• Keine Ergebnisse gefunden

5.5 Conclusions 105

0 20 40 60 80 100 120

400 450 500 550 600 650 700 750 800

Reactor axis (mm)

Temperature (K)

t = 1000 s t = 2000 s t = 3000 s Experiments

Figure 5.7: Gas temperatures in the bed at three different times.

The RPM is able to predict the experimental results, describing intra-particle gradi-ents, in a much more feasible computational time compared to the discrete particle model (DPM). The importance of intra-particle gradients in fixed-bed pyrolysis is also highlighted, showing differences in the conversion time of more than 30% when the particle size is doubled, from a particle diameter of 1.24 to 2.48 cm. It is also remarked the need of more experimental data to validate fixed-bed reactor models, including information such as wall temperatures and the composition of the released volatiles.

Chapter

Conclusions 6

In this work a multi-scale approach to model fixed-bed thermo-chemical processes of biomass was developed, with the focus on fixed-bed pyrolysis. The molecular, parti-cle and reactor levels should be considered to describe the processes with adequate accuracy.

At the molecular level primary pyrolysis of pine wood is described with a non-competitive scheme with three pseudo-components. The obtained activation energies of cellulose and lignin pseudo-componenents are, respectively, lower and much higher than the usually reported values in the literature, where there is a high scattering. The importance of conducting experiments at several heating rates and to compare the results from model-fitting methods to the ones of iso-conversional methods is shown. Primary tar can further react in secondary tar cracking reactions, but nowadays information about them is scarce. To describe smouldering of pine wood three pseudo-components are needed to describe correctly the competition between wood pyrolysis and oxidation with a higher activation energy for wood pyrolysis than for wood oxidation, behaviour known from the literature and the application of iso-conversional methods. Both reactions produce char as a product, which can then undergo char oxidation. Char produced in the TGA, in the absence of secondary tar cracking reactions, has a much faster oxidation rate than char produced in a fixed-bed, where there are secondary reactions and therefore also secondary char is produced.

At the particle level the main assumptions considered to describe pyrolysis of a single biomass particle were discussed and a particle model was presented and solved for fixed and fluidized-bed typical conditions. The significant particle gradi-ents and the importance of shrinkage was shown. To decrease the computational time to solve a particle model a novel iterative solution method was introduced and compared to commonly applied solution methods taking into account typical

6.1 Future work 107

process parameters and time step sizes of fixed-bed and fluidized-bed reactors. To develop this method an analysis of the characteristic time of each phenomenon in the biomass particle was done. In order to develop the reaction scheme to describe the secondary reactions of tar cracking fluorescence measurements in close vicinity to the surface of a pyrolysing beech wood particle were done. The results indicate that there are secondary heterogeneous cracking reactions of the primary and sec-ondary tar species occurring in spherical beech wood particles with 25 mm diameter at conversions higher than 0.6 at a heating rate of 0.3 K/s, while for pyrolysis of smaller beech wood particles of 0.5 to 1 mm size complete conversion was achieved without indications of secondary reactions.

At the reactor level the framework for a multi-scale model was introduced:

the representative particle model (RPM). A split is made in the solution of the re-actor model between an incompressible flow with time-independent density and the compressible fluid with variable density. The particle model is solved with the pre-viously developed iterative method. The RPM framework was applied to fixed-bed heating up and pyrolysis and compared to experimental results available in the litera-ture. The RPM is able to predict the experimental results, describing intra-particle gradients, in a much more feasible computational time than the discrete particle model (DPM). The importance of intra-particle gradients in fixed-bed pyrolysis is also highlighted.

6.1 Future work

Further work is needed at all levels in order to develop a deeper understanding about fixed-bed pyrolysis of biomass.

At the molecular level experiments with more biomass species should be done to determine the relation between the activation energies of pure components and biomass. The application of iso-conversional methods together with model fit-ting is suggested to obtain the correct values. Composition of the obtained primary tars and permanent gases will be also valuable. It is also interesting to determine how the pyrolysis process influences the reactivity of the produced char, consider-ing secondary reactions beconsider-ing present or not together with the influence of different heating rates, maximum pyrolysis temperatures or biomass species.

More information about the reaction scheme of the secondary tar cracking reactions is needed and also data for the kinetics of the elementary reaction steps, considering not just the homogeneous reactions but also the heterogeneous reactions

6.1 Future work 108

that occur at the particle level with the presence of char. With this kinetic infor-mation a single particle model could predict the composition of the volatiles leaving the particle. More experimental data would also be required to validate the models, providing information about the temperature evolution inside the particle, the mass loss and the released volatiles.

At the reactor level more experimental data are needed to validate fixed-bed reactor models, including information such as wall temperatures and the composition of the released volatiles, in order to check the predictive capacity of multi-scale models which apply the knowledge obtained at the molecular and particle level.

Furthermore, the multi-scale approach should be extended to other thermo-chemical processes, such as fixed-bed drying or gasification.

Appendix

Publications A

Part of the contents of the present thesis have been already published in the following peer-reviewed papers:

1. A. Anca-Couce, N. Zobel, A. Berger, F. Behrendt (2012). "Smouldering of pine wood: Kinetics and reaction heats", Combustion and Flame, 159 (4), 1708 - 1719. doi: 10.1016/j.combustflame.2011.11.015.

2. A. Anca-Couce, N. Zobel (2012). "Numerical analysis of a biomass pyrolysis particle model: Solution method optimized for the coupling to reactor models", Fuel, 97, 80 - 88. doi: 10.1016/j.fuel.2012.02.033.

3. A. Anca-Couce, N. Zobel, H.A. Jakobsen (2012). "Multi-scale modelling of fixed-bed thermo-chemical processes of biomass with the representative parti-cle model: Application to pyrolysis", Fuel, in print. doi: 10.1016/j.fuel.2012.05.063.

4. N. Zobel, A. Anca-Couce (2012). "Slow pyrolysis of wood particles: Char-acterisation of volatiles by Laser-Induced Fluorescence", Proceedings of the Combustion Institute, in print. doi: 10.1016/j.proci.2012.06.130.

Chapter 3 of this thesis is based on publication number 1, with an extended focus on pyrolysis. Chapter 4 is mainly based on publications number 2 and 3 and Chapter 5 on publication number 4.

Nomenclature

Latin symbols

A pre-exponential factor [1/s]

A area [m2]

Bi Biot number [-]

c proportion of a component [-]

cp specific heat capacity [J/(kg K)]

D mass dispersion / diffusivity [m2/s]

dp particle diameter [m]

dpor pore diameter [m]

E activation energy [J/mol]

F friction terms in momentum equation [kg/(m2 s2)]

f1 first friction factor [kg/(m3 s)]

f2 second friction factor [kg/(m4)]

fShr shrinkage factor [-]

fShr−min minimum shrinkage factor [-]

G conductance [W/K]

H convective and viscous terms in the momentum equation [kg/(m2 s2)]

H length of the control volume [m]

H˙ advection rate [W]

ˆh specific enthalpy [J/kg]

I flourescence intensity [counts]

j mass flux density [kg/(m2 s)]

Mm molecular weight [kg/mol]

m mass [kg]

N number of experiments [-]

111

N u Nusselt number [-]

p pressure [Pa]

P r Prandtl number [-]

P y Pyrolysis number [-]

Q˙ heat transfer rate [W]

˙

q heat flux density [W/m2]

r radial coordinate of particle [m]

˙

r reaction rate per unit volume [kg/(m3 s)]

R radius of the particle [m]

R¯ universal gas constant [J/(mol K)]

Rc source term in continuity equation [kg/(m3 s)]

Re Reynolds number [J/(mol K)]

S surface area [m2]

s ration surface/volume of the particle [1/m]

T F I total fluorescence intensity [counts]

t time [s]

V Volume [m3]

v general vectorial velocity [m/s]

v particle superficial velocity [m/s]

wz reactor axial velocity [m/s]

X mol fraction [-]

Y mass fraction [-]

z axial coordinate of the reactor [m]

Greek symbols

α conversion [-]

α heat transfer coefficient [W/(m2 K)]

β mass transfer coefficient [m/s]

∆h heat of reaction [J/kg]

porosity [-]

η conversion factor [-]

κ permeability [m2]

112

Λ, λ thermal dispersion / conductivity [W/(m K)]

λ wavelength [m]

µ viscosity [kg/(m s)]

ν stoichiometric coefficient [-]

ρ density [kg/m3]

σ Stefan-Boltzmann constant [W/(m2 K4)]

ω surface emissivity [-]

ζ Stefan correction [kg/m3]

Subscripts

0 initial value

b relative to the fixed-bed c relative to char

down downstream

e relative to the energy equation ef f effective

exp experimental f final value

g pertains to gas phase

i pertains to specie with index i j pertains to reaction with index j

m maximum

p relative to the particle rad radiation

sim simulation

s pertains to solid phase up upstream

V C control volume w relative to wood

∞ at large distance from particle

Bibliography

[1] R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas, A. A. Romero, Biofuels: a technological perspec-tive, Energy & Environmental Science 1 (5) (2008) 542–564. doi:10.1039/

b807094f.

[2] M. Kaltschmitt, H. Hartmann, H. Hofbauer, Energie aus Biomasse, Springer, 2009.

[3] P. Basu, Biomass gasification and pyrolysis, Elsevier, 2010.

[4] M. G. Gronli, A theoretical and experimental study of the thermal degradation of biomass, Ph.D. thesis, The Norwegian University of Science and Technology (1996).

[5] J. Lehmann, J. Gaunt, M. Rondon, Bio-char sequestration in terrestrial ecosys-tems - a review, Mitigation and Adaptation Strategies for Global Change 11 (2006) 403–427.

[6] J. Lehmann, A handful of carbon, Nature 447 (7141) (2007) 143–144. doi:

10.1038/447143a.

[7] D. A. Laird, R. C. Brown, J. E. Amonette, J. Lehmann, Review of the py-rolysis platform for coproducing bio-oil and biochar, Biofuels Bioproducts &

Biorefining-biofpr 3 (5) (2009) 547–562. doi:10.1002/bbb.169.

[8] D. Mohan, C. U. Pittman, P. H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy & Fuels 20 (3) (2006) 848–889. doi:10.1021/

ef0502397.

[9] L. Fagernas, E. Kuoppala, K. Tiilikkala, A. Oasmaa, Chemical composition of birch wood slow pyrolysis products, Energy & Fuels 26 (2) (2012) 1275–1283.

doi:10.1021/ef2018836.

Bibliography 114

[10] F. Behrendt, Y. Neubauer, M. Oevermann, B. Wilmes, N. Zobel, Direct lique-faction of biomass, Chemical Engineering & Technology 31 (5) (2008) 667–677.

doi:10.1002/ceat.200800077.

[11] H. Knoef (Ed.), Handbook of Biomass Gasification., BTG biomass technology group, 2005.

[12] I. Obernberger, G. Thek, Combustion and gasification of solid biomass for heat and power production in europe - state-of-the-art and relevant future developments, in: Proc. of the 8th European Conference on Industrial Furnaces and Boilers. Vilamoura, Portugal, 2008.

[13] F. Lettner, H. Timmerer, P. Haselbacher, Biomass gasification - State of the art description, Intelligent Energy - Europe (IEE), 2007.

[14] T. B. Reed, A. Das, Handbook of Biomass Downdraft Gasifier Engine Systems, The Biomass Energy Foundation Press, 1988.

[15] C. Di Blasi, Dynamic behaviour of stratified downdraft gasifiers, Chemical Engineering Science 55 (15) (2000) 2931–2944.

[16] L. Gerun, M. Paraschiv, R. Vijeu, J. Bellettre, M. Tazerout, B. Gobel, U. Hen-riksen, Numerical investigation of the partial oxidation in a two-stage down-draft gasifier, Fuel 87 (7) (2008) 1383–1393. doi:10.1016/j.fuel.2007.07.

009.

[17] C. Di Blasi, Modeling wood gasification in a countercurrent fixed-bed reactor, Aiche Journal 50 (9) (2004) 2306–2319. doi:10.1002/aic.10189.

[18] C. Lucas, High temperature air/steam gasification of biomass in an updraft fixed bed batch type gasifier, Ph.D. thesis, KTH (2005).

[19] W. H. Yang, A. Ponzio, C. Lucas, W. Blaslak, Performance analysis of a fixed-bed biomass gasifier using high-temperature air, Fuel Processing Technology 87 (3) (2006) 235–245. doi:10.1016/j.fuproc.2005.08.004.

[20] C. Mandl, I. Obernberger, F. Biedermann, Modelling of an updraft fixed-bed gasifier operated with softwood pellets, Fuel 89 (12) (2010) 3795–3806.

doi:10.1016/j.fuel.2010.07.014.

Bibliography 115

[21] B. Peters, Measurements and application of a discrete particle model (dpm) to simulate combustion of a packed bed of individual fuel particles, Combustion and Flame 131 (1-2) (2002) 132–146. doi:10.1016/S0010-2180(02)00393-0.

[22] J. Collazo, J. Porteiro, D. Patino, E. Granada, Numerical modeling of the combustion of densified wood under fixed-bed conditions, Fuel 93 (1) (2012) 149–159. doi:10.1016/j.fuel.2011.09.044.

[23] Y. B. Yang, A. N. Phan, C. Ryu, V. Sharifi, J. Swithenbank, Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrol-yser, Fuel 86 (1-2) (2007) 169–180. doi:10.1016/j.fuel.2006.07.012.

[24] R. Vijeu, L. Gerun, M. Tazerout, C. Castelain, J. Bellettre, Dimensional mod-elling of wood pyrolysis using a nodal approach, Fuel 87 (15-16) (2008) 3292–

3303. doi:10.1016/j.fuel.2008.06.004.

[25] C. Ghabi, H. Benticha, M. Sassi, Two-dimensional computational model-ing and simulation of wood particles pyrolysis in a fixed bed reactor, Com-bustion Science and Technology 180 (5) (2008) 833–853. doi:10.1080/

00102200801894091.

[26] D. Lathouwers, J. Bellan, Yield optimization and scaling of fluidized beds for tar production from biomass, Energy & Fuels 15 (5) (2001) 1247–1262.

doi:10.1021/ef010053h.

[27] S. Gerber, F. Behrendt, M. Oevermann, An eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed mate-rial, Fuel 89 (10) (2010) 2903–2917.

[28] H. Thunman, B. Leckner, Influence of size and density of fuel on combustion in a packed bed, Proceedings of the Combustion Institute 30 (2005) 2939–2946.

doi:10.1016/j.proci.2004.07.010.

[29] R. Johansson, H. Thunman, B. Leckner, Influence of intraparticle gradients in modeling of fixed bed combustion, Combustion and Flame 149 (1-2) (2007) 49–62. doi:10.1016/j.combustflame.2006.12.009.

[30] J. C. Wurzenberger, A combined packed bed and single particle model applied to biomass combustion, Ph.D. thesis, Technischen Universitaet Graz (2001).

Bibliography 116

[31] C. Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Progress In Energy and Combustion Science 34 (1) (2008) 47–90.

doi:10.1016/j.pecs.2006.12.001.

[32] J. J. Lerou, K. M. Ng, Chemical reaction engineering: A multiscale approach to a multiobjective task, Chemical Engineering Science 51 (10) (1996) 1595–

1614. doi:10.1016/0009-2509(96)00022-X.

[33] Y. Schuurman, Aspects of kinetic modeling of fixed bed reactors, Catalysis Today 138 (1-2) (2008) 15–20. doi:10.1016/j.cattod.2008.04.041.

[34] J. E. White, W. J. Catallo, B. L. Legendre, Biomass pyrolysis kinetics:

A comparative critical review with relevant agricultural residue case stud-ies, Journal of Analytical and Applied Pyrolysis 91 (1) (2011) 1–33. doi:

10.1016/j.jaap.2011.01.004.

[35] S. R. A. Kersten, X. Q. Wang, W. Prins, W. P. M. van Swaaij, Biomass py-rolysis in a fluidized bed reactor. part 1: Literature review and model simula-tions, Industrial & Engineering Chemistry Research 44 (23) (2005) 8773–8785.

doi:10.1021/ie0504856.

[36] C. DiBlasi, Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation, Chemical Engineering Science 51 (7) (1996) 1121–1132.

[37] W. C. R. Chan, M. Kelbon, B. B. Krieger, Modeling and experimental verifi-cation of physical and chemical processes during pyrolysis of a large biomass particle, Fuel 64 (11) (1985) 1505–1513.

[38] M. J. Hagge, K. M. Bryden, Modeling the impact of shrinkage on the pyrolysis of dry biomass, Chemical Engineering Science 57 (14) (2002) 2811–2823.

[39] H. Lu, W. Robert, G. Peirce, B. Ripa, L. L. Baxter, Comprehensive study of biomass particle combustion, Energy & Fuels 22 (4) (2008) 2826–2839. doi:

10.1021/ef800006z.

[40] A. M. C. Janse, R. W. J. Westerhout, W. Prins, Modelling of flash pyrolysis of a single wood particle, Chemical Engineering and Processing 39 (3) (2000) 239–252.

Bibliography 117

[41] K. M. Bryden, K. W. Ragland, C. J. Rutland, Modeling thermally thick py-rolysis of wood, Biomass & Bioenergy 22 (1) (2002) 41–53. doi:10.1016/

S0961-9534(01)00060-5.

[42] M. J. Antal, G. Varhegyi, E. Jakab, Cellulose pyrolysis kinetics: Revisited, Industrial & Engineering Chemistry Research 37 (4) (1998) 1267–1275. doi:

10.1021/ie970144v.

[43] M. Gronli, M. J. Antal, G. Varhegyi, A round-robin study of cellulose pyrolysis kinetics by thermogravimetry, Industrial & Engineering Chemistry Research 38 (6) (1999) 2238–2244.

[44] G. Varhegyi, M. J. Antal, T. Szekely, P. Szabo, Kinetics of the thermal-decomposition of cellulose, hemicellulose, and sugar-cane bagasse, Energy &

Fuels 3 (3) (1989) 329–335.

[45] M. G. Gronli, G. Varhegyi, C. Di Blasi, Thermogravimetric analysis and de-volatilization kinetics of wood, Industrial & Engineering Chemistry Research 41 (17) (2002) 4201–4208. doi:10.1021/ie0201157.

[46] E. Cetin, B. Moghtaderi, R. Gupta, T. F. Wall, Influence of pyrolysis condi-tions on the structure and gasification reactivity of biomass chars, Fuel 83 (16) (2004) 2139–2150. doi:10.1016/j.fuel.2004.05.008.

[47] F. Mermoud, F. Golfier, S. Salvador, L. Van de Steene, J. L. Dirion, Ex-perimental and numerical study of steam gasification of a single charcoal particle, Combustion and Flame 145 (1-2) (2006) 59–79. doi:10.1016/j.

combustflame.2005.12.004.

[48] A. Guerrero, M. P. Ruiz, M. U. Alzueta, R. Bilbao, A. Millera, Pyrolysis of eucalyptus at different heating rates: studies of char characterization and ox-idative reactivity, Journal of Analytical and Applied Pyrolysis 74 (1-2) (2005) 307–314. doi:10.1016/j.jaap.2004.12.008.

[49] C. Di Blasi, Combustion and gasification rates of lignocellulosic chars, Progress In Energy and Combustion Science 35 (2) (2009) 121–140. doi:10.1016/j.

pecs.2008.08.001.

[50] S. S. Alves, J. L. Figueiredo, A model for pyrolysis of wet wood, Chemical Engineering Science 44 (12) (1989) 2861–2869.

Bibliography 118

[51] M. J. Antal, M. Gronli, The art, science, and technology of charcoal produc-tion, Industrial & Engineering Chemistry Research 42 (8) (2003) 1619–1640.

doi:10.1021/ie0207919.

[52] J. Rath, M. G. Wolfinger, G. Steiner, G. Krammer, F. Barontini, V. Cozzani, Heat of wood pyrolysis, Fuel 82 (1) (2003) 81–91.

[53] K. Raveendran, A. Ganesh, K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel 75 (8) (1996) 987–998. doi:10.1016/

0016-2361(96)00030-0.

[54] A. Gani, I. Naruse, Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass, Renewable Energy 32 (4) (2007) 649–661. doi:10.1016/j.renene.2006.02.017.

[55] K. Hashimoto, I. Hasegawa, J. Hayashi, K. Mae, Correlations of kinetic pa-rameters in biomass pyrolysis with solid residue yield and lignin content, Fuel 90 (1) (2011) 104–112. doi:10.1016/j.fuel.2010.08.023.

[56] R. J. Evans, T. A. Milne, Molecular characterization of the pyrolysis of biomass .1. fundamentals, Energy & Fuels 1 (2) (1987) 123–137. doi:

10.1021/ef00002a001.

[57] M. Asmadi, H. Kawamoto, S. Saka, Thermal reactivities of cate-chols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates, Jour-nal of AJour-nalytical and Applied Pyrolysis 92 (1) (2011) 76–87. doi:10.1016/

j.jaap.2011.04.012.

[58] T. Hosoya, H. Kawamoto, S. Saka, Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products, Journal of Analytical and Applied Pyrolysis 85 (1-2) (2009) 237–246. doi:10.1016/j.jaap.2008.

11.028.

[59] B. Scholze, C. Hanser, D. Meier, Characterization of the water-insoluble frac-tion from fast pyrolysis liquids (pyrolytic lignin) part ii. gpc, carbonyl goups, and c-13-nmr, Journal of Analytical and Applied Pyrolysis 58 (2001) 387–400.

doi:10.1016/S0165-2370(00)00173-X.

[60] A. Oasmaa, D. Meier, Characterisation and analysis. iea task 34: Pyrolysis.

wp 2a, Tech. rep., VTT, Finland (2008).

Bibliography 119

[61] T. Hosoya, H. Kawamoto, S. Saka, Secondary reactions of lignin-derived pri-mary tar components, Journal of Analytical and Applied Pyrolysis 83 (1) (2008) 78–87. doi:10.1016/j.jaap.2008.06.003.

[62] M. Hajaligol, B. Waymack, D. Kellogg, Low temperature formation of aro-matic hydrocarbon from pyrolysis of cellulosic materials, Fuel 80 (12) (2001) 1799–1807. doi:10.1016/S0016-2361(01)00063-1.

[63] A. Schinkel, Zur bildung und degradation von teeren aus der pyrolyse nachwachsender rohstoffe, Habilitation. Universitaet Kassel, Germany (2008).

[64] R. S. Miller, J. Bellan, Analysis of reaction products and conversion time in the pyrolysis of cellulose and wood particles, Combustion Science and Technology 119 (1-6) (1996) 331–373.

[65] W. C. Park, A. Atreya, H. R. Baum, Experimental and theoretical investiga-tion of heat and mass transfer processes during wood pyrolysis, Combusinvestiga-tion and Flame 157 (3) (2010) 481–494. doi:10.1016/j.combustflame.2009.10.

006.

[66] A. G. Liden, F. Berruti, D. S. Scott, A kinetic-model for the production of liquids from the flash pyrolysis of biomass, Chemical Engineering Communi-cations 65 (1988) 207–221.

[67] C. A. Koufopanos, N. Papayannakos, G. Maschio, A. Lucchesi, Modeling of the pyrolysis of biomass particles - studies on kinetics, thermal and heat-transfer effects, Canadian Journal of Chemical Engineering 69 (4) (1991) 907–915.

[68] B. Duque-Pérez, Experimental setup for heterogeneous cracking of tar model compounds, Master’s thesis, TU Berlin (2010).

[69] T. J. Ohlemiller, Modeling of smoldering combustion propagation, Progress In Energy And Combustion Science 11 (4) (1985) 277–310.

[70] E. R. C. Rabelo, C. A. G. Veras, J. A. Carvalho, E. C. Alvarado, D. V.

Sandberg, J. C. Santos, Log smoldering after an amazonian deforestation fire, Atmospheric Environment 38 (2) (2004) 203–211. doi:10.1016/j.atmosenv.

2003.09.065.

Bibliography 120

[71] M. A. Nolter, D. H. Vice, Looking back at the centralia coal fire: a synopsis of its present status, International Journal of Coal Geology 59 (1-2) (2004) 99–106. doi:10.1016/j.coal.2003.12.008.

[72] G. Rein, Smouldering combustion phenomena in science and technology, In-ternational Review of Chemical Engineering 1 (2009) 3–18.

[73] G. Rein, A. C. Fernandez-Pello, D. L. Urban, Computational model of forward and opposed smoldering combustion in microgravity, Proceedings of the Com-bustion Institute 31 (2007) 2677–2684. doi:10.1016/j.proci.2006.08.047.

[74] F. He, F. Behrendt, Comparison of natural upward and downward smoldering using the volume reaction method, Energy & Fuels 23 (2009) 5813–5820. doi:

10.1021/ef900646p.

[75] M. S. Saidi, M. R. Hajaligol, A. Mhaisekar, M. Subbiah, A 3d modeling of static and forward smoldering combustion in a packed bed of materials, Ap-plied Mathematical Modelling 31 (9) (2007) 1970–1996. doi:10.1016/j.apm.

2006.08.003.

[76] C. M. Belcher, J. M. Yearsley, R. M. Hadden, J. C. McElwain, G. Rein, Base-line intrinsic flammability of earth’s ecosystems estimated from paleoatmo-spheric oxygen over the past 350 million years, Proceedings of the National Academy of Sciences of the United States of America 107 (52) (2010) 22448–

22453. doi:10.1073/pnas.1011974107.

[77] T. Kashiwagi, H. Nambu, Global kinetic constants for thermal oxidative-degradation of a cellulosic paper, Combustion And Flame 88 (3-4) (1992) 345–368.

[78] F. E. Rogers, T. J. Ohlemiller, Cellulosic insulation material .1. overall degra-dation kinetics and reaction heats, Combustion Science And Technology 24 (3-4) (1980) 129–137.

[79] G. Varhegyi, Z. Czegeny, C. A. Liu, K. McAdam, Thermogravimetric analysis of tobacco combustion assuming daem devolatilization and empirical char-burnoff kinetics, Industrial & Engineering Chemistry Research 49 (4) (2010) 1591–1599. doi:10.1021/ie901180d.

Bibliography 121

[80] J. Jauhiainen, J. A. Conesa, R. Font, I. Martin-Gullon, Kinetics of the pyrol-ysis and combustion of olive oil solid waste, Journal of Analytical and Applied Pyrolysis 72 (1) (2004) 9–15. doi:10.1016/j.jaap.2004.01.003.

[81] R. Bilbao, J. F. Mastral, M. E. Aldea, J. Ceamanos, Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere, Journal Of Analytical And Applied Pyrolysis 39 (1) (1997) 53–64.

[82] L. F. Calvo, M. Otero, B. M. Jenkins, A. Moran, A. I. Garcia, Heating pro-cess characteristics and kinetics of rice straw in different atmospheres, Fuel Processing Technology 85 (4) (2004) 279–291. doi:10.1016/S0378-3820(03) 00202-9.

[83] F. Shafizadeh, A. G. W. Bradbury, Thermal-degradation of cellulose in air and nitrogen at low-temperatures, Journal of Applied Polymer Science 23 (5) (1979) 1431–1442.

[84] C. DiBlasi, Mechanisms of two-dimensional smoldering propagation through packed fuel beds, Combustion Science And Technology 106 (1-3) (1995) 103–

124.

[85] C. Ghabi, H. Beaticha, M. Sassi, Parametric study of the heat transfer coeffi-cient in bi-dimensional smoldering simulation, Thermal Science 11 (4) (2007) 95–112.

[86] S. V. Leach, G. Rein, J. L. Ellzey, O. A. Ezekoye, J. L. Torero, Kinetic and fuel property effects on forward smoldering combustion, Combustion And Flame 120 (3) (2000) 346–358.

[87] A. P. Aldushin, A. Bayliss, B. J. Matkowsky, On the transition from smoldering to flaming, Combustion And Flame 145 (3) (2006) 579–606.

[88] G. Rein, Computational model of forward and opposed smoldering combus-tion with improved chemical kinetics, Ph.D. thesis, University of California at Berkeley (2005).

[89] G. Rein, C. Lautenberger, A. C. Fernandez-Pello, J. L. Torero, D. L. Ur-ban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combustion And Flame 146 (1-2) (2006) 95–108.

Bibliography 122

[90] C. Branca, C. Di Blasi, Global interinsic kinetics of wood oxidation, Fuel 83 (1) (2004) 81–87. doi:10.1016/S0016-2361(03)00220-5.

[91] M. Muramatsu, S. Umemura, T. Okada, Mathematical-model of evaporation-pyrolysis processes inside a naturally smoldering cigarette, Combustion and Flame 36 (3) (1979) 245–262.

[92] S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, An overview of the chemical composition of biomass, Fuel 89 (5) (2010) 913–933. doi:10.1016/

j.fuel.2009.10.022.

[93] E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff, R. Sederoff, Lignin and biomass: A negative correlation for wood formation and lignin content in trees, Plant Physiology 154 (2) (2010) 555–561. doi:10.1104/pp.110.161281.

[94] D. M. Keown, J. I. Hayashi, C. Z. Li, Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass, Fuel 87 (7) (2008) 1187–1194. doi:10.1016/j.fuel.2007.05.056.

[95] G. Varhegyi, Aims and methods in non-isothermal reaction kinetics, Journal of Analytical and Applied Pyrolysis 79 (1-2) (2007) 278–288. doi:10.1016/

j.jaap.2007.01.007.

[96] M. J. Antal, G. Varhegyi, Cellulose pyrolysis kinetics - the current state knowl-edge, Industrial & Engineering Chemistry Research 34 (3) (1995) 703–717.

doi:10.1021/ie00042a001.

[97] D. Drysdale, An Introduction to Fire Dynamics, 3rd edition, Wiley, 2011.

[98] A. M. C. Janse, H. G. de Jonge, W. Prins, W. P. M. van Swaaij, Combus-tion kinetics of char obtained by flash pyrolysis of pine wood, Industrial &

Engineering Chemistry Research 37 (10) (1998) 3909–3918.

[99] A. Khawam, D. R. Flanagan, Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, Journal of Physical Chemistry B 109 (20) (2005) 10073–10080. doi:10.1021/jp050589u.

[100] K. Slopiecka, P. Bartocci, F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis, Applied EnergyIn print. doi:10.1016/j.

apenergy.2011.12.056.

Bibliography 123

[101] H. E. Kissinger, Reaction kinetics in differential thermal analysis, Analytical Chemistry 29 (11) (1957) 1702–1706. doi:10.1021/ac60131a045.

[102] J. J. M. Orfao, F. J. A. Antunes, J. L. Figueiredo, Pyrolysis kinetics of lig-nocellulosic materials - three independent reactions model, Fuel 78 (3) (1999) 349–358. doi:10.1016/S0016-2361(98)00156-2.

[103] C. Branca, A. Albano, C. Di Blasi, Critical evaluation of global mechanisms of wood devolatilization, Thermochimica Acta 429 (2) (2005) 133–141. doi:

10.1016/j.tca.2005.02.030.

[104] F. Thurner, U. Mann, Kinetic investigation of wood pyrolysis, Industrial &

Engineering Chemistry Process Design and Development 20 (3) (1981) 482–

488.

[105] J. J. Manya, E. Velo, L. Puigjaner, Kinetics of biomass pyrolysis: A reformu-lated three-parallel-reactions model rid h-4091-2011, Industrial & Engineering Chemistry Research 42 (3) (2003) 434–441. doi:10.1021/ie020218p.

[106] C. J. Gomez, J. J. Manya, E. Velo, L. Puigjaner, Further applications of a re-visited summative model for kinetics of biomass pyrolysis, Industrial & Engi-neering Chemistry Research 43 (4) (2004) 901–906. doi:10.1021/ie030621b.

[107] C. J. Gomez, G. Varhegyi, L. Puigjaner, Slow pyrolysis of woody residues and an herbaceous biomass crop: A kinetic study, Industrial & Engineering Chemistry Research 44 (17) (2005) 6650–6660. doi:10.1021/ie050474c.

[108] J. A. Caballero, J. A. Conesa, R. Font, A. Marcilla, Pyrolysis kinetics of almond shells and olive stones considering their organic fractions, Journal of Analytical and Applied Pyrolysis 42 (2) (1997) 159–175. doi:10.1016/

S0165-2370(97)00015-6.

[109] H. Teng, Y. C. Wei, Thermogravimetric studies on the kinetics of rice hull py-rolysis and the influence of water treatment, Industrial & Engineering Chem-istry Research 37 (10) (1998) 3806–3811. doi:10.1021/ie980207p.

[110] E. Meszaros, G. Varhegyi, E. Jakab, Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation, Energy & Fuels 18 (2) (2004) 497–507. doi:10.1021/ef034030+.

Bibliography 124

[111] A. G. Barneto, J. A. Carmona, J. E. M. Alfonso, R. S. Serrano, Simulation of the thermogravimetry analysis of three non-wood pulps, Bioresource Technol-ogy 101 (9) (2010) 3220–3229. doi:10.1016/j.biortech.2009.12.034.

[112] R. Font, A. Marcilla, E. Verdu, J. Devesa, Thermogravimetric kinetic-study of the pyrolysis of almond shells and almond shells impregnated with cocl2, Journal of Analytical and Applied Pyrolysis 21 (3) (1991) 249–264. doi:

10.1016/0165-2370(91)80001-O.

[113] A. Skreiberg, O. Skreiberg, J. Sandquist, L. Sorum, Tga and macro-tga char-acterisation of biomass fuels and fuel mixtures, Fuel 90 (6) (2011) 2182–2197.

doi:10.1016/j.fuel.2011.02.012.

[114] G. Skodras, P. GrammelisO, P. Basinas, E. Kakaras, G. Sakellaropoulos, Pyrolysis and combustion characteristics of biomass and waste-derived feed-stock, Industrial & Engineering Chemistry Research 45 (11) (2006) 3791–3799.

doi:10.1021/ie060107g.

[115] G. Pantoleontos, P. Basinas, G. Skodras, P. Grammelis, J. D. Pinter, S. Topis, G. P. Sakellaropoulos, A global optimization study on the devolatilisation kinetics of coal, biomass and waste fuels, Fuel Processing Technology 90 (6) (2009) 762–769. doi:10.1016/j.fuproc.2009.03.011.

[116] G. Z. Jiang, D. J. Nowakowski, A. V. Bridgwater, A systematic study of the kinetics of lignin pyrolysis, Thermochimica Acta 498 (1-2) (2010) 61–66.

doi:10.1016/j.tca.2009.10.003.

[117] N. H. Ye, D. M. Li, L. M. Chen, X. W. Zhang, D. Xu, Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed ulva pertusa, Plos One 5 (9) (2010) e12641.doi:10.1371/journal.pone.0012641.

[118] L. Gasparovic, Z. Korenova, L. Jelemensky, Kinetic study of wood chips de-composition by tga, Chemical Papers 64 (2) (2010) 174–181. doi:10.2478/

s11696-009-0109-4.

[119] O. Senneca, Kinetics of pyrolysis, combustion and gasification of three biomass fuels, Fuel Processing Technology 88 (1) (2007) 87–97. doi:10.1016/j.

fuproc.2006.09.002.

Bibliography 125

[120] H. P. Yang, R. Yan, H. P. Chen, C. G. Zheng, D. H. Lee, D. T. Liang, In-depth investigation of biomass pyrolysis based on three major components:

Hemicellulose, cellulose and lignin, Energy & Fuels 20 (1) (2006) 388–393.

doi:10.1021/ef0580117.

[121] C. Branca, C. Di Blasi, R. Elefante, Devolatilization and heterogeneous com-bustion of wood fast pyrolysis oils, Industrial & Engineering Chemistry Re-search 44 (4) (2005) 799–810. doi:10.1021/ie049419e.

[122] C. Branca, C. Di Blasi, Combustion kinetics of secondary biomass chars in the kinetic regime, Energy & Fuels 24 (2010) 5741–5750. doi:10.1021/

ef100952x.

[123] N. M. Laurendeau, Heterogeneous kinetics of coal char gasification and com-bustion, Progress In Energy and Combustion Science 4 (4) (1978) 221–270.

[124] R. Khalil, G. Varhegyi, S. Jaschke, M. G. Gronli, J. Hustad, Co2 gasification of biomass chars: A kinetic study, Energy & Fuels 23 (1) (2009) 94–100.

doi:10.1021/ef800739m.

[125] C. Branca, C. Di Blasi, Global kinetics of wood char devolatilization and com-bustion, Energy & Fuels 17 (6) (2003) 1609–1615. doi:10.1021/ef030033a.

[126] J. Adanez, L. F. de Diego, F. Garcia-Labiano, A. Abad, J. C. Abanades, Determination of biomass char combustion reactivities for fbc applications by a combined method, Industrial & Engineering Chemistry Research 40 (20) (2001) 4317–4323.

[127] V. Cozzani, Reactivity in oxygen and carbon dioxide of char formed in the pyrolysis of refuse-derived fuel, Industrial & Engineering Chemistry Research 39 (4) (2000) 864–872.

[128] F. He, W. M. Yi, J. W. Zha, Measurement of the heat of smoldering combus-tion in straws and stalks by means of simultaneous thermal analysis, Biomass

& Bioenergy 33 (1) (2009) 130–136. doi:10.1016/j.biombioe.2008.05.006.

[129] R. Bilbao, J. F. Mastral, M. E. Aldea, J. Ceamanos, M. Betran, J. A. Lana, Experimental and theoretical study of the ignition and smoldering of wood including convective effects, Combustion And Flame 126 (1-2) (2001) 1363–

1372.

Bibliography 126

[130] D. L. Pyle, C. A. Zaror, Heat-transfer and kinetics in the low-temperature pyrolysis of solids, Chemical Engineering Science 39 (1) (1984) 147–158.

[131] J. Villermaux, B. Antoine, J. Lede, F. Soulignac, A new model for thermal volatilization of solid particles undergoing fast pyrolysis, Chemical Engineering Science 41 (1) (1986) 151–157.

[132] E. J. Kansa, H. E. Perlee, R. F. Chaiken, Mathematical-model of wood pyrol-ysis including internal forced-convection, Combustion and Flame 29 (3) (1977) 311–324.

[133] H. Thunman, B. Leckner, F. Niklasson, F. Johnsson, Combustion of wood particles - a particle model for eulerian calculations, Combustion and Flame 129 (1-2) (2002) 30–46.

[134] B. Peters, C. Bruch, A flexible and stable numerical method for simulating the thermal decomposition of wood particles, Chemosphere 42 (5-7) (2001) 481–490.

[135] J. Porteiro, J. L. Miguez, E. Granada, J. C. Moran, Mathematical modelling of the combustion of a single wood particle, Fuel Processing Technology 87 (2) (2006) 169–175. doi:10.1016/j.fuproc.2005.08.012.

[136] B. Bear, J. M. Buchlin (Eds.), Modelling and applications of transport phe-nomena in porous media, Kluwer Academic Publishers, 1991.

[137] C. A. G. Veras, J. Saastamoinen, J. A. Carvalho, N. Aho, Overlapping of the devolatilization and char combustion stages in the burning of coal particles, Combustion and Flame 116 (4) (1999) 567–579.

[138] V. Kothari, M. J. Antal, Numerical-studies of the flash pyrolysis of cellulose, Fuel 64 (11) (1985) 1487–1494.

[139] M. G. Wolfinger, Modellierung der thermischen umsetzung nichtisothermer holzpartikel in inerter und reaktiver atmosphaere, Ph.D. thesis, Technischen Universitaet Graz (2001).

[140] M. Bellais, K. O. Davidsson, T. Liliedahl, K. Sjostrom, J. B. C. Pettersson, Py-rolysis of large wood particles: a study of shrinkage importance in simulations, Fuel 82 (12) (2003) 1541–1548. doi:10.1016/S0016-2361(03)00062-0.

Bibliography 127

[141] R. Reid, J. Prausnitz, B. E. Poling, The properties of gases & liquids, 4th Edition, McGraw-Hill, 1987.

[142] S. D. Cohen, A. C. Hindmarsh, Cvode, a stiff/nonstiff ode solver in c, Com-puters in Physics 10 (2) (1996) 138–143.

[143] J. Larfeldt, B. Leckner, M. C. Melaaen, Modelling and measurements of the pyrolysis of large wood particles, Fuel 79 (13) (2000) 1637–1643.

[144] P. Deuflhard, E. Hairer, J. Zugck, One-step and extrapolation methods for differential-algebraic systems, Numerische Mathematik 51 (5) (1987) 501–516.

[145] B. Wilmes, Modellierung und simulation der vergasung eines holzpartikels unter verwendung detaillierter reaktionsmechanismen, Ph.D. thesis, Technis-chen Universitaet Berlin (2007).

[146] B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials 30 (1) (2006) 1–34. doi:10.1002/fam.891.

[147] N. Zobel, The representative particle model, Ph.D. thesis, Technischen Uni-versitaet Berlin (2007).

[148] H. A. Jakobsen, H. Lindborg, V. Handeland, A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed re-actors, Computers & Chemical Engineering 26 (3) (2002) 333–357. doi:

10.1016/S0098-1354(01)00758-X.

[149] K. Papadikis, S. Gu, A. V. Bridgwater, Cfd modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage, Chemical Engineering Journal 149 (1-3) (2009) 417–427.doi:10.1016/j.cej.

2009.01.036.

[150] M. Oevermann, S. Gerber, F. Behrendt, Euler-lagrange/dem simulation of wood gasification in a bubbling fluidized bed reactor, Particuology 7 (4) (2009) 307–316. doi:10.1016/j.partic.2009.04.004.

[151] B. Peters, Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data, Fuel 90 (6) (2011) 2301–2314. doi:10.1016/

j.fuel.2011.02.003.

Bibliography 128

[152] A. K. Sadhukhan, P. Gupta, R. K. Saha, Modelling and experimental studies on pyrolysis of biomass particles, Journal of Analytical and Applied Pyrolysis 81 (2) (2008) 183–192. doi:10.1016/j.jaap.2007.11.007.

[153] J. Rath, G. Steiner, M. G. Wolfinger, G. Staudinger, Tar cracking from fast pyrolysis of large beech wood particles, Journal of Analytical and Applied Pyrolysis 62 (1) (2002) 83–92. doi:10.1016/S0165-2370(00)00215-1.

[154] C. Brackmann, M. Alden, P. E. Bengtsson, K. O. Davidsson, J. B. C.

Pettersson, Optical and mass spectrometric study of the pyrolysis gas of wood particles, Applied Spectroscopy 57 (2) (2003) 216–222. doi:10.1366/

000370203321535141.

[155] M. J. Prins, Z. S. Li, R. J. M. Bastiaans, J. A. van Oijen, M. Alden, L. P. H. de Goey, Biomass pyrolysis in a heated-grid reactor: Visualiza-tion of carbon monoxide and formaldehyde using laser-induced fluorescence, Journal of Analytical and Applied Pyrolysis 92 (2) (2011) 280–286. doi:

10.1016/j.jaap.2011.06.008.

[156] M. L. Boroson, J. B. Howard, J. P. Longwell, W. A. Peters, Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces, Energy & Fuels 3 (6) (1989) 735–740. doi:10.1021/ef00018a014.

[157] L. J. Jandris, R. K. Force, Determination of polynuclear aromatic-hydrocarbons in vapor-phases by laser-induced molecular fluorescence, An-alytica Chimica Acta 151 (1) (1983) 19–27. doi:10.1016/S0003-2670(00) 80057-4.

[158] B. A. Kirsch, J. D. Winefordner, Electrothermal vaporization and laser-induced fluorescence for screening of polyaromatic hydrocarbons, Analytical Chemistry 59 (14) (1987) 1874–1879. doi:10.1021/ac00141a031.

[159] P. Mitsakis, M. Mayerhofer, H. Spliethoff, Qualitative and quantitative anal-ysis of biomass gasification tars by means of laser spectroscopy, in: 17th Eu-ropean Biomass Conference and Exhibition, Hamburg, 2009, pp. 639–645.

[160] R. H. Sun, N. Zobel, Y. Neubauer, C. C. Chavez, F. Behrendt, Analysis of gas-phase polycyclic aromatic hydrocarbon mixtures by laser-induced fluorescence, Optics and Lasers In Engineering 48 (12) (2010) 1231–1237. doi:10.1016/j.

optlaseng.2010.06.009.

Bibliography 129

[161] A. Burkert, D. Grebner, D. Muller, W. Triebel, J. Konig, Single-shot imaging of formaldehyde in hydrocarbon flames by xef excimer laser-induced fluores-cence, Proceedings of the Combustion Institute 28 (2000) 1655–1661.

[162] T. Milne, R. Evans, N. Abatzoglou, Biomass Gasifier Tars: Their nature, formation and conversion, National Renewable Energy Laboratory, 1998.

[163] H. Kawamoto, S. Horigoshi, S. Saka, Pyrolysis reactions of various lignin model dimers, Journal of Wood Science 53 (2) (2007) 168–174. doi:10.1007/

s10086-006-0834-z.

[164] A. Leipertz, F. Ossler, M. Alden, Polycyclic Aromatic Hydrocarbons and Soot Diagnostics by Optical Techniques. In: Applied Combustion Diagnostics, Tay-lor & Francis, 2002.

[165] B. Peters, E. Schroder, C. Bruch, Measurements and particle resolved mod-elling of the thermo- and fluid dynamics of a packed bed, Journal of Analytical and Applied Pyrolysis 70 (2) (2003) 211–231. doi:10.1016/S0165-2370(02) 00133-X.

[166] J. C. Wurzenberger, S. Wallner, H. Raupenstrauch, J. G. Khinast, Thermal conversion of biomass: Comprehensive reactor and particle modeling, Aiche Journal 48 (10) (2002) 2398–2411. doi:10.1002/aic.690481029.

[167] J. Porteiro, J. Collazo, D. Patino, E. Granada, J. C. M. Gonzalez, J. L. Miguez, Numerical modeling of a biomass pellet domestic boiler, Energy & Fuels 23 (1) (2009) 1067–1075. doi:10.1021/ef8008458.

[168] D. B. Ingham, I. Pop, Transport Phenomena in Porous Media, 1st Edition, Vol. II, Pergamon, 2002.

[169] S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress 48 (2) (1952) 89–94.

[170] E. Tsotsas, Heat and Mass Transfer in Packed Bed with Fluid Flow. VDI Heat Atlas, Springer-Verlag, 2010.

[171] S. Yagi, D. Kunii, N. Wakao, Studies on axial effective thermal conductivi-ties in packed beds, Aiche Journal 6 (4) (1960) 543–546. doi:10.1002/aic.

690060407.

Bibliography 130

[172] A. J. Slavin, V. Arcas, C. A. Greenhalgh, E. R. Irvine, D. B. Marshall, Theo-retical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature, International Journal of Heat and Mass Transfer 45 (20) (2002) 4151–4161. doi:10.1016/S0017-9310(02)00117-5.

[173] S. V. Patankar, Numerical heat transfer and fluid flow, Taylor & Francis, 1980.

[174] C. Bruch, B. Peters, T. Nussbaumer, Modelling wood combustion under fixed bed conditions, Fuel 82 (6) (2003) 729–738. doi:10.1016/S0016-2361(02) 00296-X.

[175] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, 3rd Edi-tion, Springer, 2002.

[176] H. Lindborg, V. Eide, S. Unger, S. T. Henriksen, H. A. Jakobsen, Paralleliza-tion and performance optimizaParalleliza-tion of a dynamic pde fixed bed reactor model for practical applications, Computers & Chemical Engineering 28 (9) (2004) 1585–1597. doi:10.1016/j.compchemeng.2003.12.009.

[177] R. G. Rehm, H. R. Baum, Equations of motion for thermally driven, buoyant flows, Journal of Research of the National Bureau of Standards 83 (3) (1978) 297–308.

[178] H. N. Najm, P. S. Wyckoff, O. M. Knio, A semi-implicit numerical scheme for reacting flow i. stiff chemistry rid a-3318-2010, Journal of Computational Physics 143 (2) (1998) 381–402. doi:10.1006/jcph.1997.5856.

[179] A. J. Chorin, Numerical solution of navier-stokes equations, Mathematics of Computation 22 (104) (1968) 745–&. doi:10.2307/2004575.

[180] J. Kim, P. Moin, Application of a fractional-step method to incompressible navier-stokes equations, Journal of Computational Physics 59 (2) (1985) 308–

323. doi:10.1016/0021-9991(85)90148-2.

[181] O. M. Knio, H. N. Najm, P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow ii. stiff, operator-split formulation rid a-3318-2010, Journal of Computational Physics 154 (2) (1999) 428–467. doi:10.1006/jcph.1999.

6322.

Bibliography 131

[182] E. Schroder, Experiments on the pyrolysis of large beechwood particles in fixed beds, Journal of Analytical and Applied Pyrolysis 71 (2) (2004) 669–694.

doi:10.1016/j.jaap.2003.09.004.

[183] E. Schroder, A. Class, L. Krebs, Measurements of heat transfer between par-ticles and gas in packed beds at low to medium reynolds numbers, Experi-mental Thermal and Fluid Science 30 (6) (2006) 545–558. doi:10.1016/j.

expthermflusci.2005.11.002.

[184] B. Peters, C. Bruch, Drying and pyrolysis of wood particles: experiments and simulation, Journal of Analytical and Applied Pyrolysis 70 (2) (2003) 233–250.

doi:10.1016/S0165-2370(02)00134-1.

[185] M. Kleiber, R. Joh, Properties of Pure Fluid Substances: Liquids and Gases.

VDI Heat Atlas, Springer-Verlag, 2010.

[186] A. Dieguez-Alonso, Measurements in a fixed-bed reactor: Heat transfer and pyrolysis experiments, Master’s thesis, TU Berlin (2010).

MITTEILUNGEN aus dem Rudolf-Drawe-Haus

der Technischen Universit¨at Berlin

[815] Sebastian Scholz: Gestaltung der Alternativen für die multikriteriellen Analyse unter Praxisbedinungen - Fallbeispiel Bioenergie-Region Ludwigsfelde

Diplomarbeit (2011)

[816] Simon Funk: Abscheidung von Kohlenwasserstoffen in Waschflüssigkeiten zur Mess-gasaufbereitung und zum Schutz von nachgeschalteten Prozesskomponenten

Bachelorarbeit (2011)

[817] Igor Litvinov: Erprobung von Hochleistungsgaskühlern mit Strukturrohren an einer Wirbelschichtvergasungsanlage

Diplomarbeit (2011)

[818] Lukas Nonnenmacher: Implementing a Solar Radiation Measurement Network in California and Data Quality Assessment

Diplomarbeit (2011)

[819] Jörn Nathan: GIS-gestütze Biomassepotenzialanalyse der Bioenergieregion Lud-wigsfelde

Diplomarbeit (2011)

[820] Renhui Sun: Analysis of Gas Phase Polycyclic Aromatic Hydrocarbon Mixtures by Laser Induced Fluorescence

Dissertation (2011)

[821] Thomas Ziegenhein: Vergasung von Holz in einer Wirbelschicht mit anschließen-der katalytischer Reinigung

Studienarbeit (2011)

[822] Michaja Pehl: Auswahl von Indikatoren zur Bewertung regionaler Bioenergiepro-jekte mit multikriteriellen Methoden

Studienarbeit (2011)

Bibliography 133

[823] Philipp Blechinger: Energy and water supply system for Petite Matinique re-garding renewable energies

Diplomarbeit (2011)

[824] Diego Lopez Barreiro: Characterization of Fuel, Char and Solid By-Products from Biomass Gasification in a Bubbling Fluidized Bed

Masterarbeit (2011)

[825] Martin Alvarez Perez: Influence of Mineral Matter on Wood Pyrolysis Masterarbeit (2011)

[826] Javier Coloret Tizon: Raman Spectroscopy Measurements and ist Application to Thermochemical Processes in a Biomass Particle

Masterarbeit (2011)

[827] Michael Limbach: Optimierungsmöglichkeiten am Strommarkt für die Betreiber von Rechenzentren

Studienarbeit (2011)

[828] Fabian Steegmüller: Durchführung experimenteller Versuchsreihen und vergle-ichende Auswertung von Energie-Effizienzmaßnahmen im T-Systems Testlab Data-center 2020

Studienarbeit (2011)

[829] Mathias Lüdike: Entwurf eines Messkonzeptes zur Steuerung/Regelung der En-ergieeffizienz im Betrieb von Rechenzentren unter besondere Berücksichtigung des Cloud Computing

Masterarbeit (2011)

[830] Corbinian Schöfinius: Energieanalyse eines landwirtschaftlichen Biobetriebs in Niedersachsen - Einsparmöglichkeiten und Potenziale zur regenerativen Energiegewin-nung

Studienarbeit (2011)

[831] Madeline Ebert: Hybrid system for a sustainable energy supply in Pacific Island Countries - a techno-economical simulation and analysis for an exemplary Fiji island Bachelorarbeit (2011)

[832] Saleh Al-Ashwal: Experimentelle Untersuchungen zur Abtrennung ausgewählter Gaskomponenten aus Produktgasen der Biomassevergasung mit Hilfe poröser Mem-branen aus Zementstein

Bachelorarbeit (2011)

Bibliography 134

[833] Robert Bock: Untersuchung der Temperaturgleichverteilung in einem Brennstof-fzellenstapel

Diplomarbeit (2011)

[834] Sven Thiele: Simulationsgestützte Ermittlung der Energieeffizienz von Rechnezen-tren - Auswirkungen der klimatischen Bedingungen verschiedener Standorte auf den EUE

Diplomarbeit (2010)

[835] Christian Müller: Methanhydrat als Energieträger - Energetische Bilanzierung der Erdgasförderung aus Methanhydratvorkommen und Sensitivitätsanalyse aus-gewählter Produktionsfaktoren

Studienarbeit (2010)

[836] Patrick Herr: Thermische Solartechnologien in der dezentralen Anwendung Diplomarbeit (2011)

[837] David Elsper: Aufbau einer Wärmeversorgung auf Basis nachwachsender Rohstoffe mit Wirtschaftlchkeitsbetrachtung in einem kommunalen Umfeld

Masterarbeit (2011)

[838] André Pasemann: Exergetische Bewertung einer Wirbelschicht-Vergasungsanlage für Biomasse mit Aspen Plus

Bachelorarbeit (2011)

[839] Philipp Hübner: Experimentelle Untersuchungen zur Trockenentschwefelung von Biogas mittels Adsorption an Eisenoxiden für Kleinstbiogasanlagen

Bachelorarbeit (2011)

[840] Susanne Buscher: Flugstromvergasung von HTC-Kohle. Grundlegende Betrach-tungen zur Entwicklung einer Pilotanlage für die Flugstromvergasung von SunCoalR Diplomarbeit (2011)

[841] Gabriele Calvo: Techno-economic optimization model for electricity and water production on a self-sufficient island

Masterarbeit (2011)

[842] Zaphod Leitner: Bioenergie in Small Island Developing States Studienarbeit (2012)

[843] Ivo Schneider: Umbau und Ermittlung von Betriebsparametern eines Versuchs-stands nach dem Bergius-Pier-Verfahren

Diplomarbeit (2012)

Bibliography 135

[844] Yu Hua Nicole Tseng: Electric Vehicle Charging Model with Lithium-Ion Bat-teries

Masterarbeit (2012)

[845] Renaldo Schönfeldt: Vergleich zwischen dem ORC-Prozess und dem CRC-Prozess als Abwärmenutzungskonzept für die Biogasanlage Friedrichshof

Bachelorarbeit (2012)

[846] Markus Illner: Auslegung und experimentelle Untersuchung eines Gas-Gas-Ejektors Bachelorarbeit (2012)

[847] Mirko Siegmund: Kite Energy Generation Studienarbeit (2012)

[848] Ivo Schneider: Bilanzierung der CO2-Emissionen von Kraftstoffen aus direkter Kohleverflüssigung nach dem Bergius-Pier-Verfahren

Studienarbeit (2012)

[849] Benjamin Herrmann: Zielnetzanalyse für die ND/MD-Gasverteilungsleitungen in Berlin, die auf der Basis der Zustandsbewertung in den nächsten ca. 20 Jahren erneuert werden sollen

Bachelorarbeit (2012)

[850] Leo Dittrich: Erstellung eines forstwirtschaftlichen Ertragsmodells für die Poten-zialabschätzung von Dendromasse in der Bioenergie-Region Ludwigsfelde

Bachelorarbeit (2012)

[851] Sven Kohtz: Versuche zur Vergasung von holzartiger Biomasse mit Holzkohle als Bettmaterial in einem Wirbelschichtvergaser

Studienarbeit (2012)

[852] Julian Elizalde König: Multikriterielle Bewertung von Energieeffizienzkenn-zahlen in Büroumgebung und IT-Netzwerk

Diplomarbeit (2012)

[853] Burghard Geffers: Untersuchungen zur Düsenkonfiguration und Einspritzver-laufsformung an einem Einzylinder-Dieselmotor

Diplomarbeit (2012)

[854] Gerber Stephan: Grobstruktursimulation der Biomassevergasung in einer Wirbelschicht am Beispiel von Holz

Dissertation (2011)

Bibliography 136

[855] Benjamin Blumenthal: Aktivierung von Koks aus Pyrolyse und Vergasung im Hinblick auf die Adsorptionsfähigkeit von Teersubstanzen in Gasgemischen

Bachelorarbeit (2012)

[856] Joscha Steinbrenner: Ermittlung stabiler Betriebsparameter einer Koks-Gas Wirbelschicht bei der Vergasung von Holz

Studienarbeit (2012)

[857] Barbra Ruben: Ökologische Bewertung von Energie- und Wasserversorgungssys-temen

Masterarbeit (2012)

[858] Nils-Magnus Wasser: Untersuchungen der Fluidisierungseigenschaften von Koks, Mineralien und Mischungen daraus in der stationären Wirbelschicht

Bachelorarbeit (2012)

[859] Franziska Michalski: Planung einer stationären Sortieranlage für die Separation werthaltiger Metalle aus den MPS-Anlagen Berlins

Diplomarbeit (2012)

[860] Omar Mohd-Abdelghani Quintela: Thermochemical Conversion Processes from Molecular Level up tp Reactor Level: Pyrolysis and Gasification

Masterarbeit (2012)

[861] Alexander Warlo: Experimentelle Untersuchungen zur Hydrothermalen Carbon-isierung von Grünschnitt

Studienarbeit (2012)

[862] Michael Limbach: Markteffekte von verpflichtenden Quoten für die Mitverbren-nung von Biomasse in Kohlekraftwerken

Diplomarbeit (2012)

[863] Thomas Schnittger: Die Fischer-Tropsch-Synthese, deren Bilanzierung und CO2 -Emissionen

Diplomarbeit (2012)

[864] Asem Mohammed: Conversion of Lignocellulosic Material into Fermentable Sugars Dissertation (2012)

[865] Ines Wilkens: Multikriterielle Analyse zur Nachhaltigkeitsbewertung von Energiesys-temen - Von der Theorie zur praktischen Anwendung

Dissertation (2012)