• Keine Ergebnisse gefunden

In the present work, final deliverable of my Ph. D. course, new possibilities offered by SAXS in solution for studying flexible biological systems are addressed. New data analysis algorithms utilizing an interdisciplinary approach have been here developed and presented in details. The work is aimed to extend the capability of a widely shared modus operandi for the studying of flexible particles in solution, namely ensemble characterization. As no crystals are needed, SAXS in solution is one of the very few structural techniques suitable for the analysis of macromolecular flexibility. In some cases, especially given the absence of limitations on the molecular mass of the solute, SAXS is the only technique able to provide qualitative as well quantitative structural information about flexible particles. This fact made SAXS a method of choice for studying flexibility over the last years. Recent improvements in this technique have helped in the characterization of local flexibility within the particles allowing, in some cases, to link the partially unstructured regions to important biological functions in applications ranging from basics research to pharmaceutical applications (see Chapter 3 and Chapter 4). These studies substantially contributed to the reevaluation of the concept stating that a predefined 3D shape is necessary for the particle to be functionally active.

As a result, new and challenging research areas are presently being actively developed including extensive studies of IDPs. A major breakthrough was marked by the advent of the methods employing ensemble analysis allowing for quantitative analysis of flexible systems. These methods demonstrated their power for simple (e.g. single-chain) macromolecules but had some limitations for the characterization of complicated scenarios where flexibility analysis had to account for specific structural features, e.g. the presence of point group symmetry or specific protein-protein or protein-nucleic acids interaction. Extensions of the existing methods were therefore requested by the biological community.

In this dissertation, the original ensemble analysis method EOM has been entirely re-designed and made capable of handling for complicated studies of flexibility. The new algorithm, called EOM 2.0 fully maintains all the capabilities of the previous one while being much more efficient and having important new features. Special attention was paid to the integration of the information coming from complementary techniques into the SAXS data analysis procedure. An artificial intelligence based strategy for the generation

126

of missing regions was implemented making the modelling of the ensemble a highly efficient procedure. A revisited genetic algorithm of EOM 2.0 is able to identify an optimum ensemble size minimizing potential problems due to over- as well as under-fitting of the experimental data, typical for the ensemble approaches. Another important innovation is represented by the introduction of two quantitative metrics, Rflex and Rcheck. Adapting a concept coming from the field of information theory, these metrics have been designed to provide objective assessments of flexibility. Thanks to these developments, systematic characterizations of the flexibility are now possible as potential artifacts are automatically detected and reported to the user. Moreover, in EOM 2.0 these metrics are complemented by a detailed representation of the behavior of the particles in solution.

Finally and very importantly, EOM 2.0 offers the unique opportunity to model particles that show disorder as well as symmetry. This possibility required the generation step to be entirely re-designed and perhaps represents the highest impact development among those presented in this dissertation, given that none of the presently available methods can offer such modeling. Additionally, the possibility to search for the best ensemble through multiple pools (e.g. containing oligomeric species) has also been introduced allowing one to employ EOM 2.0 for tracking of oligomerization processes of flexible particles. The practical examples in Chapters 5 and 6 provide good illustrations of the advanced studies that can be now conducted thanks to the capabilities of EOM 2.0.

EOM 2.0 can be freely downloaded by academic users as part of the package ATSAS 2.5 publicly available at the EMBL BioSAXS website (http://www.embl-hamburg.de/

biosaxs/software.html). The program runs on all major hardware platforms and contains an exhaustive documentation and test examples. The beta-releases of EOM 2.0 have already been used in numerous structural studies as the final version is to be released soon (paper in preparation). We expect that EOM 2.0 will significantly contribute to further advancement of SAXS studies of flexible macromolecules and complexes in solution.

127

References

1. Bernado, P. 2010. "Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering." Eur Biophys J no. 39 (5):769-80. doi:

10.1007/s00249-009-0549-3.

2. Bernado, P., L. Blanchard, P. Timmins, D. Marion, R. W. Ruigrok, and M.

Blackledge. 2005. "A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering." Proc Natl Acad Sci U S A no. 102 (47):17002-7. doi: 10.1073/pnas.0506202102.

3. Bernado, P., E. Mylonas, M. V. Petoukhov, M. Blackledge, and D. I. Svergun. 2007.

"Structural characterization of flexible proteins using small-angle X-ray scattering."

J Am Chem Soc no. 129 (17):5656-64. doi: 10.1021/ja069124n.

4. Bernado, P., and D. I. Svergun. 2012. "Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering." Mol Biosyst no. 8 (1):151-67. doi:

10.1039/c1mb05275f.

5. Berne, B.J., and R. Pecora. 2000. Dynamic Light Scattering: Courier Dover Publications.

6. Booch, and Grady. 1986. Software Engineering with Ada. Addison Wesley.

7. CASP6. 2005. "CASP6 proceedings." Proteins: Structure, Function, and Bioinformatics no. 61 (S7):1-236.

8. CASP7. 2007. "CASP7 proceedings." Proteins: Structure, Function, and Bioinformatics no. 69 (S8):1-207.

9. CASP8. 2009. "CASP8 proceedings." Proteins: Structure, Function, and Bioinformatics no. 77 (S9):1-228.

10. CASP9. 2011. "CASP9 proceedings." Proteins: Structure, Function, and Bioinformatics no. 79 (S10):1-207.

11. Chacon, P., J. F. Diaz, F. Moran, and J. M. Andreu. 2000. "Reconstruction of protein form with X-ray solution scattering and a genetic algorithm." J Mol Biol no. 299 (5):1289-302.

12. Chouard, T. 2011. "Structural biology: Breaking the protein rules." Nature no. 471 (7337):151-3. doi: 10.1038/471151a.

13. Debye, P., H.R.Jr. Anderson, and H. Brumberger. 1957. "Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application." J. Appl.

128 Phys. no. 679 (28).

14. Doniach, S. 2001. "Changes in biomolecular conformation seen by small angle X-ray scattering." Chem Rev no. 101 (6):1763-78.

15. Drew, K., P. Winters, G. L. Butterfoss, V. Berstis, K. Uplinger, J. Armstrong, M.

Riffle, E. Schweighofer, B. Bovermann, D. R. Goodlett, T. N. Davis, D. Shasha, L.

Malmstrom, and R. Bonneau. 2011. "The Proteome Folding Project: proteome-scale prediction of structure and function." Genome Res no. 21 (11):1981-94. doi:

10.1101/gr.121475.111.

16. Durand, D., C. Vives, D. Cannella, J. Perez, E. Pebay-Peyroula, P. Vachette, and F.

Fieschi. 2010. "NADPH oxidase activator p67(phox) behaves in solution as a multidomain protein with semi-flexible linkers." J Struct Biol no. 169 (1):45-53. doi:

S1047-8477(09)00239-1 [pii] 10.1016/j.jsb.2009.08.009.

17. Feigin, L. A., and D. I. Svergun. 1987. Structure analysis by small-angle x-ray and neutron scattering. New York: Plenum Press.

18. Flory, PJ. 1953. Principles of polymer chemistry. Ithaca, NY: Cornell University Press.

19. Francis, D. M., B. Rozycki, D. Koveal, G. Hummer, R. Page, and W. Peti. 2011.

"Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase." Nat Chem Biol no. 7 (12):916-24. doi: 10.1038/nchembio.707.

20. Franke, D., A.G. Kikhney, and D.I. Svergun. 2012. "Automated acquisition and analysis of small angle X-ray scattering data." Nuclear Instruments and Methods in Physics Research A no. 689:52–59.

21. Franke, D., and D.I. Svergun. 2009. "DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering." J. Appl. Cryst. no. 42:342-346. doi:

10.1107/S0021889809000338.

22. Glatter, O. 1977. "A new method for the evaluation of small-angle scattering data."

J. Appl. Cryst. no. 10:415-421.

23. Glatter, O., and O. Kratky. 1982. Small Angle X-ray Scattering. London: Academic Press.

24. Gong, H., P. J. Fleming, and G. D. Rose. 2005. "Building native protein conformation from highly approximate backbone torsion angles." Proc Natl Acad Sci U S A no.

102 (45):16227-32. doi: 10.1073/pnas.0508415102.

25. Graewert, M. A., and D. I. Svergun. 2013. "Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS)." Curr Opin Struct Biol no. 23 (5):748-54. doi: 10.1016/j.sbi.2013.06.007.

129

26. Guinier, A. 1939. Ann. Phys. (Paris) no. 12:161-237.

27. Heller, W. T., E. Abusamhadneh, N. Finley, P. R. Rosevear, and J. Trewhella. 2002.

"The solution structure of a cardiac troponin C-troponin I-troponin T complex shows a somewhat compact troponin C interacting with an extended troponin I-troponin T component." Biochemistry no. 41 (52):15654-63.

28. Hura, G. L., A. L. Menon, M. Hammel, R. P. Rambo, F. L. Poole, 2nd, S. E.

Tsutakawa, F. E. Jenney, Jr., S. Classen, K. A. Frankel, R. C. Hopkins, S. J. Yang, J.

W. Scott, B. D. Dillard, M. W. Adams, and J. A. Tainer. 2009. "Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)." Nat Methods no. 6 (8):606-12. doi: nmeth.1353 [pii] 10.1038/nmeth.1353.

29. Ilari, A., F. Alaleona, G. Tria, P. Petrarca, A. Battistoni, C. Zamparelli, D. Verzili, M. Falconi, and E. Chiancone. 2013. "The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc." Biochim Biophys Acta no. 1840 (1):535-544. doi: 10.1016/j.bbagen.2013.10.010.

30. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecci. 1983. "Optimization by simulated annealing." Science no. 220:671-680.

31. Kleywegt, G. J. 1997. "Validation of protein models from Calpha coordinates alone."

J Mol Biol no. 273 (2):371-376.

32. Koch, C., G. Tria, A. J. Fielding, F. Brodhun, O. Valerius, K. Feussner, G. H. Braus, D. I. Svergun, M. Bennati, and I. Feussner. 2013. "A structural model of PpoA derived from SAXS-analysis-implications for substrate conversion." Biochim Biophys Acta no. 1831 (9):1449-57. doi: 10.1016/j.bbalip.2013.06.003.

33. Koch, M. H., P. Vachette, and D. I. Svergun. 2003. "Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution." Q Rev Biophys no. 36 (2):147-227.

34. Kohn, J. E., I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S.

Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I.

Ruczinski, S. Doniach, and K. W. Plaxco. 2004. "Random-coil behavior and the dimensions of chemically unfolded proteins." Proc Natl Acad Sci U S A no. 101 (34):12491-6.

35. Konarev, P.V., M. V. Petoukhov, V.V. Volkov, and D.I. Svergun. 2006. "ATSAS 2.1, a program package for small-angle scattering data analysis." J. Appl. Crystallogr.

no. 39:277-286.

36. Konarev, P.V., M.V. Petoukhov, and D.I. Svergun. 2001. "MASSHA - a graphic

130

system for rigid body modelling of macromolecular complexes against solution scattering data." J. Appl. Crystallogr. no. 34:527-532.

37. Kozin, M.B. , and D.I. Svergun. 2001. "Automated matching of high- and low-resolution structural models." J. Appl. Crystallogr. no. 34:33-41.

38. Krissinel, E., and K. Henrick. 2007. "Inference of macromolecular assemblies from crystalline state." J Mol Biol no. 372 (3):774-97. doi: 10.1016/j.jmb.2007.05.022.

39. Krzeminski, M., J. A. Marsh, C. Neale, W. Y. Choy, and J. D. Forman-Kay. 2013.

"Characterization of disordered proteins with ENSEMBLE." Bioinformatics no. 29 (3):398-9. doi: 10.1093/bioinformatics/bts701.

40. Lawson, Ch.L. , and R.J. Hanson. 1974. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall, Inc.

41. Liu, H., R. J. Morris, A. Hexemer, S. Grandison, and P. H. Zwart. 2012.

"Computation of small-angle scattering profiles with three-dimensional Zernike polynomials." Acta Crystallogr A no. 68 (Pt 2):278-85. doi:

10.1107/S010876731104788X.

42. Lyskov, S., F. C. Chou, S. O. Conchuir, B. S. Der, K. Drew, D. Kuroda, J. Xu, B. D.

Weitzner, P. D. Renfrew, P. Sripakdeevong, B. Borgo, J. J. Havranek, B. Kuhlman, T. Kortemme, R. Bonneau, J. J. Gray, and R. Das. 2013. "Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE)." PLoS One no. 8 (5):e63906. doi: 10.1371/journal.pone.0063906.

43. Marks, D. S., L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani, R. Zecchina, and C. Sander. 2011. "Protein 3D structure computed from evolutionary sequence variation." PLoS One no. 6 (12):e28766. doi: 10.1371/journal.pone.0028766.

44. Marsh, J. A., and J. D. Forman-Kay. 2009. "Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints." J Mol Biol no. 391 (2):359-74. doi:

10.1016/j.jmb.2009.06.001.

45. Marsh, J. A., C. Neale, F. E. Jack, W. Y. Choy, A. Y. Lee, K. A. Crowhurst, and J.

D. Forman-Kay. 2007. "Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure." J Mol Biol no. 367 (5):1494-510. doi: 10.1016/j.jmb.2007.01.038.

46. Mertens, H. D., and D. I. Svergun. 2010. "Structural characterization of proteins and complexes using small-angle X-ray solution scattering." J Struct Biol no. 172 (1):128-41. doi: S1047-8477(10)00190-5 [pii] 10.1016/j.jsb.2010.06.012.

47. Mittag, T., J. Marsh, A. Grishaev, S. Orlicky, H. Lin, F. Sicheri, M. Tyers, and J. D.

131

Forman-Kay. 2010. "Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase."

Structure no. 18 (4):494-506. doi: 10.1016/j.str.2010.01.020.

48. Mukrasch, M. D., P. Markwick, J. Biernat, Mv Bergen, P. Bernado, C. Griesinger, E. Mandelkow, M. Zweckstetter, and M. Blackledge. 2007. "Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation." J Am Chem Soc no. 129 (16):5235-43. doi:

10.1021/ja0690159.

49. Mylonas, E., A. Hascher, P. Bernado, M. Blackledge, E. Mandelkow, and D. I.

Svergun. 2008. "Domain conformation of tau protein studied by solution small-angle X-ray scattering." Biochemistry no. 47 (39):10345-10353.

50. Mylonas, E., and D.I. Svergun. 2007. "Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering." J. Appl. Cryst. no. 40:s245-s249.

51. Pande, V. S., I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M. Larson, Y. M. Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Zagrovic. 2003. "Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing." Biopolymers no. 68 (1):91-109. doi: 10.1002/bip.10219.

52. Pelikan, M., G. L. Hura, and M. Hammel. 2009. "Structure and flexibility within proteins as identified through small angle X-ray scattering." Gen Physiol Biophys no.

28 (2):174-89.

53. Petoukhov, M. V., and D. I. Svergun. 2005a. "Global rigid body modeling of macromolecular complexes against small-angle scattering data." Biophys J no. 89 (2):1237-1250. doi: 10.1529/biophysj.105.064154.

54. Petoukhov, M. V., and D. I. Svergun. 2005b. "Global rigid body modelling of macromolecular complexes against small-angle scattering data." Biophys J no. 89 (2):1237-1250.

55. Petoukhov, Maxim V., Daniel Franke, Alexander V. Shkumatov, Giancarlo Tria, Alexey G. Kikhney, Michal Gajda, Christian Gorba, Haydyn D. T. Mertens, Petr V.

Konarev, and Dmitri I. Svergun. 2012. "New developments in the ATSAS program package for small-angle scattering data analysis." Journal of Applied Crystallography no. 45 (2):342-350. doi: doi:10.1107/S0021889812007662.

56. Pinotsis, N., S. D. Chatziefthimiou, F. Berkemeier, F. Beuron, I. M. Mavridis, P. V.

Konarev, D. I. Svergun, E. Morris, M. Rief, and M. Wilmanns. 2012. "Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic

132

properties." PLoS Biol no. 10 (2):e1001261. doi: 10.1371/journal.pbio.1001261.

57. Poitevin, Frédéric, Henri Orland, Sebastian Doniach, Patrice Koehl, and Marc Delarue. 2011. "AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models." Nucleic Acids Research no.

39 (suppl 2):W184-W189. doi: 10.1093/nar/gkr430.

58. Porod, G. 1982. "General theory." In Small-angle X-ray scattering, edited by O.

Glatter and O. Kratky, 17-51. London: Academic Press.

59. Rambo, R. P., and J. A. Tainer. 2011. "Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law."

Biopolymers no. 95 (8):559-71. doi: 10.1002/bip.21638.

60. Ritland, H. N., Paul Kaesberg, and W. W. Beeman. 1950. "An XRay Investigation of the Shapes and Hydrations of Several Protein Molecules in Solution." The Journal of Chemical Physics no. 18 (9):1237-1242. doi:http://dx.doi.org/10.1063/1.1747917.

61. Round, A. R., D. Franke, S. Moritz, R. Huchler, M. Fritsche, D. Malthan, R.

Klaering, D. I. Svergun, and M. Roessle. 2008. "Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33."

Journal of Applied Crystallography no. 41:913-917.

62. Rozycki, B., Y. C. Kim, and G. Hummer. 2011. "SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions." Structure no. 19 (1):109-16. doi:

10.1016/j.str.2010.10.006.

63. Sachyani, D., Dvir, M., Strulovich, R., Tria, G., Pongs, O., Svergun, D. I., Attali, B., and Hirsch J. A. 2014. "Structural Basis of a Kv7.1 (KCNQ1) Potassium Channel Gating Module: Studies of the Intracellular C- terminal Domain in Complex with Calmodulin" (submitted)

64. Schmidt, Paul W. 1962. "Small-Angle X-Ray Scattering from Proteins." Journal of Dairy Science no. 45 (2):266-273. doi: 10.3168/jds.S0022-0302(62)89377-1.

65. Schneidman-Duhovny, D., M. Hammel, and A. Sali. 2010. "FoXS: a web server for rapid computation and fitting of SAXS profiles." Nucleic Acids Research no.

38:W540-W544. doi: 10.1093/nar/gkq461.

66. Semenyuk, A. V., and D. I. Svergun. 1991. "GNOM - a program package for small-angle scattering data processing." J. Appl. Crystallogr. no. 24:537-540.

67. Shannon, C. E., and W. Weaver. 1949. The Mathematical Theory of Communication:

Univ. of Illinois Press, Urbana, IL.

68. Sickmeier, M., J. A. Hamilton, T. LeGall, V. Vacic, M. S. Cortese, A. Tantos, B.

Szabo, P. Tompa, J. Chen, V. N. Uversky, Z. Obradovic, and A. K. Dunker. 2007.

133

"DisProt: the Database of Disordered Proteins." Nucleic Acids Res no. 35 (Database issue):D786-93. doi: 10.1093/nar/gkl893.

69. Soykan, T., Schneeberger, D., Tria, G., Bader, N., Svergun, D. I., Tessmer, I., Poulopoulos, A., Papadopoulos, T., Varoqueaux, F., Schindelin, H. and Buechner, C. N. 2014. "A Conformational Switch in Collybistin Determines the Differentiation of Inhibitory Postsynapses". (submitted)

70. Stott, K., M. Watson, F. S. Howe, J. G. Grossmann, and J. O. Thomas. 2010. "Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains." J Mol Biol no. 403 (5):706-22. doi:

10.1016/j.jmb.2010.07.045.

71. Stuhrmann, H. B. 1970a. "Ein neues Verfahren zur Bestimmung der Oberflaechenform und der inneren Struktur von geloesten globularen Proteinen aus Roentgenkleinwinkelmessungen." Zeitschr. Physik. Chem. Neue Folge no. 72:177-198.

72. Stuhrmann, H. B. 1970b. "Interpretation of small-angle scattering functions of dilute solutions and gases. A representation of the structures related to a one-particle-scattering function." Acta Cryst. no. A26:297-306.

73. Svergun, D. I. 1999. "Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing." Biophys J no.

76 (6):2879-86.

74. Svergun, D. I., C. Barberato, and M. H. J. Koch. 1995. "CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates." J. Appl. Crystallogr. no. 28:768-773.

75. Svergun, D. I., and M. H. J. Koch. 2003. "Small angle scattering studies of biological macromolecules in solution." Rep. Progr. Phys. no. 66:1735-1782.

76. Svergun, D. I., M. H. J. Koch, P. A. Timmins, and R. P. May. 2013. Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules. Edited by International Union of Crystallography Texts on Crystallography (Book 19). USA:

Oxford University Press.

77. Svergun, D. I., M. V. Petoukhov, and M. H. J. Koch. 2001. "Determination of domain structure of proteins from X-ray solution scattering." Biophys J no. 80 (6):2946-53.

doi: 10.1016/S0006-3495(01)76260-1.

78. Svergun, D. I., V. V. Volkov, M. B. Kozin, and H. B. Stuhrmann. 1996. "New developments in direct shape determination from small-angle scattering 2.

Uniqueness." Acta Crystallogr. no. A52:419-426.

134

79. Taiji, Makoto. 2004. "MDGRAPE-3 chip: A 165-Gflops application-specific LSI for Molecular Dynamics Simulations." 16th IEEE Hot Chips Symposium.

80. R: A language and environment for statistical computing, Vienna (Austria).

81. Teixeira, S. C., J. Ankner, M. C. Bellissent-Funel, R. Bewley, M. P. Blakeley, L.

Coates, R. Dahint, R. Dalgliesh, N. Dencher, J. Dhont, P. Fischer, V. T. Forsyth, G.

Fragneto, B. Frick, T. Geue, R. Gilles, T. Gutberlet, M. Haertlein, T. Hauss, W.

Haussler, W. T. Heller, K. Herwig, O. Holderer, F. Juranyi, R. Kampmann, R. Knott, J. Kohlbrecher, S. Kreuger, P. Langan, R. Lechner, G. Lynn, C. Majkrzak, R. May, F. Meilleur, Y. Mo, K. Mortensen, D. A. Myles, F. Natali, C. Neylon, N. Niimura, J.

Ollivier, A. Ostermann, J. Peters, J. Pieper, A. Ruhm, D. Schwahn, K. Shibata, A. K.

Soper, T. Straessle, U. I. Suzuki, I. Tanaka, M. Tehei, P. Timmins, N. Torikai, T.

Unruh, V. Urban, R. Vavrin, K. Weiss, and G. Zaccai. 2008. "New sources and instrumentation for neutrons in biology." Chem Phys no. 345 (2-3):133-151. doi:

10.1016/j.chemphys.2008.02.030.

82. Toft, K.N., B. Vestergaard, S.S. Nielsen, D. Snakenborg, M.G. Jeppesen, J.K.

Jacobsen, L. Arleth, and J.P. Kutter. 2008. "High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end." Analytical Chemistry no. 80 (10):3648-3654.

83. Tompa, P. 2012. "On the supertertiary structure of proteins." Nat Chem Biol no. 8 (7):597-600. doi: 10.1038/nchembio.1009.

84. Tsutakawa, S. E., A. W. Van Wynsberghe, B. D. Freudenthal, C. P. Weinacht, L.

Gakhar, M. T. Washington, Z. H. Zhuang, J. A. Tainer, and I. Ivanov. 2011. "Solution X-ray scattering combined with computational modeling reveals multiple conformations of covalently bound ubiquitin on PCNA." Proceedings of the National Academy of Sciences of the United States of America no. 108 (43):17672-17677. doi:

10.1073/pnas.1110480108.

85. Vachette, P., and D.I. Svergun. 2000. "Small-angle X-ray Scattering of Biological Macromolecules in Solution." In Biomolecular Structure and Dynamics, edited by E.

Fanchon, E. Geissler, J.L. Hodeau, J.R. Regnard and P. Timmins, 199-237. Oxford:

Oxford University Press.

86. Volkov, V.V., and D.I. Svergun. 2003. "Uniqueness of ab initio shape determination in small angle scattering." J. Appl. Crystallogr. no. 36:860-864.

87. Walther, D., F. E. Cohen, and S. Doniach. 2000. "Reconstruction of low-resolution three-dimensional density maps from one-dimensional small-angle X-ray solution scattering data for biomolecules." J. Appl. Crystallogr. no. 33:350-363.

135

88. Wilkins, D. K., S. B. Grimshaw, V. Receveur, C. M. Dobson, J. A. Jones, and L. J.

Smith. 1999. "Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques." Biochemistry no. 38 (50):16424-31.

89. Yang, S. C., L. Blachowicz, L. Makowski, and B. Roux. 2010. "Multidomain assembled states of Hck tyrosine kinase in solution." Proceedings of the National Academy of Sciences of the United States of America no. 107 (36):15757-15762. doi:

10.1073/pnas.1004569107.

136