• Keine Ergebnisse gefunden

4 General Discussion

4.4 Conclusions and perspectives

Here we have used a broad array of advanced analytical technologies, to unravel the

effects of specific fatty acid diet supplementation on oocyte microenvironment, the

female gametes, early embryos and in blood and follicular fluid using heifers as

physiological model system. Results clearly show dramatic changes in lipid profiles in

these different physiological compartments (i.e., blood system, follicular fluid,

“Intra-oocyte”) induced by the diet supplement. Furthermore, the developmental capacity of

oocytes collected from CLA and SA supplemented heifers differed according to the

type of supplement. This experimental model could contribute to the further

elucidation of infertility related to metabolic disorders in cattle and at the same time

supports the use of the bovine species as experimental model for understanding metabolic-related fertility disorders in humans. This is particularly intriguing in view of the observed long-term effects of parental feeding around conception and during early embryonic development that become apparent in the adult life (Sinclair et al.

2013).

The bioanalytical array performed here made possible the biological interpretation of

DESI and RT-qPCR data for studying the impact of in vitro culture and fatty acid diet

supplementation on individual bovine oocytes and blastocysts. Here, we provide for

the first time a comprehensive and in-depth analysis of the lipid composition and its

modulation by in vitro production methods in female gametes and blastocysts. The

analysis of two different datasets (i.e. positive and negative ion mode MS) obtained

by state-of-the-art ambient MS from single oocytes or blastocysts, followed by

application of multivariate statistical analysis and data fusion strategy, makes this

work unique and provides new insight into the complex regulation of mammalian

oocyte/embryo lipid metabolism, which can also be applied to other mammalian

species, including humans. Our results demonstrate that current in vitro production

systems are associated with profound alterations of the lipid profile and metabolism

of preimplantation embryos with possibly deteriorating effects on development and

the health status of the resulting offspring. Using this novel analytical approach to

study upstream lipid metabolism, our findings pave the way for monitoring and

improvement of in vitro culture and other ARTs. Results of this study may contribute

towards a better understanding of the concept of the embryonic origin of adult

disease (Sinclair et al. 2000a; Lazzari et al. 2002) and may help to explain fertility

impairments associated with nutritional performance of cattle herds and perhaps

other mammals

5 References

Aardema, H., F. Lolicato, C. H. van de Lest, J. F. Brouwers, A. B. Vaandrager, H. T. van Tol, B. A.

Roelen, P. L. Vos, J. B. Helms & B. M. Gadella (2013) Bovine Cumulus Cells Protect Maturing Oocytes from Increased Fatty Acid Levels by Massive Intracellular Lipid Storage. Biol Reprod.

Aardema, H., P. L. A. M. Vos, F. Lolicato, B. A. J. Roelen, H. M. Knijn, A. B. Vaandrager, J. B. Helms

& B. M. Gadella (2011) Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod, 85, 62.

Anonimun. (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr, 22, 505-31.

Banni, S. & J. Martin (1998) Conjugated linoleic acid and metabolites. Trans Fatty Acids in Human Nutrition, 261-302.

Barton, B., H. Rosario, G. Anderson, B. Grindle & D. Carroll (1996) Effects of dietary crude protein, breed, parity, and health status on the fertility of dairy cows. J Dairy Sci, 79, 2225-2236.

Bauman, D. E. & W. B. Currie (1980) Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci, 63, 1514-29.

Bauman, D. E., B. A. Corl & D. G. Peterson (2003) The biology of conjugated linoleic acids in ruminants. Advances in Conjugated Linoleic Acid Research, 2, 146-174.

Belury, M. A. (1995) Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutr Rev, 53, 83-9.

Bernal-Santos, G., J. Perfield, D. Barbano, D. Bauman & T. Overton. (2003) Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. J Dairy Sci, 86, 3218-3228.

Bickerstaffe, R. & E. Annison (1970) The desaturase activity of goat and sow mammary tissue.

Comparative Biochemistry and Physiology, 35, 653-665.

Blanchet, L., A. Smolinska, A. Attali, M. P. Stoop, K. A. M. Ampt, H. van Aken, E. Suidgeest, T.

Tuinstra, S. S. Wijmenga & T. Luider (2011) Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis. BMC Bioinformatics, 12, 254.

Børsting, C. F., M. R. Weisbjerg & T. Hvelplund (1992) Fatty acid digestibility in lactating cows fed

increasing amounts of protected vegetable oil, fish oil or saturated fat. Acta Agriculturae Scandinavica

A-Animal Sciences, 42, 148-156.

Breckenridge, D. G., M. Germain, J. P. Mathai, M. Nguyen & G. C. Shore (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 22, 8608-18.

Brown, M. S. & J. L. Goldstein (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A, 96, 11041-11048.

Cameron, P., M. Rogers, J. Oman, S. May, D. Lunt & S. Smith (1994) Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers. J Anim Sci, 72, 2624-2628.

Carone, B. R., L. Fauquier, N. Habib, J. M. Shea, C. E. Hart, R. Li, C. Bock, C. Li, H. Gu, P. D.

Zamore, A. Meissner, Z. Weng, H. A. Hofmann, N. Friedman & O. J. Rando (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell, 143, 1084-96.

Cerri, R. L., S. O. Juchem, R. C. Chebel, H. M. Rutigliano, R. G. Bruno, K. N. Galvao, W. W. Thatcher

& J. E. Santos (2009) Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows. J Dairy Sci, 92, 1520-31.

Chang, J., D. K. Lunt & S. B. Smith (1992) Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. The Journal of Nutrition, 122, 2074-2080.

Cheng, J., L. Raid & R. Hardison (1986) Isolation and nucleotide sequence of the rabbit globin gene cluster psi zeta-alpha 1-psi alpha. Absence of a pair of alpha-globin genes evolving in concert. Journal of Biological Chemistry, 261, 839-848.

Chouinard, P. Y., V. Girard & G. J. Brisson (1998) Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J Dairy Sci, 81, 471-81.

Cook, L., T. Scott, G. Faichney & H. L. Davies (1972) Fatty acid interrelationships in plasma, liver, muscle and adipose tissues of cattle fed safflower oil protected from ruminal hydrogenation. Lipids, 7, 83-89.

Corl, B., P. Chouinard, D. Bauman, D. Dwyer, J. Griinari & K. Nurmela (1998) Conjugated linoleic acid in milk fat of dairy cows originates in part by endogenous synthesis from trans-11 octadecenoic acid. J.

Dairy Sci, 81, 233.

Corl, B. A., L. H. Baumgard, D. A. Dwyer, J. M. Griinari, B. S. Phillips & D. E. Bauman (2001) The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. The Journal of Nutritional Biochemistry, 12, 622-630.

Coull, G. S., B. Speake, M. Staines, P. Broadbent & T. McEvoy (1998) Lipid and fatty acid composition

of zona-intact sheep oocytes. Theriogenology, 49, 179.

Dawson, R., N. Hemington & G. Hazlewood (1977) On the role of higher plant and microbial lipases in the ruminal hydrolysis of grass lipids. British Journal of Nutrition, 38, 225-232.

Dawson, R. & P. Kemp (1970) Biohydrogenation of dietary fats in ruminants. Physiology of digestion and metabolism in ruminants. Oriel Press, Newcastle, UK, 504-518.

De Veth, M., D. Bauman, W. Koch, G. Mann, A. Pfeiffer & W. Butler (2009) Efficacy of conjugated linoleic acid for improving reproduction: A multi-study analysis in early-lactation dairy cows1. J Dairy Sci, 92, 2662-2669.

Diederich, M., T. Hansmann, J. Heinzmann, B. Barg-Kues, D. Herrmann, P. Aldag, U. Baulain, R.

Reinhard, W. Kues, C. Weissgerber, T. Haaf & H. Niemann (2012) DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors. Reproduction, 144, 319-30.

Drackley, J. K. (1999) ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: the final frontier? J Dairy Sci, 82, 2259-73.

Driver, A. M., F. Peñagaricano, W. Huang, K. R. Ahmad, K. S. Hackbart, M. C. Wiltbank & H. Khatib (2012) RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo-and in vitro-derived bovine blastocysts. BMC Genomics, 13, 118.

Eberlin, L. S., C. R. Ferreira, A. L. Dill, D. R. Ifa, L. Cheng & R. G. Cooks (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry.

Chem Biochem, 12, 2129-2132.

Eberlin, L. S., I. Norton, D. Orringer, I. F. Dunn, X. Liu, J. L. Ide, A. K. Jarmusch, K. L. Ligon, F. A.

Jolesz, A. J. Golby, S. Santagata, N. Y. Agar & R. G. Cooks (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A, 110, 1611-6.

Ejsing, C. S., J. L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, R. W. Klemm, K. Simons & A.

Shevchenko (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

Proc Natl Acad Sci U S A, 106, 2136-41.

Faichney, G. J., H. L. Davies, T. W. Scott & L. J. Cook (1972) The incorporation of linoleic acid into the tissues of growing steers offered a dietary supplement of formaldehyde-treated casein-safflower oil.

Aust J Biol Sci, 25, 205-12.

Ferguson, E. M. & H. J. Leese (1999) Triglyceride content of bovine oocytes and early embryo development. Mol Reprod Dev, 73, 1195-1201.

Ferreira, C., L. Eberlin, J. Hallett & R. Cooks (2012) Single oocyte and single embryo lipid analysis by

desorption electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 47, 28-32.

Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A.

Santos, E. G. Lo Turco, J. H. F. Pontes & A. C. Basso (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. Journal of Lipid Research, 51, 1218.

Garcia-Reyes, J. F., A. U. Jackson, A. Molina-Diaz & R. G. Cooks (2009) Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Anal Chem, 81, 820-9.

Griinari, J. & D. Bauman (1999) Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. Advances in Conjugated Linoleic Acid Research, 1.

Grum, D. E., J. K. Drackley, R. S. Younker, D. W. LaCount & J. J. Veenhuizen (1996) Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J Dairy Sci, 79, 1850-64.

Guraya, S. S. (1965) A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J Exp Zool, 160, 123-135.

Giesy, J. G., M. A. McGuire, B. Shafii & T. W. Hanson. (2002) Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation holstein cows. J Dairy Sci, 85, 2023-9.

Ha, Y. L., N. K. Grimm & M. W. Pariza (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis, 8, 1881-7.

Haggarty, P., M. Wood, E. Ferguson, G. Hoad, A. Srikantharajah, E. Milne, M. Hamilton & S.

Bhattacharya (2006) Fatty acid metabolism in human preimplantation embryos. Hum Reprod, 21, 766-73.

Harfoot, C. & G. Hazlewood. 1997. Lipid metabolism in the rumen. In The rumen microbial ecosystem, 382-426. Springer.

Harfoot, C., G. Hazlewood, P. Hobson & C. Stewart (1988) The rumen microbial ecosystem. Lipid metabolism in the rumen, Elsevier, London, 285–322.

Harris, G. A., A. S. Galhena & F. M. Fernandez (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem, 83, 4508-38.

Heinzmann, J., T. Hansmann, D. Herrmann, C. Wrenzycki, U. Zechner, T. Haaf & H. Niemann (2011) Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev, 78, 188-201.

Hogan, J. & R. M. Hogan (1976) The evaluation of formaldehyde-treated sunflower seed-casein supplement as a source of linoleic acid for ruminant lipids. Crop and Pasture Science, 27, 129-138.

Houseknecht, K. L., J. P. Vanden Heuvel, S. Y. Moya-Camarena, C. P. Portocarrero, L. W. Peck, K. P.

Nickel & M. A. Belury (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in

the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun, 244, 678-82.

Huang, M. Z., S. C. Cheng, Y. T. Cho & J. Shiea (2011) Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta, 702, 1-15.

Jackson, A. U., T. Shum, E. Sokol, A. Dill & R. G. Cooks (2011) Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Analytical and Bioanalytical Chemistry, 399, 367-376.

Jahreis, G., J. Fritsche & H. Steinhart (1997) Conjugated linoleic acid in milk fat: high variation depending on production system. Nutrition Research, 17, 1479-1484.

Jenkins, T. C. & W. C. Bridges (2007) Protection of fatty acids against ruminal biohydrogenation in cattle. European journal of lipid science and technology, 109, 778-789.

Jiang, J., L. Bjoerck, R. Fondén & M. Emanuelson (1996) Occurrence of Conjugated cis-9, trans-11 Octadecadienoic Acid in Bovine Milk: Effects of Feed and Dietary Regimen. J Dairy Sci, 79, 438-445.

Jungheim, E. S., E. D. Louden, M. M. Y. Chi, A. I. Frolova, J. K. Riley & K. H. Moley (2011) Preimplantation Exposure of Mouse Embryos to Palmitic Acid Results in Fetal Growth Restriction Followed by Catch-Up Growth in the Offspring 1. Biol Reprod, 85, 678-683.

Keeney, M. (1970) Lipid metabolism in the rumen. Physiology of Digestion and Metabolism in the Ruminant, 489-503.

Kennedy, J. H., C. Aurand, R. Shirey, B. C. Laughlin & J. M. Wiseman (2010) Coupling desorption electrospray ionization with solid-phase microextraction for screening and quantitative analysis of drugs in urine. Anal Chem, 82, 7502-8.

Kepler, C. R., K. P. Hirons, J. McNeill & S. Tove (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, 241, 1350-1354.

Kim, J. Y., M. Kinoshita, M. Ohnishi & Y. Fukui (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction, 122, 131-8.

Kinsella, J. (1972) Stearyl CoA as a precursor of oleic acid and glycerolipids in mammary microsomes from lactating bovine: possible regulatory step in milk triglyceride synthesis. Lipids, 7, 349-355.

Klusmeyer, T. H. & J. H. Clark (1991) Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. J Dairy Sci, 74, 3055-67.

Koenigsdorf, C., A. Navarrete Santos, J. S. Schmidt, S. Fischer & B. Fischer (2012) Expression Profile of Fatty Acid Metabolism Genes in Preimplantation Blastocysts of Obese and Non-Obese Mice.

Obesity Facts, 5, 575-586.

Lazzari, G., C. Wrenzycki, D. Herrmann, R. Duchi, T. Kruip, H. Niemann & C. Galli (2002) Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome.

Biol Reprod, 67, 767-775.

Leroy, J., T. Vanholder, B. Mateusen, A. Christophe, G. Opsomer, A. de Kruif, G. Genicot & A. Van Soom (2005) Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130, 485-495.

Listenberger, L. L., X. Han, S. E. Lewis, S. Cases, R. V. Farese, Jr., D. S. Ory & J. E. Schaffer (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A, 100, 3077-82.

Loewenstein, J. E. & A. I. Cohen (1964) Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J Embryol Exp Morphol, 12, 113-21.

Loor, J. J., H. M. Dann, R. E. Everts, R. Oliveira, C. A. Green, N. A. J. Guretzky, S. L. Rodriguez-Zas, H. A. Lewin & J. K. Drackley (2005) Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. Physiological genomics, 23, 217-226.

Malhotra, J. D. & R. J. Kaufman (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid Redox Signal, 9, 2277-93.

Marei, W. F., D. C. Wathes & A. A. Fouladi-Nashta (2010) Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction, 139, 979-988.

Marei, W. F., D. C. Wathes & A. A. Fouladi-Nashta (2012) Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes.

Reproduction, Fertility and Development, 24, 679-690.

Matorras, R., J. I. Ruiz, R. Mendoza, N. Ruiz, P. Sanjurjo & F. J. Rodriguez-Escudero (1998) Fatty acid composition of fertilization-failed human oocytes. Hum Reprod, 13, 2227-30.

Mattos, R., C. Staples & W. Thatcher (2000) Effects of dietary fatty acids on reproduction in ruminants.

Reproduction, 5, 38.

McEvoy, T., G. Coull, P. Broadbent, J. Hutchinson & B. Speake (2000) Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility, 118, 163-170.

McKeegan, P. J. & R. G. Sturmey (2011) The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development, 24, 59-67.

Nagan, N. & R. A. Zoeller (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res, 40,

199-229.

Oropeza, A., C. Wrenzycki, D. Herrmann, K. Hadeler & H. Niemann (2004) Improvement of the Developmental Capacity of Oocytes from Prepubertal Cattleby Intraovarian Insulin-Like Growth Factor-I Application. Biol Reprod, 70, 1634.

Page, A. M., C. A. Sturdivant, D. K. Lunt & S. B. Smith (1997) Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 118, 79-84.

Pariza, M. W., S. H. Ashoor, F. S. Chu & D. B. Lund (1979) Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett, 7, 63-9.

Pariza, M. W. & W. A. Hargraves (1985) A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7,12-dimethylbenz[a]anthracene. Carcinogenesis, 6, 591-3.

Perfield, J. W., 2nd, G. Bernal-Santos, T. R. Overton & D. E. Bauman. (2002) Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation.

J Dairy Sci, 85, 2609-17.

Picone, O., P. Laigre, L. Fortun-Lamothe, C. Archilla, N. Peynot, A. A. Ponter, V. Berthelot, A. G.

Cordier, V. Duranthon & P. Chavatte-Palmer (2011) Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology, 75, 287-99.

Pirro, V., L. S. Eberlin, P. Oliveri & R. G. Cooks (2012) Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst, 137, 2374-80.

Prates, E. G., S. P. Alves, C. C. Marques, M. C. Baptista, A. E. Horta, R. J. Bessa & R. M. Pereira (2013) Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin. In Vitro Cell Dev Biol Anim, 49, 335-45.

Roberts, L. D., G. McCombie, C. M. Titman & J. L. Griffin (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci, 871, 174-81.

Robker, R. L., L. K. Akison, B. D. Bennett, P. N. Thrupp, L. R. Chura, D. L. Russell, M. Lane & R. J.

Norman (2009) Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab, 94, 1533-40.

Scimeca, J. A., H. J. Thompson & C. Ip (1994) Effect of conjugated linoleic acid on carcinogenesis.

Adv Exp Med Biol, 364, 59-65.

Seal, J. R., C. M. Havrilla, N. A. Porter & D. L. Hachey (2003) Analysis of unsaturated compounds by Ag+ coordination ionspray mass spectrometry: studies of the formation of the Ag+/lipid complex. J Am Soc Mass Spectrom, 14, 872-80.

Sinclair, K., L. Young, I. Wilmut & T. McEvoy (2000a) In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Human Reprod, 15, 68-86.

Sinclair, K. D., M. Kuran, F. E. Gebbie, R. Webb & T. G. McEvoy (2000b) Nitrogen metabolism and fertility in cattle: II. Development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J Anim Sci, 78, 2670-80.

Sinclair, K. D. & A. J. Watkins (2013) Parental diet, pregnancy outcomes and offspring health:

metabolic determinants in developing oocytes and embryos. Reprod Fertil Dev, 26, 99-114.

Soubry, A., J. M. Schildkraut, A. Murtha, F. Wang, Z. Huang, A. Bernal, J. Kurtzberg, R. L. Jirtle, S. K.

Murphy & C. Hoyo (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns:

results from a Newborn Epigenetics Study (NEST) cohort. BMC Med, 11, 29.

Staples, C., J. Burke & W. Thatcher (1998) Symposium: Optimizing energy nutrition for reproducing dairy cows. J Dairy Sci, 81, 856-871.

Steen, W. C. & T. W. Collette (1989) Microbial degradation of seven amides by suspended bacterial populations. Appl Environ Microbiol, 55, 2545-9.

Stinshoff, H., E. Onnen-Lübben, S. Wilkening, A. Hanstedt, H. Bollwein & C. Wrenzycki (2011) 57 Dietary cla supplementation affects luteal gene expression and peripheral blood progesterone concentration in cattle. Reproduction, Fertility and Development, 24, 140-141.

Stinshoff, H., S. Wilkening, A. Hanstedt, H. Bollwein & C. Wrenzycki (2013) Dimethylsulfoxide and conjugated linoleic acids affect bovine embryo development in vitro. Reproduction, Fertility and Development (published online http://dx.doi.org/10.1071/RD12372).

Thangavelu, G., M. G. Colazo, D. J. Ambrose, M. Oba, E. K. Okine & M. K. Dyck (2007) Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows.

Theriogenology, 68, 949-57.

Van Hoeck, V., J. L. Leroy, M. Arias Alvarez, D. Rizos, A. Gutierrez-Adan, K. Schnorbusch, P. E. Bols, H. J. Leese & R. G. Sturmey (2013) Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction, 145, 33-44.

Viturro, E., M. Koenning, A. Kroemer, G. Schlamberger, S. Wiedemann, M. Kaske & H. H. D. Meyer

(2009) Cholesterol synthesis in the lactating cow: Induced expression of candidate genes. The Journal

of Steroid Biochemistry and Molecular Biology, 115, 62-67.

Wallner, S. & G. Schmitz (2011) Plasmalogens the neglected regulatory and scavenging lipid species.

Chem Phys Lipids, 164, 573-89.

Wu, L. L., D. L. Russell, R. J. Norman & R. L. Robker (2012) Endoplasmic Reticulum (ER) Stress in Cumulus-Oocyte Complexes Impairs Pentraxin-3 Secretion, Mitochondrial Membrane Potential (ΔΨm), and Embryo Development. Molecular Endocrinology, 26, 562-573.

Wu, Z., O. A. Ohajuruka & D. L. Palmquist (1991) Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J Dairy Sci, 74, 3025-34.

Zaraza, J., A. Oropeza, M. Velazquez, K. Korsawe, D. Herrmann, J. Carnwath & H. Niemann (2010)

Developmental competence and mRNA expression of preimplantation in vitro-produced embryos from

prepubertal and postpubertal cattle and their relationship with apoptosis after intraovarian

administration of IGF-1. Theriogenology, 74, 75-89.

Acknowledgments

First I want to thank Professor Heiner Niemann for his all-time support. I will always be thankful for giving me the opportunity to join the amazing team of the biotechnology department. His wisdom has changed my life.

I thank Klaus-Gerd Hadeler and Dr. Armando Oropeza for that 5-minutes talk in Barquisimeto (Venezuela) where this history began. I specially thank Klaus-Gerd Hadeler for his amazing personal and technical support during the work at the cow stable and with the organization of the experiments.

I do thank Dr. Julia Heinzmann, Dr. Andrea Lucas-Hahn and Dr. Wilfried Kues for guiding me in times where the answers were not clear. Their contribution to the experimental design of this project was determinant.

A special thank to Dr. Ulrich Baulain for helping me with the statistical processing of the data. Every talk with him was a marvelous statistical lesson.

I also thank Dr. Mike Diederich for giving me the necessary technical training for the work at the cow stable.

I thank Christina Ferreira and Valentina Pirro for the amazing joint work with the lipid determination from oocytes and embryos at Purdue University.

I do thank Patrick Aldag and Doris Herrmann for their technical assistance at the laboratories of the biotechnology department.

All my grateful to Hans-Georg Sander, Rolf-Peter Poppenga, Gunner Scharnhorst and Gritt Möller for taking care of cows and heifers during the experiments, specially, their effort at the implementation of the individual feeding system performed in this study.

I do thank Professor Sven Dänicke and Dr. Ulrich Meyer for the preparation of the fatty acid supplements and for the good advices in the field of animal nutrition.

I also thank BASF for providing the material for the elaboration of the fatty acid

I also thank BASF for providing the material for the elaboration of the fatty acid