• Keine Ergebnisse gefunden

In the first part of the our studies we showed that whereas pre- and post-freeze membrane integrity and motility show a clear correlation, pre-freeze hypotonic resistance normalized towards the initial number of viable sperm does not correlate with sperm motility after cryopreservation. We thus conclude that pre-freeze hypotonic resistance cannot be used as a parameter to foresee sperm cryosurvival rates.

The second part of our studies showed that density centrifugation protocols can be used to select a subpopulation, which exhibits increased percentages of morphologically normal and progressively motile sperm with increased membrane and chromatin intactness.

Also, for use for delayed cryopreservation density centrifugation yielded increased numbers of high quality sperm when compared to diluted or ordinary centrifuged sperm. Performing density centrifugation directly after collection was found to result in higher cryosurival rates as compared to performing density centrifugation after storage just prior to cryopreservation.

Thus, for delayed cryopreservation it is best to perform density centrifugation processing directly after collection.

6 SUMMARY

Anna Heutelbeck (2013)

Cryopreservation of stallion sperm: correlating hypo-osmotic resistance and cryosurvival, and use of density centrifugation for delayed cryopreservation

Cryopreserved sperm from individual stallions display a high degree of variation in survival after thawing. During freezing and thawing, sperm are exposed to osmotic stress when the osmolality of the unfrozen fraction increases or decreases. We hypothesized that the ability of sperm to cope with osmotic stress correlates with its survival after cryopreservation.

The aim of the first part of the studies described in this thesis was to evaluate variation in osmotic properties of sperm from different stallions and correlate this with survival after cryopreservation. In addition, temperature effects on hypotonic resistance were studied. Pre- and post-freeze motility and plasma membrane integrity were determined using computer assisted sperm analysis and flow cytometry, and taken as a measure for freezability.

Hypotonic resistance was determined by evaluating percentages of plasma membrane intact sperm after exposure to saline solutions of decreasing osmolality, and the critical osmolality was calculated as the osmolality at which half of the sperm population survived hypotonic stress. Stallion sperm exhibited the greatest resistance towards hypotonic stress in the 15 to 30

oC temperature range. For incubations at 22 oC, the critical osmolality was found to vary between 55 to 170 mOsm kg-1 amongst individual stallions. Whereas pre- and post-freeze membrane integrity and motility showed a clear correlation, pre-freeze hypotonic resistance normalized towards the initial number of viable sperm did not correlate with sperm motility after cryopreservation. We thus conclude that pre-freeze hypotonic resistance cannot be used as a parameter to foresee sperm cryosurvival rates.

The infrastructure needed for cryopreservation of stallion sperm is not always available. In these cases, diluted semen needs to be shipped to a facility where cryopreservation can be done typically after 1 day storage at 5 oC. Centrifugation processing of semen, including density centrifugation, is generally used for selection of high quality sperm for use in artificial insemination. The aim of the second part of the studies described in

this thesis was to evaluate if selection of sperm via density centrifugation yields higher cryosurvival rates when performing delayed cryopreservation. Two-layer iodixanol as well as single-layer Androcoll density centrifugation were tested, and compared to ordinary centrifuged and diluted samples. Centrifugation processing directly after semen collection prior to refrigerated storage was compared with centrifugation of sperm after refrigerated storage for 1 d just prior to performing delayed cryopreservation. Sperm morphology and motility as well as membrane and chromatin integrity were evaluated before and after centrifugation processing. Sperm motility and membrane integrity were also assessed after cryopreservation. It was found that density centrifugation processing resulted in increased percentages of morphologically normal and motile sperm with increased membrane and chromatin intactness, as compared to ordinary centrifuged or diluted samples. For delayed cryopreservation, processing of sperm directly after semen collection prior to storage did yield higher post-freeze percentages of plasma membrane intact and motile sperm as compared to processing of stored sperm prior to cryopreservation. Two-layer iodixanol density centrifugation resulted in the highest percentages of plasma membrane intact sperm, whereas single-layer Androcoll density centrifugation resulted in the highest percentages of progressively motile sperm. Taken together, for delayed cryopreservation it is best to perform density centrifugation processing directly after collection.

7 ZUSAMMENFASSUNG

Anna Heutelbeck (2013)

Kryokonservierung von Hengstspermien: Korrelation von hypo-osmotischer Resistenz und Überlebensrate nach dem Auftauen und Einsatz der Dichtezentrifugation bei der Kryokonservierung gelagerten Spermas

Die Gefriertauglichkeit der Spermien unterschiedlicher Hengste unterliegt einer großen Variabilität. Der Prozess des Einfrierens und Auftauens ist mit Veränderungen des osmotischen Druckes verbunden. Darauf basierend galt es zu überprüfen, ob die Reaktion der Spermien auf osmotischen Stress mit ihrer Gefriertauglichkeit korreliert. Das Ziel des ersten Teils dieser Dissertation war zum einen der Vergleich der osmotischen Eigenschaften der Spermien verschiedener Hengste und zum anderen die Korrelation dieser Eigenschaften mit der Überlebensrate der Spermien nach dem Auftauen. Zudem wurde der Einfluss der Temperatur auf die hypotone Resistenz der Spermien überprüft. Als Maß für Gefriertauglichkeit der Spermien wurde ihre Plasmamembranintegrität (ermittelt mit Hilfe des Durchflusszytometers) und Motilität (ermittelt mit Hilfe der computer-assistierten Spermienanalyse) nach dem Auftauen herangezogen. Zur Bestimmung der hypotonen Resistenz erfolgte eine Inkubation der Spermien in Salzlösungen mit absteigenden Osmolaritäten und eine darauf folgende Ermittlung des Anteils plasmamembranintakter Spermien. Die kritische Osmolarität, welche definiert ist als die Osmolarität, die 50 % der Spermien überleben, wurde als zusätzlicher Parameter ermittelt. Der Temperaturbereich, bei dem die Spermien hypotonen Stress besonders gut tolerierten, lag zwischen 15 und 30 °C. Bei einer konstanten Inkubationstemperatur von 22 °C zeigte sich, das die kritische Osmolarität zwischen den Hengsten von 55 bis 170 mOsm kg-1 variierte. Während ein deutlicher Zusammenhang zwischen dem Anteil plasmammembranintakter und motiler Spermien vor und nach dem Einfrieren bestand, korrelierte die hypotone Resistenz vor dem Einfrieren nicht mit der Motilität der Spermien nach dem Einfrieren. Daraus ergibt sich, dass die hypotone Resistenz vor dem Einfrieren kein geeigneter Parameter ist, um die Gefriertauglichkeit von Hengstspermien vorherzusagen.

Die für die Herstellung von Tiefgefriersperma erforderliche Ausrüstung ist nicht auf jeder Besamungsstation vorhanden. Sperma, welches der Tiefgefrierung zugeführt werden soll, muss somit gegebenenfalls gekühlt an ein Labor, in welchem die Tiefgefrierkonservierung innerhalb von einem Tag nach der Samengewinnung durchgeführt werden kann, versandt werden. Im Rahmen der künstlichen Besamung wird das Verfahren der Dichtezentrifugation zur Selektion qualitativ hochwertiger Spermien angewandt. Der zweite Teil dieser Dissertation dient der Evaluierung des Nutzens der Dichtezentrifugation im Hinblick auf die Herstellung von Tiefgefriersperma nach eintägiger gekühlter Lagerung.

Hierfür wurden die Verfahren der Zweischicht-Iodixanol-Dichtezentrifugation und Einschicht-Androcoll-Dichtezentrifugation mit den Verfahren der herkömmlichen Zentrifugation und der Verdünnung verglichen. Zusätzlich wurde der Einsatz der Dichtezentrifugation vor der Lagerung des verdünnten Ejakulates, im Vergleich zu deren Einsatz nach der Lagerung evaluiert. Die Qualität der Spermien vor und nach dem jeweiligen Verfahrensschritt wurde anhand ihrer Morphologie, Motilität, Membran- und Chromatinintegrität bestimmt. Nach dem Einfrieren wurden Motilität und Membranintegrität der Spermien bestimmt. Der Einsatz von Dichtezentrifugation-Verfahren resultierte im Vergleich zur Verdünnung oder herkömmlichen Zentrifugation, in einem erhöhten Anteil morphologisch normaler, motiler, membranintakter und chromatinintakter Spermien. Fand die Zentrifugation des Ejakulates direkt nach der Gewinnung statt, wurden höhere Überlebensraten nach dem Einfrieren erzielte als bei Zentrifugation des gelagerten Ejakulates unmittelbar vor der Tiefgefrierung. Unabhängig davon erzielte die Zweischicht-Iodixanol-Dichtezentrifugation die höchsten Anteile plasmamembranintakter Spermien und die Einschicht-Androcoll-Dichtezentrifugation die höchsten Anteile progressiv motiler Spermien.

Zusammenfassend erhöht der Einsatz von Dichtezentrifugation-Verfahren am Tag der Samengewinnung die Überlebensraten von Spermien, die nach eintägiger gekühlter Lagerung tiefgefroren wurden.

8 REFERENCES

AKHOONDI, M., H. OLDENHOF, H. SIEME, and W. F. WOLKERS (2012):

Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents Mol. Membr. Biol. 29 (6), 197-206

ALVARENGA, M, A., F. O. PAPA, F. C. LANDIM-ALVARENGA and A. S. L.

MEDEIROS (2005):

Amides as cryoprotectants for freezing stallion semen: A review Anim. Reprod. Sci. 89 (1-4), 105-113

ALVAREZ, J. G., J. C. TOUCHSTONE, L. BLASCO, and B. T. STOREY (1987):

Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity

J. Andrology 8 (5), 338-348

AMANN, R. P., and B. W. PICKETT (1987):

Principles of cryopreservation and a review of cryopreservation of stallion spermatozoa J. Equine Vet. Sci. 7 (3), 145-173

ANCHORDOGUY, T. J., A. S. RUDOLPH, J. F. CARPENTER, and J. H. CROWE (1987):

Modes of interaction of cryoprotectants with membrane phospholipids during freezing Cryobiology 24 (4), 324-331

AURICH, J. E., A. KÜHNE, H. HOPPE, and C. AURICH (1996):

Seminal plasma affects membrane integrity and motility of equine spermatozoa after cryopreservation

Theriogenology 46 (5), 791-797

AURICH, J. E., U. SCHOENHERR, H. HOPPE, and C. AURICH (1997):

Effects on antioxidants on motility and membrane integrity of chilled-stored stallion semen Theriogenology 48 (2), 185-192

AVERY, B., and T. GREVE (1995):

Impact of Percoll on bovine spermatozoa used for in vitro insemination Theriogenology 44 (6), 871-878

BACKMAN, T., J. E. BRUEMMER, J. K. GRAHAM, and E. L. SQUIRES (2004):

Pregnancy rates of mares inseminated with semen cooled for 18 hours and then frozen J. Anim. Sci. 82 (3), 690-694

BALL, B. A., and A. VO (2001):

Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability and mitochondrial membrane potential

J. Andrology 22 (6), 1061-1069

BARKER, C. A., and J. C. GANDIER (1957):

Pregnancy in a mare resulting from frozen epididymal spermatozoa Can. J. Comp. Med. Vet. Sci. 21 (2), 47-51

BEDFORD, S. J., D. D. VARNER, and S. A. MEYERS (2000):

Effects of cryopreservation on the acrosomal status of stallion spermatozoa J Reprod. Fertil. 56 (Suppl.), 133-140

Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation

Theriogenology 78 (6), 1312-1320 BRITO, L. F. C. (2007):

Evaluation of Stallion Sperm Morphology Clin. Tech. Equine Pract. 6 (4), 249-264

CHAN, S. Y. W., I. L. CRAFT, Y. M. CHAN, M. K. H. LEONG, and C. K. M. LEUNG (1990):

The hypoosmotic swelling test and cryosurvival of human spermatozoa Hum. Reprod. 5 (6), 715-718

CHATTERJEE S., and C. GAGNON (2001):

Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing

Mol. Reprod. Dev. 59 (4), 451-458 CHEN, M., and A. BONGSO (1999):

Comparative evaluation of two density gradient preparations for sperm separation for medically assisted conception

Hum. Reprod. 14 (3), 759-764

CISALE, H. O., M. L. FISCHMAN, C. D. BLASI, H. A. FERNANDEZ, and B. L.

GLEDHILL (2001):

Enrichment of high-quality spermatozoa in bovine semen: relative effectiveness of three filtration matrixes

Andrologia 33 (3), 143-150

CLAASSENS, O. E., R. MENKVELD, and K. L. HARRISON (1998):

Evaluation of three substitutes for Percoll in sperm isolation by density gradient centrifugation

Hum. Reprod. 13 (11), 3139-3143

COLENBRANDER, B., B. M. GADELLA, and T. A. E. STOUT (2003):

The predictive value of semen analysis in the evaluation of stallion fertility Reprod. Dom. Anim. 38 (5), 305-311

Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells

J. Supramol. Struct. 8 (4), 413-430

CROCKETT, E. C., J. K. GRAHAM, J. E. BRUEMMER, and E. L. SQUIRES (2001):

Effect of cooling of equine spermatozoa before freezing on post-thaw motility: Preliminary results

Theriogenology 55 (3), 793-803

CROWE, J. H., F. A. HOEKSTRA, L. M. CROWE, T. J. ANCHORDOGUY, and E.

DROBNIS (1989):

Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy Cryobiology 26, 76-84

DAMM, S. O., and G. T. OLIVER (2010):

Maturation of sperm volume regulation in the rat epididymis As. J. Andrology 12 (4), 578-590

DARIN-BENNETT, A., and I. G. WHITE (1977):

Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock

Cryobiology 14 (4), 466-470

DASHNAU, J. L., N. V. NUCCI, K. A. SHARP, and J. M. VANDERKOOI (2006) Hydrogen Bonding and the Cryoprotective Properties of Glycerol/Water Mixtures J. Phys. Chem. B 110 (27), 13670-13677

DE LA HABA, C., J. PALACIO, P. MARTÃNEZ, and A. MORROS (2013):

Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages Biochim. Biophys. Acta Biomembr. 1828 (2), 357-364

DOTT, H. M., and G. C. FOSTER (1972):

A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential ‘live/dead’ stain

J. Reprod. Fertil. 29 (3), 443-445

DREVIUS, L. O., and H. ERIKSSON (1966):

Osmotic swelling of mammalian spermatozoa Exp. Cell. Res. 42 (1), 136-156

DRUART, X., J. GATTI, S. HUET, J. DACHEUX, and P. HUMBLOT (2009):

Hypotonic resistance of boar spermatozoa: sperm subpopulations and relationship with epididymal maturation and fertility

Reproduction 137 (2), 205-213

DROBNIS, L., M. CROWE, T. BERGER, T. J. ANCHORDOGUY, J. W. OVERSTREET, and J. H. CROWE (1993):

Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model

J. Exp. Zoology 265 (4), 432-437

ECOT, P., G. DECUADRO-HANSEN, G. DELHOMME, and M. VIDAMENT (2005):

Evaluation of a cushioned centrifugation technique for processing equine semen for freezing Anim. Reprod. Sci. 89 (1-4), 245-248

EDMOND, A. J., S.P. BRINSKO, C. C. LOVE, T. L. BLANCHARD, S. R. TEAGUE, and D. D. VARNER (2012):

Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm Theriogenology 77 (5), 959-966

EVENSON, D. P., K. L. LARSON, and L. K. JOST (2002):

Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques

J. Andrology 23 (1), 25-43

GAO, D. Y., E. ASHWORTH, P. F. WATSON, F. W. KLEINHANS, P. MAZUR, and J. K.

CRITSER (1993):

Hyperosmotic tolerance of human spermatozoa: separate effects of glycerol, sodium chloride, and sucrose on spermolysis

Biol. Reprod. 49 (1), 112-123

GILMORE, J. A., L. E. McGANN, J. LIU, D. Y. GAO, A. T. PETER, F. W. KLEINHANS, and J. K. CRITSER (1995):

Effect of cryoprotectant solutes on water permeability of human spermatozoa Biol. Reprod. 53 (5), 985-995

GILMORE, J. A., J. DU, J. TAO, A. T. PETER, and J. K. CRITSER (1996):

Osmotic properties of boar spermatozoa and their relevance to cryopreservation J Reprod. Fertil. 107 (1), 87-95

GLAZAR, A. I., S. F. MULLEN, J. LIU, J. D. BENSON, J. K. CRITSER, E. L. SQUIRES, and J. K. GRAHAM (2009):

Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol

Cryobiology 59 (2), 201-206 GRAHAM, J. K. (2001):

Assessment of sperm quality: a flow cytometric approach Anim. Reprod. Sci. 68 (3-4), 239-247

HALLAP, T., M. HÅÅRD, Ü. JAAKMA, B. LARSSON, and H. RODRIGUEZ-MARTINEZ (2004):

Does cleansing of frozen-thawed bull semen before assessment provide samples that relate better to potential fertility?

Theriogenology 62 (3-4), 702-713

HAMMERSTEDT, R. H., J. K. GRAHAM, and J. P. NOLAN (1990):

Cryopreservation of mammalian sperm: what we ask them to survive J. Andrology 11 (1), 73-88

HARRISON, K. (1997):

Iodixanol as a density gradient medium for the isolation of motile spermatozoa J. Assist. Reprod. Genet. 14 (7), 385-387

HOFFMANN, E. K., LAMBERT, I. H., and S. F. PEDERSEN (2009):

Physiology of cell volume regulations in vertebrates Physiol. Rev. 89 (1), 193-277

HOOGEWIJS, M., J. M. MORRELL, A. VAN SOOM, J. GOVAERE, A. JOHANNISSON, S. PIEPERS, C. DE SCHAUWER, A. DE KRUIF, and S. DE VLIEGHER (2011):

Sperm selection using single layer centrifugation prior to cryopreservation can increase thawed sperm quality in stallions

Equine Vet. J. 43 (Suppl. 40), 35-41

JEYENDRAN, R. S., H. H. VAN DER VEN, M. PEREZ-PELAEZ, B. G. CRABO and L. J.

D. ZANEVELD (1984):

Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics

J. Reprod. Fertil. 70 (1), 219-228

JEYENDRAN, R. S., H. H. VAN DER VEN, and L. J. D. ZANEVELD (1992):

The hypoosmotic swelling test: An update

JOHANNISSON, A., J. M. MORRELL, J. THORÉN, M. JÖNSSON, A. M. DALIN, and H. RODRIGUEZ-MARTINEZ (2009):

Colloidal centrifugation with Androcoll-E prolongs stallion sperm motility, viability and chromatin integrity

Anim. Reprod. Sci. 116 (1-2), 119-128 KARESKOSKI, M., and T. KATILA (2008):

Components of stallion seminal plasma and the effects of seminal plasma on sperm longevity Anim. Reprod. Sci. 107 (3-4), 249-256

LAVON, U., R. VOLCANI, D. AMIR, and D. DANON (1966):

The specific gravity of bull spermatozoa from different parts of the reproductive tract J. Reprod. Fertil. 12 (3), 597-599

LOOMIS, P. R., and J. K. GRAHAM (2008):

Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols

Anim. Reprod. Sci. 105 (1-2), 119-128

LOVE, C. C., S. P. BRINSKO, S. L. RIGBY, J. A. THOMPSON, T. L. BLANCHARD, and D. D. VARNER (2005):

Relationship of seminal plasma level and extender type to sperm motility and DNA integrity Theriogenology 63 (6), 1584-1591

LOVE, C. C., J. A. THOMPSON, S. P. BRINSKO T. L. BLANCHARD, and D. D.

VARNER (2010):

Effect of inter-stallion seminal plasma variability on motility, viability, and DNA integrity of cauda epididymal sperm

Anim. Reprod. Sci. 121 (1), 191

MACÍAS GARCÍA, B., L. GONZÁLEZ-FERNÁNDEZ, C. ORTEGA FERRUSOLA, C.

SALAZAR-SANDOVAL, A. MORILLO RODRÍGUEZ, H. RODRÍGUEZ-MARTINEZ, J.

A. TAPIA, D. MORCUENDE, and F. J. PEÑA (2011):

Freezing of living cells: mechanisms and implications Am. J. Physiol. 247, 125-142

MELO, C. M., F. S. ZAHN, I. MARTIN, C. ORLANDI, J. A. DELL'AQUA JR, M. A.

ALVARENGA, and F. O. PAPA (2007):

Influence of Semen Storage and Cryoprotectant on Post-thaw Viability and Fertility of Stallion Spermatozoa

J. Equine Vet. Sci. 27 (4), 171-175

MOORE, A. I., E. L. SQUIRES, and J. K. GRAHAM (2005a):

Effect of seminal plasma on the cryopreservation of equine spermatozoa Theriogenology 63 (9), 2372-2381

MOORE, A. I., E. L. SQUIRES, and J. K. GRAHAM (2005b):

Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival Cryobiology 51 (3), 241-249

Update on semen technologies for animal breeding Reprod. Dom. Anim. 41 (1), 63-67

Stallion sperm selection: past, present, and future trends J. Equine Vet. Sci. 32 (8), 436-440

MORRIS, G. J., E. ACTON, B. J. MURRAY, and F. FONESCA (2012):

Freezing injury: the special case of the sperm cell Cryobiology 64 (2), 71-80

MORTIMER, S. T. (2000):

Sperm preparation methods J. Andrology 21 (3), 357-366

MÜLLER, K., P. MÜLLER, G. PINCEMY, A. ANKE, and C. LABBE (2008):

Characterization of Sperm Plasma Membrane Properties after Cholesterol Modification:

Consequences for Cryopreservation of Rainbow Trout Spermatozoa Biol. Reprod. 78 (3), 390-399

J. M. NANI, and R. S. JEYENDRAN (2001):

Sperm processing: Glass wool column filtration Syst. Biol. Reprod. Med. 47 (1), 15-21

NEILD, D., G. CHAVES, M. FLORES, N. MORA, M. BECONI, and A. AGUERO (1999):

Hypoosmotic test in equine spermatozoa Theriogenology 51 (4), 721-727

OLDENHOF, H., K. FRIEDEL, H. SIEME, B. GLASMACHER, and W. F. WOLKERS (2010):

Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy

Cryobiology 61 (1), 115-122

OLDENHOF, H., A. K. BLÄSSE, W. F. WOLKERS, H. BOLLWEIN, and H. SIEME (2011):

Osmotic properties of stallion sperm subpopulations determined by simultaneous assessment of cell volume and viability

Theriogenology 76 (2), 386-391

OLDENHOF, H., K. FRIEDEL, M. AKHOONDI, M. GOJOWSKY, W. F. WOLKERS, and H. SIEME (2012):

Membrane phase behavior during cooling of stallion sperm and its correlation with freezability

Mol. Membr. Biol. 29 (3-4), 95-106 OSHIO, S. (1988):

Apparent densities of spermatozoa of various mammalian species Gamete Res. 20 (2), 159-164

PARKS, J. E. and J. K. GRAHAM (1992):

Effects of cryopreservation procedures on sperm membranes Theriogenology 38 (2), 209-222

PERTOFT, H. (2000):

Fractionation of cells and subcellular particles with Percoll J. Biochem. Biophys. Meth. 44 (1-2), 1-30

PETRUNKINA, A. M. and E. TÖPFER-PETERSEN (2000):

Heterogeneous osmotic behaviour in boar sperm populations and its relevance for detection of changes in plasma membrane

Reprod. Fertil. Dev. 12 (6), 297-305

PICKETT, B. W., J. J. SULLIVAN, W. W. BYERS, M. M. PACE, and E. E. REMMENGA

The role of osmotic resistance on equine spermatozoa function Theriogenology 58 (7), 1373-1384

QUINN, P.J. (1985):

A lipid-phase separation model of low-temperature damage to biological membranes Cryobiology 22 (2), 128-146

RICKER, J. V., J. J. LINFOR, W. J. DELFINO, P. KYSAR, E. L. SCHOLTZ, F. TABLIN, J.

H. CROWE, B. A. BALL, and S. A. MEYERS (2006):

Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants Biol. Reprod. 74, 359-365

SAMPER, J. C. and B. G. CRABO (1993):

Assay of capacitated, freeze-damaged and extended stallion spermatozoa by filtration Theriogenology 39 (6), 1209-1220

SARAGUSTY, J., H. GACITUA, I. ROZENBOIM, and A. ARAV (2009):

Protective effects of iodixanol during bovine sperm cryopreservation Theriogenology 71 (9), 1425-1432

Application of Techniques for Sperm Selection in Fresh and Frozen-Thawed Stallion Semen Reprod. Dom. Anim. 38 (2), 134-140

SIEME, H., T. KATILA, and E. KLUG (2004):

Effect of semen collection practices on sperm characteristics before and after storage and on fertility of stallions

Theriogenology 61 (4), 769-784

SIEME, H., K. KNOP, and D. RATH (2006):

Effects of duration, force of centrifugation and cushioned centrifugation technique on sperm recovery and sperm quality in stallions with good and poor semen freezability

Havemeyer Foundation Monograph Series 18, 6-9

SIEME, H., R. A. P. HARRISON, and A. M. PETRUNKINA (2008):

Cryobiological determinants of frozen semen quality, with special reference to stallion Anim. Reprod. Sci. 107 (3-4), 276-292

SMITH, A. U., and C. POLGE (1950):

Survival of spermatozoa at low temperatures Nature 166 (4225), 668-669

SMITH, T. T., M. BYERS, D. KAFTANI, and W. WHITFORD (1997):

The Use of Iodixanol as a Density Gradient Material for Separating Human Sperm from Semen

Syst. Biol. Reprod. Med. 38 (3), 223-230

STUHTMANN, G., H. OLDENHOF, P. PETERS, J. KLEWITZ, G. MARTINSSON, and H.

SIEME (2012):

Iodixanol density centrifugation for selecting stallion sperm for cold storage and cryopreservation

Correlation between human sperm swelling in hypoosmotic medium (hypoosmotic swelling test) and in vitro fertilization

J. Andrology 7 (3), 190-196

VIDAMENT, M., A. M. DUPERQ, P. JULIENNE, A. EVAIN, P. NOUE, E. PALMER (1997):

Equine frozen semen: Freezability and fertility field results Theriogenology 48 (6), 907-917

VIDAMENT, M., E. COGNARD, J. M. YVON, M. SATTLER, E. PALMER, and M.

MAGASTRINI (1998):

Evaluation of stallion semen before and after freezing Reprod. Dom. Anim. 33 (3-4), 271-277

VISCO, V., S. RAFFA, J. ELIA, M. DELFINO, N. IMBROGNO, M. R. TORRISI, and F.

MAZZILLI (2010):

Morphological sperm defects analyzed by light microscopy and transmission electron microscopy and their correlation with sperm motility

Int. J. Urol. 17 (3), 259-266

WAITE, J. A. C. C. LOVE, S. P. BRINSKO, S. R. TEAGUE, J. L. SALAZAR JR, S. S.

MANCILL, and D. D. VARNER (2008):

Factors impacting equine sperm recovery rate and quality following cushioned centrifugation Theriogenology 70 (4), 704-714

WATSON, P. F. (1995):

Recent developments and concepts in the cryopreservation of spermatozoa and assessment of their post-thawing function

Reprod. Fertil. Dev. 7 (4), 871-891 WATSON, P. F. (2000):

The causes of reduced fertility with cryopreserved semen Anim . Reprod. Sci. 60-61, 481-492

WEISS, S., F. JANETT, D. BURGER, M. HÄSSIG, and R. THUN (2004):

The influence of centrifugation on quality and freezability of stallion semen Schweiz. Arch. Tierheilk. 146 (6), 285-293

YEUNG, C., M. ANAPOLSKI, and G. TREVOR (2002):

Measurement of Volume Changes in Mouse Spermatozoa Using an Electronic Sizing Analyzer and a Flow Cytometer: Validation and Application to an Infertile Mouse Model J. Andrology 23 (4), 522-528