• Keine Ergebnisse gefunden

Birds cope with seasonal variation in environmental factors by adaptation of their physiology and life history. When seasonal variation is partly predictable, such adaptations can be based on endogenous circannual rhythms to anticipate reoccurring seasonal change (Helm 2009). The knowledge of local adaptation and adaptive potential of natural populations to seasonal variation is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change.

Although species have responded to climatic changes throughout their evolutionary history, a primary concern for natural populations and their ecosystems is the rapid rate of anthropogenic change. There is already compelling evidence that birds have been affected by recent climate changes (Walther et al.

2002; Parmesan 2006). Most studies report substantial evidence for changes in the phenology of birds, particularly of the timing of migration and of breeding onset; the implications of these responses, however, are not well understood. Many organisms advance the timing of their seasonal activities, thereby adapting to seasonal shifts in their environment (Coppack and Both 2002; Cotton 2003; Both et al. 2004, 2006; Visser et al. 2004). Study populations of African stonechats seem to follow a highly

conserved circannual reproductive schedule. I assembled in-depth knowledge of the life history, seasonal life cycle stages, and reproductive physiology focusing on a single population over the past three years. Birds from Kinangop, Kenya, did not attempt to breed outside the breeding season even when environmental conditions were optimal and other species within the same habitat initialized breeding. A long-term study on a geographically close African stonechat population at Lake Nakuru discovered similar findings (Dittami and Gwinner 1985). Neither heavy rains nor high levels of insect abundance were generally associated with any breeding activity outside the breeding season.

Interestingly, gonadal development during an extremely dry breeding season was uninhibited, and reproductive hormone levels did not rise with the subsequent belated onset of rain indicating the robust endogenous circannual rhythm of African stonechats (Dittami and Gwinner 1985). Our findings revealed substantial contributions of temporal and spatial isolation to population divergence in African stonechats. Considerable differences in the timing of breeding between populations on a local scale may promote population divergence and ultimately incipient ecological speciation processes.

The reliance on circannual rhythms is fundamental for timing essential annual activities, but may constrain the required fast adaptation to shifting seasonality in an era of climate change.

Understanding the endocrine mechanisms by which birds regulate the appropriate timing of breeding as well as the ecology and evolution of seasonal phenotypic traits will be essential for assessing whether populations can adapt their life histories and behaviors to cope with changes in the seasonality of their environment (Visser 2008).

References

Patagonia.  Physiol.  Biochem.  Zool.  86:782–90.  

Alerstam,  T.  1993.  Bird  migration.  Cambridge  University  Press,  Cambridge.  

Apfelbeck,   B.,   and   W.   Goymann.   2011.   Ignoring   the   challenge?   Male   black   redstarts   (Phoenicurus  

Neurosci.  Biobehav.  Rev.  30:319–345.  

Baker,   M.   C.   1975.   Song   dialects   and   genetic   differences   in   white-­‐crowned   sparrows   (Zonotrichia  

Baker,  M.  C.,  and  M.  A.  Cunningham.  1985.  The  biology  of  bird-­‐song  dialects.  Behav.  Brain  Sci.  8:85.  

Baker,   M.   C.,   and   L.   R.   Mewaldt.   1978.   Song   dialects   as   barriers   to   dispersal   in   White-­‐crowned   Sparrows,  Zonotrichia  leucophrys  nuttalli.  Evolution  (N.  Y).  32:712–722.  

Balakrishnan,   C.   N.,   and   M.   D.   Sorenson.   2006.   Song   discrimination   suggests   premating   isolation   among  sympatric  indigobird  species  and  host  races.  Behav.  Ecol.  17:473–478.  

Baldwin,   M.   W.,   H.   Winkler,   C.   L.   Organ,   and   B.   Helm.   2010.   Wing   pointedness   associated   with   migratory  distance  in  common-­‐garden  and  comparative  studies  of  stonechats  (Saxicola  torquata).  J.  

Evol.  Biol.  23:1050–1063.  

Ball,   G.   F.,   and   J.   Balthazart.   2004.   Hormonal   regulation   of   brain   circuits   mediating   male   sexual   behavior  in  birds.  Physiol.  Behav.  83:329–346.  

Ball,  G.  F.,  and  J.  Balthazart.  2010.  Seasonal  and  hormonal  modulation  of  neurotransmitter  systems   in  the  song  control  circuit.  J.  Chem.  Neuroanat.  39:82–95.  

Ball,  G.  F.,  L.  V  Riters,  and  J.  Balthazart.  2002.  Neuroendocrinology  of  song  behavior  and  avian  brain   plasticity:   multiple   sites   of   action   of   sex   steroid   hormones.   Front.   Neuroendocrinol.   23:137–178.  

Elsevier.  

Ball,   G.,   and   J.   Wingfield.   1987.   Changes   in   plasma   levels   of   luteinizing   hormone   and   sex   steroid   hormones  in  relation  to  multiple-­‐broodedness  and  nest-­‐site  density  in  male  starlings.  Physiol.  Zool.  

60:191–199.  

Ballentine,  B.  2009.  The  ability  to  perform  physically  challenging  songs  predicts  age  and  size  in  male   swamp  sparrows,  Melospiza  georgiana.  Anim.  Behav.  77:973–978.  

Ballentine,  B.,  B.  Ballentine,  J.  Hyman,  J.  Hyman,  S.  Nowicki,  and  S.  Nowicki.  2004.  Vocal  performance   in  uences  female  response  to  male  bird  song:  an  experimental  test.  Behav.  Ecol.  15:163–168.  

Balthazart,  J.  1997.  Steroid  control  and  sexual  differentiation  of  brain  aromatase.  J.  Steroid  Biochem.  

Mol.  Biol.  61:323–339.  

Balthazart,   J.,   T.   D.   Charlier,   J.   M.   Barker,   T.   Yamamura,   and   G.   F.   Ball.   2010.   Sex   steroid-­‐induced   neuroplasticity  and  behavioral  activation  in  birds.  Eur.  J.  Neurosci.  32:2116–2132.  

Bartsch,  C.,  M.  Weiss,  and  S.  Kipper.  2012.  The  return  of  the  intruder:  Immediate  and  later  effects  of   different  approach  distances  in  a  territorial  songbird.  Ethology  118:876–884.  

Bates,  D.,  M.  Mächler,  and  B.  Bolker.  2012.  Fitting  linear  mixed-­‐effects  models  using  lme4.  J.  Stat.  

Softw.  55:51.  

Beani,   L.,   and   F.   Dessì-­‐Fulgheri.   1995.   Mate   choice   in   the   grey   partridge,   Perdix   perdix:   role   of   physical  and  behavioural  male  traits.  Anim.  Behav.  49:347–356.  

Beani,   L.,   G.   Panzica,   F.   Briganti,   P.   Persichella,   and   F.   Dessì-­‐Fulgheri.   1995.   Testosterone-­‐induced   changes  of  call  structure,  midbrain  and  syrinx  anatomy  in  partridges.  Physiol.  Behav.  58:1149–1157.  

Beckett,  M.  D.,  and  G.  Ritchison.  2010.  Effects  of  breeding  stage  and  behavioral  context  on  singing   behavior  of  male  Indigo  buntings.  Wilson  J.  Ornithol.  122:655–665.  

Bee,   M.   A.,   and   S.   A.   Perrill.   1996.   Responses   to   conspecific   advertisement   calls   in   the   Green   frog   (Rana  clamitans)  and  their  role  in  male-­‐male  communication.  Behaviour  133:283–301.  

Beletsky,   L.   D.,   G.   H.   Orians,   and   J.   C.   Wingfield.   2010.   Effects   of   exogenous   androgen   and   contribution  to  parental  care.  Behaviour  143:1–14.  

Boseret,  G.,  C.  Carere,  G.  F.  Ball,  and  J.  Balthazart.  2006.  Social  context  affects  testosterone-­‐induced