys. Lett. 89, 022510 (2006).

[Haya06] M. Hayashi, Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires., Ph.D Thesis, Stanford University (2006).

[HBRM+10] J. Heinen, O. Boulle, K. Rousseau, G. Malinowski, M. Klaui, H. J.

M Swagten, B. Koopmans, C. Ulysse, and G. Faini.,Current-induced domain wall motion in Co/Pt nanowires., Appl. Phys. Lett. 96, 202510 (2010).

[Heis26] W. Heisenberg, Mehrkörperproblem und Resonanz in der Quanten-mechanik., Zeitschrift für Physik 38, 411 (1926).

[Heis28] W. Heisenberg, Zur Theorie des Ferromagnetismus., Zeitschrift für Physik A49, 619 (1928).

[HeKi51] C. Herring and C. Kittel, On the theory of spinwaves in ferromagnetic media., Phys. Rev. 81, 869 (1951).

[Hewlett] Hewlett Packard, HP 11612A BIAS NETWORK manual.

[Heyn10] L. Heyne,Manipulation of Magnetic Domain Walls and Vortices by Cur-rent Injection., Ph.D. thesis, Universität Konstanz, 2010.

[HHK03] J. K. Ha, R. Hertel, and J. Kirschner, Micromagnetic study of mag-netic configurations in submicron permalloy discs., Phys. Rev. B 67, 224432, (2003).

[HiOu02] B. Hillebrands and K. Ounadjela,Spin Dynamics in Confined Magnetic Structure I., Springer Berlin, 2002.

[HKBM+08] L. Heyne, M. Kläui, D. Backes, P. Möhrke, T. A. Moore, J. G. Kim-ling, O. Boulle, U. Rüdiger, L. J. Heyderman, A. Fraile Rodríguez, F. Nolting, K. Kirsch, and R. Mattheis, Direct imaging of current-induced domain wall motion in CoFeB structures., J. Appl. Phys. 103, 07D928 (2008).

[HKLH+09] D.-S. Han, S.-K. Kim, J.-Y. Lee, S. J. Hermsoerfer, H. Schutheiss, B. Leven, and B. Hillebrands, Magnetic domain-wall motion by propagating spin waves., Appl. Phys. Lett. 94, 112502 (2009).

[HoPr40] T. Holstein and H. Primakoff,Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet., Phys. Rev. 58, 1098 (1940).

[HRIB+10] L. Heyne, J. Rhnsius, D. Ilgaz, A. Bisig, U. Rüdiger, M. Kläui, L.

joly, F. Nolting, L. J. Heyderman, J. U. Thiele, and F. Kronast, Direct De-termination of Large Spin-Torque Nonadiabaticity in Vortex Core Dynamics., Phys. Rev. Lett. 105, 187203 (2010).

[HWK04] R. Hertel, W. Wulfhekel, and J. Kirschner,Domain-Wall Induced Phase Shifts in Spin Waves., Phys. Rev. Lett.93, 257202 (2004).

[IbLu99] H. Ibach and H. Lüth,Festköperphysik., Springer-Verlab, Berlin Heider-berg New York, 1999.

[IKHZ+08] D. Ilgaz, M. Kläui, L. Heyne, F. Zinser, S. Krzyk, M. Fonin, U.

Rüdiger, D. Backes, and L. J. Heyderman, Selective domain wall depinning by localized Oersted fields and Joule heating., Appl. Phys. Lett. 93, 132503 (2008).

[Jack75] J. D. Jackson, Classical Electrodynamics (Second Ed.)., John Wiley and Sons., 1975.

[JDCH+99] J. Jorzick, S. O. Demokritov, C. Mathieu, B. Hillebrands, B. Barten-lian, C. Chappert, F. Rousseaux, and A. N. Slavin, Brilloiun light scattering from quantized spin waves in micron-size magnetic wries., Phys. Rev. B 60, 151497 (1999).

[JYL10] M. Jamali, H. Yang, and K.-J. Lee, Spin wave assisted current induced magnetic domain wall motion., Appl. Phys. Lett. 96, 242501 (2010).

[KaSl86] B. A. Kalinikos and A. N. Slavin, Theory of dipolar-exchange spinwave spectrum for ferromagnetic films with mixed exchange boundary conditions., J. of Phys. C19, 7013 (1986).

[KBVH+10] J.-S. Kim, O. Boulle, S. Verstoep, L. Heyne, J. Rhensius, M. Kläui, L. J. Heyderman, F. Kronast, R. Mattheis, C. Ulysse, and G. Faini, Current-induced vortex dynamics and pinning potentials probed by homodyne detec-tion., Phys. Rev. B82, 104427 (2010).

[Keff67] F. Keffer, Handbuch der Physik., New York: Springer-Verlag, 1966.

[KFIY+08] S. Kasai, P. Fischer, M.-Y. Im, K. Yamada, Y. Nakatani, K.

Kobayashi, H. Kohno, and T. Ono, Probing the Spin Polarization of Cur-rent by Soft X-Ray Imaging of CurCur-rent-Induced Magnetic Vortex Dynamics., Phys. Rev. Lett. 101, 27203 (2008).

[Kitt48] C. Kittel,On the Theory of Ferromagnetic Resonance Absorption., Phys.

Rev. 15, 155 (1948).

[Kitt86] C. Kittel, Introduction to Solide State Physics (sixth ed.)., John Wiley and Sons. 1986.

[Kius05] J. Kiusalaas,Numerical Methods in Engineering with MATLAB (Second Edition)., Cambridge University Press (2005).

[KJAB+05] M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland, G.

Faini, U. Rüdiger, C. A. F. Vaz, L. Vila, and C. Vouille, Direct Observation of Domain-Wall Configurations Transformed by Spin Currents., Phys. Rev.

Lett. 95, 026601 (2005).

[Klaeui08] M Kläui, Head-to-head domain walls in magnetic nanostructures., J.

Phys.: Condens. Matter 20, 313001 (2008).

[KNKK06] S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, Current-Driven Resonant Excitation of Magnetic Vortices., Phys. Rev. Lett. 97, 107204 (2006).

[KSGZ+10] A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, and K.

Yu. Guslienko, Critical velocity for the vortex core reversal in perpendicular bias magnetic field., Appl. Phys. Lett. 96, 022504 (2010).

[KVRB+03] M. Kläui, C. A. F. Vaz, J. Rothman, J. A. C. Bland, W. Werns-dorfer, G. Faini, and E. Cambril, Domain Wall Pinning in Narrow Ferro-magnetic Ring Structures Probed by Magnetoresistance Measurements., Phys.

Rev. Lett. 90, 097202 (2003).

[LHK09] K.-S. Lee, D.-S. Han, and S.-K. Kim,Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated-nanostrip waveguides., Phys. Rev. Lett. 102, 127202 (2009).

[Li54] S.-H. Li, Origine de la Boussole 11. Aimant et Boussole., Isis 45(2), 175, (1954).

[LiZh04] Z. Li and S. Zhang, Domain-wall dynamics driven by adiabatic spin-transfer torque., Physical Review B 70, 024417 (2004).

[LRPL+09] G. de Loubens, A. Riegler, B. Pigeau, F. Lochner, F. Boust, K.Y.

Guslienko, H. Hurdequint, L.W. Molenkamp, G. Schmidt, A. N. Slavin, V.

S. Tiberkevich, N. Vukadinovic, and O. Klein, Bistability of Vortex Core Dynamics in a Single Perpendicularly Magnetized Nanodisk., Phys. Rev. Lett.

102, 177602 (2009).

[MG3692B] Anritsu, MG3692B broadband signal generator manual.

[MKJL] J.-H. Moon, D.-H. Kim, M. H. Jung, and K.-J. Lee, Current-induced res-onant motion of a magnetic vortex core: Effect of nonadiabatic spin torque., Phys. Rev. B 79, 134410 (2009).

[MTHB+08] R. Moriya, L. Thomas, M. Hayashi, Y. B. Bazaliy, C. Rettner, and S. S. P. Parkin, Probing vortex-core dynamics using current-induced resonant excitation of a trapped domain wall., Nat. Phys.4, 368 (2008).

[NoRa09] W. Nolting and A. Ramakanth. Quantum Theory of Magnetism., Springer Berlin, 2009.

[OHan00] R. C. O’Handley, Modern Magnetic Materials., John Wiley and Sons., 2000.

[OOMMF] http://math.nist.org/oommf/

[Oxf] Oxford Instruments. The CF1200 Cryostat.

[Park04] S. S. P. Parkin, U.S. Patent No. 6834005 (2004).

[PHT08] S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack Memory., Science 320, 190 (2008).

[PLKR+10] B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G.

Schmidt, L. W. Molenkamp, V. S. Tiberkevich, and A. N. Slavin,A frequency-controlled magnetic vortex memory., Appl. Phys. Lett. 96, 132506 (2010).

[Pozar98] D. M. Pozar, Microwave Engineering (second edition)., John Wiley &

Sons, Inc. (1998).

[Pozer01] D. M. Pozar,Microwave and RF Wireless Systems., John Wiley & Sons, Inc. (2001).

[RuKu] C. Runge, Ueber die numerische Auflösung von Differentialgleichungen, Math. Ann. 46 167, (1985): M. W. Z. Kutta, für Math. u. Phys. 46, 435 (1901).

[SkCo99] R. Skomski, J. M. D. Coey, Permanent Magnetism., IoPP, Studies in Condensed Matter Phys.. 1999.

[SKKim10] S.-K. Kim, Macromagnetic computer simulations of spin waves in nanomtre-scale patterned magnetic elements., J. Phys. D: Appl. Phys. 42, 264004, (2010).

[SLCR99] T. J. Silva, C. S. Lee, T. M. Crawford, and C. T. Rogers, Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy, J.

Appl. Phys.85, 7849 (1999).

[SLKL11] S.-M. Seo, H.-W. Lee, H. Kohno, and K.-J. Lee, Magnetic vortex wall motion driven by spin waves., Appl. Phys. Lett. 98, 012514 (2011).

[Slon96] J. C. Slonczewski,Current-driven excitation of magnetic multilayers., J.

of Mag. and Mag. Mat., 59 L1, (1996).

[Smit51] J. Smit, Magnetoresistance of Ferromagnetic Metals and Alloys at Low Temperatures., Physica (Amsterdam) 17, 612 (1951).

[SNTK+06] J. Shibata, Y. Nakatani, G. Tatara, H. Kohno, and Y. Otani, Current-induced magnetic vortex motion by spin-transfer torque., Phys. Rev.

B 73, 020403 (2006).

[SOHS+00] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Magnetic Vortex Core Observation in Circular Dots of Permalloy., Science 289, 930 (2000).

[Soo60] R. F. Soohoo,General Spin-Wave Dispersion Relations., Phys. Rev. 120, 1978 (1960).

[SR830] Stanford Research Systems, SR830 DSP Lock-in amplifier manual.

[Stan93] D. D. Stancil, Theory of Magnetostatid Waves., Springer-Verlag, New York, Berlin, Heidelberg (1993).

[StPr09] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Application., Springer-Verlag, New York, Berlin, Heidelberg (2009).

[SWHS+93] J. Stöhr et al., Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R.

Harp, S. Koranda, D. Dunham, B. P. Tonner, Element-Specific Magnetic Microscopy with Circularly Polarized X-rays., Science 259, 658 (1993).

[SYSL+10] K. Sekiguchi, K. Yamada, S. M. Seo, K. J. Lee, D. Chiba, K.

Kobayashi, and T. Ono, Nonreciprocal emission of spin-wave packet in FeNi film., Appl. Phys. Lett. 97, 022508 (2010).

[SYT09] S.-M. Seo, K.-J. Lee, H. Yang, and T. Ono, Current-Induced Control of Spin-Wave Attenuation., Phys. Rev. Lett. 102, 147202 (2009).

[Thie73] A. A. Thiele, Steady-State Motion of Magnetic Domains., Phys. Rev.

Lett. 30, 230 (1973).

[Thom57] W. Thomson, The discovery of Giant Magneto-Resistance., Proc. R.

Soc. London 8, 546 (1857).

[TNMS05] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Micromagnetic understanding of current-driven domain wall motion in patterned nanowires., EPL 69, 990 (2005).

[UsPe93] N. A. Usov and S. E. Peschany, Magnetization Curling in a Fine Cylin-drical Particle., J. Magn. Mag. Mat. 118, 290 (1993).

[VB08] V. Vlaminck and M. Bailleul, Current-Induced Spin-Wave Doppler Shift., Science 322, 410 (2008).

[Vowl32] H. P. Vowles, Early Evolution of Power Engineering., Isis 17(2), 412 (1932).

[VSJT05] J. Velev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Ballistic Anisotropy Magnetoresistance., Phys. Rev. Lett. 94, 127203 (2005).

[WPSC+06] B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. F %h nle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back and G. Schütz, Magnetic vortex core reversal by excitation with short bursts of an alternating field., Nature 444, 461 (2006).

[WWBP+02] A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Direct Observation of Internal Spin-Structure of Mag-netic Vortex Cores., Science 298, 577 (2002).

[YH07] C.-Y. You and S.-S. Ha, Temperature increment in a current-heated nanowire for current-induced domain wall motion with finite thickness in-sulator layer., Appl. Phys. Lett. 91, 022507 (2007).

[YKNK+07] K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A.

Thiaville, and T. Ono, Electric switching of the vortex core in a magnetic disc., Nat. Mater. 6, 269 (2007).

[YONM+04] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Real-Space Observation of Current-Driven Domain Wall Motion in Submi-cron Magnetic Wires., Phys. Rev. Lett. 92, 077205 (2004).

[You06] C.-Y. You, Equation of motion for a domain wall movement under a nonuniform transverse magnetic field., Appl. Phys. Lett. 92, 192514 (2006).

[YSJ06] C.-Y. You, I. M. Sung, and B.-K. Joe, Analytic expression for the tem-perature of the current-heated nanowire for the current-induced domain wall motion., Appl. Phys. Lett. 89, 222513 (2006).

Pursuing a Ph.D research is a both painful and enjoyable experience. It is like a climbing mountain with admirable collaborators. Many people have supported this work in many different ways and I would like to give my sincere thanks to all these people here.

My first thank goes to Prof. Dr. Mathias Kläui and Prof. Dr. Ulrich Rüdi-ger, who accepted me into the research group and supervise my all research works.

They have offered me a Ph.D position and gave me a lot of scientific opportunities.

I specially appreciate for Prof. Dr. Mathias Kläui who has always encouraged me and gave me a helping hand whenever I need his help. When I was confused due to many scientific problems, he did not hesitate to make me on the right direction.

I have learned a lot from him. I could not imagine that I finished my Ph.D thesis without his help.

Special thank is given to Dr. Olivier Boulle. When I started my Ph.D, I had many difficulties since I have changed my research field from the theoretical physics to the experimental solid state physics. At that time, he has taught me step by step for everything from the basic measurement techniques to the very sensitive microwave techniques. I never forget his help and careful advices.

I also really appreciate Prof. You at Inha University in South Korea. He had accepted me as a research assistance before I started my Ph.D. He gave me a big

107

chance what I was able to change my research field successfully. Therefore, I could start Ph.D research without any problem. Until now, he always give a lot of fruit-ful advices whenever I need it. I would like to say that I so admire him. Morover, when he has visited to Konstanz, we had a good discussion and enjoyed Konstanz.

Special thank is also given to Prof. Luis Lopez-Diaz at the University of Sala-manca in Spain. As my second supervisor, he has invited me and supervised to develop the micromagnetic simulation codes for spin wave project. It was a great chance for my Ph.D. I never forget the time when I was in Salamanca (09.2009 ∼ 10.2009) as my secondment. I also appreciate Dr. Eduardo Martinez who helped

Special thank is also given to Prof. Luis Lopez-Diaz at the University of Sala-manca in Spain. As my second supervisor, he has invited me and supervised to develop the micromagnetic simulation codes for spin wave project. It was a great chance for my Ph.D. I never forget the time when I was in Salamanca (09.2009 ∼ 10.2009) as my secondment. I also appreciate Dr. Eduardo Martinez who helped