• Keine Ergebnisse gefunden

163

in shape memory alloys is considered and it is again seen that a thermodynamically consistent constitutive modeling of the referential velocity of sharp interfaces is not at all straight forward. This again motivates the use of a phase field approach.

Based on these considerations, we propose anew phase field model for the formation and evolution of laminate microstructure between two orthorhombic variants of CuAlNi in the modeling framework of gradient-extended standard-dissipative solids, see also Hilde-brand & Miehe[71, 72]. The model is based on the variational smooth approximation of sharp interfaces. In contrast to sharp interface models, this smooth approximation allows the introduction of a coherence-dependent interface energy by use of a referential anisotropy. A bulk energy is proposed that is based on aninternal mixing approach, al-lowing a bulk energy free connection of the rank-one connected minima and hence leading to aclear separation of bulk and interface energy. A viscous evolution yields a generalized Ginzburg-Landau model, for which we construct rate- and incremental variational formu-lations as well as a variational-based finite element formulation with symmetric algebraic structure. We validate the energetic modeling properties of the proposed formulation and confirm the superiority of the internal mixing approach over the external mixing approach for the bulk energy. We demonstrate the capability of the model to predict theformation and hysteretic evolution of laminate microstructure and the description ofsize effects.

Finally, to model the formation and evolution of laminate deformation microstructure together with the effect of geometrically necessary dislocations in f.c.c. Copper with two active slip systems on the same slip plane in the modeling framework of gradient-extended standard-dissipative solids, we propose a new gradient crystal plasticity model, see also Miehe et al. [113] and Hildebrand & Miehe [73]. Based on the assumption of same plane double slip, we derive explicit expressions for the plastic deformation and the dislocation density tensor. We introduce accumulated slips whose evolution we compute using a new rate regularized evolution based on the approximation|x| ≈νln(cosh(x/ν)) for ν ≪ 1 and employ them to define a biquadratic latent hardening contribution of a qualitatively physical nonconvex form. We combine this with a gradient contribution in the slip normal direction to regularize the resulting sharp slip state laminate interfaces and introduce an additional gradient contribution directly constructed from the dislocation density tensor to account for GNDs. In combination, these gradient terms lead to a reference anisotropy of the gradient energy contribution. The evolution equations of the plastic slips are given in terms of rate regularizations of the dissipation potential again by use of the ln(cosh(x)) function. We demonstrate the capability of the presented model to predict the formation and evolution of plastic laminates under micro-free and micro-clamped boundary conditions in combination with length scale effects caused by geometrically necessary dislocations.

From the two models, we deduce that necessary ingredients for the energetically concise gradient-extended modeling of laminate microstructure are:

• non-convexity of the free energy in terms of the internal variables,

• rank-one connection of deformations associated with internal variable minimizers,

• bulk energy free connection of these rank-one connected deformation states,

• anisotropic gradient term favoring the direction of the the rank-one normal.

References 165

References

[1] Abeyaratne, R.; Chu, C.; James, R. [1996]: Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-AI-Ni shape memory alloy. Philosophical Magazine A, 73(2): 457–497.

[2] Abeyaratne, R.;Knowles, J.[1990]: On the driving traction acting on a surface of strain discontinuity in a continuum. Journal of the Mechanics and Physics Solids, 38: 345–360.

[3] Abeyaratne, R.; Knowles, J. [1991]: Kinetic relations and the propagation of phase boundaries in solids. Archive for Rational Mechanics and Analysis, 114:

119–154.

[4] Abeyaratne, R.; Knowles, J. [2006]: Evolution of Phase Transitions: A Con-tinuum Theory. Cambridge University Press.

[5] Alber, H.D.;Zhu, P. [2008]: Solutions to a model for interface motion by inter-face diffusion. Proceedings of the Royal Society of Edinburgh, 138A: 923–955.

[6] Alberti, G.; Baldo, S.;Orlandi, G. [2005]: Variational convergence for func-tionals of Ginzburg-Landau type. Indiana University Mathematics Journal, 54(5):

1411–1472.

[7] Allen, M.P.; Tildesley, D. [1987]: Computer Simulation of Liquids. Oxford University Press.

[8] Allen, S.M.;Cahn, J. [1979]: A microscopic theory for antiphase boundary mo-tion and its applicamo-tion to antiphase domain coarsening. Acta Metallurgica, 27(6):

1085–1095.

[9] Arlt, G. [1990]: Review: Twinning in ferroelectric and ferroelastic ceramics:

Stress relief. Journal of Materials Science, 25: 2655–2666.

[10] Artemev, A.;Jin, Y.;Khachaturyan, A.[2001]: Three-dimensional phase field model of proper martensitic transformation. Acta Materialia, 49(7): 1165–1177.

[11] Artemev, A.;Jin, Y.;Khachaturyan, A.[2002]: Three-dimensional phase field model and simulation of cubic→ tetragonal martensitic transformation in polycrys-tals. Philosophical Magazine A, 82(6): 1249–1270.

[12] Ashby, M.F. [1970]: The deformation of plastically non-homogeneous materials.

Philosophical Magazine A, 21: 399–424.

[13] Aubry, S.; Fago, M.; Ortiz, M. [2003]: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials.

Computer Methods in Applied Mechanics and Engineering, 192(26-27): 2823–2843.

[14] Ball, J.M.[1976]: Convexity conditions and existence theorems in nonlinear elas-ticity. Archive for Rational Mechanics and Analysis, 63: 337–403.

[15] Ball, J.M.;Chu, C.;James, R. [1995]: Hysteresis during stress-induced variant rearrangement. Journal de Physique IV, 5(C8): 245–251.

[16] Ball, J.M.; James, R. [1987]: Fine phase mixtures as minimizers of energy.

Archive for Rational Mechanics and Analysis, 100(1): 13–52.

[17] Barsch, G.R.; Krumhansl, J. [1984]: Twin boundaries in ferroelastic media without interface dislocations. Physical Review Letters, 53: 1069–1072.

[18] Bartel, T.[2009]: Multiskalenmodellierung martensitischer Phasentransformatio-nen in Formged¨achtnislegierungen unter Verwendung relaxierter Energiepotenziale.

Ph.D. Thesis, Ruhr-Universit¨at Bochum.

[19] Bartel, T.; Hackl, K. [2008]: A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations. Materials Sci-ence and Engineering A – Structural Materials Properties Microstructure and Pro-cessing, 481(Sp. Iss. SI): 371–375.

[20] Bartel, T.; Hackl, K. [2009]: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 89(10): 792–809.

[21] Becker, M. [2006]: Incompatibility and Instability Based Size Effects in Crys-tals and Composites at Finite Elastoplastic Strains. Ph.D. Thesis, University of Stuttgart.

[22] Bhattacharya, K.[2003]: Microstructure of Martensite. Oxford University Press.

[23] Bhattacharya, K.; Dolzmann, G. [2000]: Relaxed constitutive relations for phase transforming materials. Journal of the Mechanics and Physics of Solids, 48:

1493–1517.

[24] Biot, M.A. [1965]: Mechanics of Incremental Deformations. Wiley.

[25] Braess, D. [1997]: The Finite Element Method. Cambridge University Press.

[26] Braides, A. [2002]: Γ-Convergence for Beginners. Oxford University Press.

[27] Buttazzo, G. [1989]: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical.

[28] Carstensen, C.;Hackl, K.; Mielke, A. [2002]: Nonconvex potentials and mi-crostructures in finite-strain plasticity. Proceedings of the Royal Society of London A, 458: 299–317.

[29] Cermelli, P.;Gurtin, M.[2001]: On the characterization of geometrically neces-sary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids, 49: 1539–1568.

[30] Chipot, M.; Kinderlehrer, D. [1988]: Equilibrium-configurations of crystals.

Archive for Rational Mechanics and Analysis, 103(3): 237–277.

[31] Chu, C.;James, R.[1995]: Analysis of microstructures in Cu-14.0%Al-3.9%Ni by energy minimization. Journal de Physique IV, 5(C8): 143–149.

[32] Ciarlet, P.G. [1988]: Mathematical Elasticity. Elsevier Science Publishers.

[33] Coleman, B.D.; Gurtin, M. [1967]: Thermodynamics with internal state vari-ables. The Journal of Chemical Physics, 47(2): 597–613.

[34] Coleman, D.; Noll, W. [1963]: The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13:

167–178.

References 167

[35] Conti, S.; Fonseca, I.; Leoni, G. [2002]: A Γ-convergence result for the two-gradient theory of phase transitions. Communications on Pure and Applied Math-ematics, 55(7): 857–936.

[36] Cottrell, A.H. [1953]: Dislocations and Plastic Flow of Crystals. Oxford Uni-versity Press.

[37] Cuiti˜no A.M.;Ortiz M.[1992]: Computational modelling of single crystals. Mod-elling and Simulation in Materials Science and Engineering, 1: 225–263.

[38] Dacorogna, B. [1989]: Direct Methods in the Calculus of Variations. Springer.

[39] Dacorogna, B. [2004]: Introduction to the Calculus of Variations. Imperial Col-lege Press.

[40] Dal Maso, G. [1993]: Introduction to Γ-Convergence. Birkh¨auser.

[41] Daners, D. [2000]: Robin boundary value problems on arbitrary domains. Trans-actions of the Maerican Mathematical Society, 352: 4207–4236.

[42] Dmitrieva, O.; Dondl, P.; M¨uller, S.; Raabe, D. [2009]: Lamination mi-crostructure in shear deformed copper single crystals. Acta Materialia, 57: 3439–

3449.

[43] Duerig, P.W.; Melton, K.; Stockel, D.; Wayman, C. [1990]: Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann.

[44] Duggin, M.J.;Rachinger, W.[1964]: The nature of the martensite transforma-tion in a copper-nickel-aluminium alloy. Acta Metallurgica, 12(5): 529–535.

[45] Ekh, M.; Grymer, M.; Runesson, K.; Svedberg, T. [2007]: Gradient crys-tal plasticity as part of the computational modelling of polycryscrys-tals. International Journal for Numerical Methods in Engineering, 72: 197–220.

[46] Ericksen, J.L.[1984]: The Cauchy and Born hypothesis for crystals. InGurtin, M.E. (Editor): Phase Transformations and Material Instabilities in Solids. Aca-demic Press.

[47] Eshelby, J.D. [1951]: The force on an elastic singularity. Philosophical Transac-tions of the Royal Society of London A, 244: 87–112.

[48] Eshelby, J.D. [1956]: The continuum theory of lattice defects. Solid State Physics - Advances in Research and Applications, 3: 79–144.

[49] Eshelby, J.D. [1975]: The elastic energy-momentum tensor. Journal of Elasticity, 5: 321–335.

[50] Evers, L.P.; Brekelmans, W.; Geers, M. [2004]: Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids, 52: 2379–2401.

[51] Faran, E.;Shilo, D.[2011]: The kinetic relation for twin wall motion in NiMnGa.

Journal of the Mechanics and Physics of Solids.

[52] Finel, A.; Le Bouar, Y.; Gaubert, A.; Salman, U. [2010]: Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendu Physique, 11: 245–256.

[53] Fitzhugh, R. [1961]: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1: 445–466.

[54] Franciosi P.; Berveiller M.; Zaoui A. [1980]: Latent hardening in Copper and Aluminium single crystals. Acta Metallurgica, 28: 273–283.

[55] Fr´emond, M. [2002]: Non-Smooth Thermomechanics. Springer.

[56] Fried, E.;Grach, G.[1997]: An order-parameter-based theory as a regularization of a sharp-interface theory for solid-solid phase transitions. Archive for Rational Mechanics and Analysis, 138: 355–404.

[57] Fried, E.; Gurtin, M. [1993]: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D: Nonlinear Phenomena, 68:

326–343.

[58] Fried, E.; Gurtin, M. [1994]: Dynamic solid-solid transitions with phase char-acterized by an order parameter. Physica D: Nonlinear Phenomena, 72: 287–308.

[59] Fried, E.; Gurtin, M. [1996]: A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy.

Physica D: Nonlinear Phenomena, 91: 143–181.

[60] Garcke, H. [2000]: On Mathematical Models for Phase Separation in Elasti-cally Stressed Solids. Habilitationsschrift. Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelm-Universit¨at Bonn, Bonn 2000.

[61] Ginzburg, V.L.;Landau, L.[1950]: On the theory of superconductivity. Journal of Experimental and Theoretical Physics of the U.S.S.R., 20: 1064.

[62] Glocker, C. [1995]: Dynamik von Starrk¨orpersystemen mit Reibung und St¨oßen.

Ph.D. Thesis, Technische Universit¨at M¨unchen.

[63] Griffith, A.A.[1921]: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A, 221: 163–198.

[64] Gurtin, M.E. [1995]: The nature of configurational forces. Archive for Rational Mechanics and Analysis, 131: 67–100.

[65] Gurtin, M.E. [1996]: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 92(3-4): 178–192.

[66] Gurtin, M.E. [2002]: A gradient theory of single-crystal viscoplasticity that ac-counts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids, 50: 5–32.

[67] Gurtin, M.E.; Fried, E.; Anand, L. [2010]: The Mechanics and Thermody-namics of Continua. Cambridge University Press.

[68] Gurtin, M.E.; Struthers, A.; Williams, W. [1989]: A transport theorem for moving interfaces. Quarterly of Applied Mathematics, XLVII: 773–777.

[69] Gustafson, K; Abe, T. [1998]: The third boundary condition - Was it Robin’s?

Mathematical Intelligencer, 20(1): 63–71.

[70] Hildebrand, F.E.; Abeyaratne, R. [2008]: An atomistic investigation of the kinetics of detwinning. Journal of the Mechanics and Physics of Solids, 56: 1296–

1319.

[71] Hildebrand, F.E.;Miehe, C.[2012]: Comparison of two bulk energy approaches for the phasefield modeling of two-variant martensitic laminate microstructure.

Technische Mechanik, 32 (1): 3–20.

References 169

[72] Hildebrand, F.E.; Miehe, C. [2012]: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philosophical Magazine A, 92: 4250–4290.

[73] Hildebrand, F.E.; Miehe, C. [2012]: Variational phase field modeling of lami-nate deformation microstructure in finite gradient crystal plasticity. Proceedings in Applied Mathematics and Mechanics, 12: 37–40.

[74] Holzapfel, G.A. [2000]: Nonlinear Solid Mechanics. John Wiley & Sons.

[75] Hou, T.Y.; Rosakis, P.; LeFloch, P. [1999]: A level-set approach to the com-putation of twinning and phase-transition dynamics. Journal of Comcom-putational Physics, 150: 302–321.

[76] Hughes, T.J.R. [2000]: The Finite Element Method. Dover Publications.

[77] Hutchinson, J.W. [1976]: Bounds and self-consistent estimates for creep of poly-crystalline materials. Proceedings of the Royal Society of London A, 348: 101–127.

[78] Ichinose, S.; Funatsu, Y.; Otsuka, K. [1985]: Type II deformation twinning in γ1 martensite in a Cu-Al-Ni alloy. Acta Metallurgica, 33(9): 1613–1620.

[79] Jacobs, A.E. [2000]: Landau theory of structures in tetragonal-orthorhombic fer-roelastics. Physical Review B, 61(10): 6587–6595.

[80] Jacobs, A.E.; Curnoe, S.; Desai, R. [2003]: Simulations of cubic-tetragonal ferroelastics. Physical Review B, 68(22).

[81] James, R.D. [1981]: Finite deformation by mechanical twinning. Archive for Ra-tional Mechanics and Analysis, 77: 143–176.

[82] Jin, Y.M.; Artemev, A.; Khachaturyan, A. [2001]: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of zeta ‘(2) martensite in AuCd alloys. Acta Materialia, 49(12): 2309–2320.

[83] Kim, S.J.; Abeyaratne, R. [1995]: On the effect of the heat generated during a stress-induced thermoelastic phase transformation. Continuum Mechanics and Thermodynamics, 3: 311–332.

[84] Klusemann, B.;Bargmann, S.;Svendsen, B.[2012]: Two models for gradient inelasticity based on non-convex energy. Computational Materials Science, 64(0):

96–100.

[85] Kochmann, D.M. [2009]: Mechanical Modeling of Microstructures in Elasto-Plastically Deformed Crystalline Solids. Ph.D. Thesis, Ruhr-Universit¨at Bochum.

[86] Kochmann, D.M.;Hackl, K.[2011]: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mechanics and Thermodynamics, 23:

63–85.

[87] Kocks U.F.[1970]: The relation between polycrystal deformation and single-crystal deformation. Metallurgical Transactions, 1: 1121–1143.

[88] Kohn, R.V.; M¨uller, S. [1992]: Branching of twins near an austenite-twinned-martensite interface. Philosophical Magazine A, 66 (5): 697–715.

[89] Kohn, R.V.; Strang, G. [1986]: Optimal-design and relaxation of variational-problems I. Communications on Pure and Applied Mathematics, 39(1): 113–137.

[90] Kohn, R.V.; Strang, G. [1986]: Optimal-design and relaxation of variational-problems II. Communications on Pure and Applied Mathematics, 39(2): 139–182.

[91] Kohn, R.V.; Strang, G. [1986]: Optimal-design and relaxation of variational-problems III. Communications on Pure and Applied Mathematics, 39(3): 353–377.

[92] Kolmogorov, A.N.; Fomin, S. [1975]: Introductory Real Analysis. Dover Pub-lications.

[93] Kondo, K. [1952]: On the geometrical and physical foundations of the theory of yielding. In Proceedings of the Second Japan National Congress for Applied Me-chanics, pp. 41–47.

[94] Kondo, K.[1955]: Memoirs of the unifying study of the basic problems in engineer-ing sciences by means of geometry. Vol I, Tokyo, Gakujutsu Bunken Fukuyu-Kai.

[95] Kreyszig, E. [1978]: Introductory Functional Analysis with Applications. Wiley.

[96] Kristensen, J.[1999]: On the non-locality of quasiconvexity. Annales de l’Institut Henri Poincare, 16(1): 1–13.

[97] Kr¨oner E. [1960]: Allgemeine Kontinuumstheorie der Versetzungen und Eigen-spannungen. Archive of Rational Mechanics and Analysis, 4: 273–334.

[98] Kruˇz´ık, M.; Mielke, A.; Roub´ıˇcek, T. [2005]: Modelling of Microstructure and its Evolution in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi.

Meccanica, 40: 389–418.

[99] Kuroda, M.;Tvergaard, V. [2009]: Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals. International Journal of Solids and Structures, 46: 4396–4408.

[100] Levitas, V.I.; Javanbakht, M. [2010]: Surface tension and energy in multi-variant martensitic transformations: Phase-field theory, simulations, and model of coherent interface. Physical Review Letters, 105: 165701.

[101] Levitas, V.I.; Lee, D.; Preston, D. [2010]: Interface propagation and mi-crostructure evolution in phase field models of stress-induced martensitic phase transformations. International Journal of Plasticity, 26(3): 395–422.

[102] Levitas, V.I.; Levin, V.; Zingerman, K.; Freiman, E. [2009]: Displacive phase transitions at large strains: Phase-field theory and simulations. Physical Review Letters, 103: 025702.

[103] Levitas, V.I.; Preston, D. [2002]: Three-dimensional Landau theory for multi-variant stress-induced martensitic phase transformations. I. Austenite ↔ marten-site. Physical Review B, 66(13).

[104] Liu, I.S. [2002]: Continuum Mechanics. Springer.

[105] Luskin, M. [1996]: On the computation of crystalline microstructure. Acta Nu-merica, 5: 191–258.

[106] Marsden, J.E.; Hughes, T. [1994]: Mathematical Foundations of Elasticity.

Dover Publications.

[107] McFadden, G.B.; Wheeler, A.; Braun, R.; Coriell, S.; Sekerka, R.

[1993]: Phase-field models for anisotropic interfaces. Physical Review E, 48(3):

2016–2024.

References 171

[108] Miehe, C.: Geometrical Methods for Nonlinear Continuum Mechanics and Con-tinuum Thermodynamics. Lecture notes.

[109] Miehe, C.: Theoretical and Computer-Oriented Material Theory. Lecture notes.

[110] Miehe, C. [2002]: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. International Journal for Numerical Methods in Engineering, 55: 1285–1322.

[111] Miehe, C. [2011]: A multi-field incremental variational framework for gradient-extended standard dissipative solids. Journal of the Mechanics and Physics of Solids, 59: 898–923.

[112] Miehe, C. [2012]: Mixed variational principles for the evolution problem of gradient-extended dissipative solids. GAMM-Mitteilungen, 35(1): 8–25.

[113] Miehe, C.; Hildebrand, F.; Mauthe, S. [2013]: Laminate microstructure in double slip gradient crystal plasticity. In preparation.

[114] Miehe, C.; Lambrecht, M. [2003]: Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids. International Journal for Numerical Methods in Engineering, 58: 1–41.

[115] Miehe, C.; Lambrecht, M. [2003]: A two-scale finite element relaxation analy-sis of shear bands in non-convex inelastic solids: Small-strain theory for standard dissipative materials. Computer Methods in Applied Mechanics and Engineering, 192: 473–508.

[116] Miehe, C.; Lambrecht, M.; G¨urses, E. [2004]: Analysis of material instabili-ties in inelastic solids by incremental energy minimization and relaxation methods:

evolving deformation microstructures in finite plasticity. Journal of the Mechanics and Physics of Solids, 52: 2725–2769.

[117] Miehe, C.;Mauthe, S.; Hildebrand, F. [2013]: Variational gradient plasticity at finite strains. Part III: Local-global updates and regularization techniques in mul-tiplicative plasticity for single crystals. Submitted to Computer Methods in Applied Mechanics and Engineering.

[118] Miehe, C.; Schotte, J.[2004]: Crystal plasticity and evolution of polycrystalline microstructure. In Stein, E.;de Borst, R.;Hughes, J.(Editors): Encyclopedia of Computational Mechanics. Wiley.

[119] Modica, L. [1987]: The gradient theory of phase transitions and the minimal in-terface criterion. Annales de l’Institut Henri Poincare - Analyses Non Lineaire, 4:

487–512.

[120] Morrey, C.B. [1952]: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics, 2(1): 25–53.

[121] Morrey, C.B. [1966]: Multiple Integrals in the Calculus of Variations. Springer.

[122] M¨uller, I. [1973]: Thermodynamik – Grundlagen der Materialtheorie. Bertels-mann Universit¨atsverlag.

[123] M¨uller, I.[1985]: Thermodynamics. Pitman Publishing Ltd.

[124] M¨uller, I.; Weiss, W. [2005]: Entropy and Energy – A Universal Competition.

Springer.

[125] M¨uller, S. [1999]: Variational models for microstructure and phase transitions.

In Calculus of Variations and Geometric Evolution Problems, pp. 85–210. Springer.

[126] Murr, L.E. [1975]: Interfacial Phenomena in Metals and Alloys. Addison-Wesley.

[127] Nagumo, J.; Arimoto, S.; Yoshizawa, S. [1962]: Active pulse transmission line simulating nerve axon. Proceedings of the Institute of Radio Engineers, 50:

2061–2070.

[128] Nguyen, Q.S. [2000]: Stability and Nonlinear Solid Mechanics. Wiley.

[129] Nishimori, H.; Onuki, A. [1990]: Pattern formation in phase-separating alloys with cubic symmetry. Physical Review B, 42: 980–983.

[130] Nye, J.F. [1953]: Some geometrical relations in dislocated crystals. Acta Metallur-gica, 1: 153–162.

[131] Ortiz M.;Repetto E.A.[1999]: Nonconvex energy minimization and dislocation structures in ductile single crystals. Journal of the Mechanics and Physics of Solids, 47: 397–462.

[132] Ostsuka, K.;Shimizu, K. [1974]: Morphology and crystallography of thermoelas-tic Cu-Al-Ni martensite analyzed by the phenomenological theory. Transactions of the Japan Institute of Metals, 15(2): 103–108.

[133] Otsuka, K.;Shimizu, K.[1969]: Morphology and crystallography of thermoelastic γ Cu-Al-Ni martensite. Japanese Journal of Applied Physics, 8(10): 1196–1204.

[134] Otsuka, K.; Shimizu, K. [1970]: {10¯12} transformation twins in hexagonal martensite. Journal of the Physical Society of Japan, 28(3): 804.

[135] Petryk, H.;Mr´oz, Z.[1986]: Time derivatives of integrals and functionals defined on varying volume and surface domains. Archives of Mechanics, 38: 697–724.

[136] Petryk, H.; Stupkiewicz, S. [2010]: Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory. Journal of the Mechanics and Physics of Solids, 58: 390–408.

[137] Petryk, H.; Stupkiewicz, S.; Maciejewski, G. [2010]: Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoe-lasticity. Journal of the Mechanics and Physics of Solids, 58: 373–389.

[138] Pitteri, M.; Zanzotto, G. [2001]: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall.

[139] Porter, D.A.; Easterling, K. [1992]: Phase Transformations in Metals and Alloys. Chapman & Hall.

[140] Rankine, W.J.M. [1870]: On the thermodynamic theory of finite longitudinal dis-turbance. Philosophical Transactions of the Royal Society of London, 160: 277–286.

[141] Rasmussen, K.Ø.; Lookman, T.; Saxena, A.; Bishop, A.; Albers, R.;

Shenoy, S. [2001]: Three-dimensional elastic compatibility and varieties of twins in martensites. Physical Review Letters, 87(5): 055704.

[142] Rockafellar, R.T. [1970]: Convex Analysis. Princeton University Press.

[143] Saarloos, W. van [2003]: Front propagation into unstable states. Physical Re-ports, 386: 29–222.

References 173

[144] Schade, H. [1997]: Tensoranalysis. De Gruyter.

[145] Schmid E.;Boas W. [1935]: Kristallplastizit¨at. Springer.

[146] Silhav´ˇ y, M. [1997]: The Mechanics and Thermodynamics of Continuous Media.

Springer.

[147] Silling, S.A. [2000]: Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48: 175–209.

[148] Svendsen, B. [2004]: On thermodynamic- and variational-based formulations of models for inelastic continua with internal lengthscales. Computer Methods in Ap-plied Mechanics and Engineering, 193(48–51): 5429 – 5452.

[149] Svendsen, B.; Bargmann, S.; Ekh, M.; Runesson, K. [2010]: Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies. Philosoph-ical Magazine, 90: 1263–1288.

[150] Tan, S.; Xu, H. [1990]: Observations on a CuAlNi single-crystal. Continuum Mechanics and Thermodynamics, 2: 241–244.

[151] Taylor, R.L. [2011]: FEAP – A Finite Element Analysis Program: Version 8.3 User Manual. Department of Civil and Environmental Engineering, University of California at Berkeley.

[152] Truesdell, C.;Noll, W.[1965]: Handbuch der Physik, Bd. III: The Non-Linear Field Theories of Mechanics. Springer.

[153] Wayman, C.M. [1964]: Introduction to the Crystallography of Martensitic Trans-formation. MacMillan.

[154] Wriggers, P. [2001]: Nichtlineare Finite-Element-Methoden. Springer.

[155] Yalcinkaya, T.; Brekelmans, W.; Geers, M. [2011]: Deformation pattern-ing driven by rate dependent non-convex strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 59: 1–17.

[156] Yalc¸inkaya, T.; Brekelmans, W.; Geers, M. [2012]: Non-convex rate de-pendent strain gradient crystal plasticity and deformation patterning. International Journal of Solids and Structures, 49: 2625–2636.

[157] Ziegler, H.; Wehrli, C. [1987]: The derivation of constitutive relations from the free energy and the dissipation function. Advances in Applied Mechanics, 25:

183–238.

[158] Zienkiewicz, O.C.; Taylor, R. [2000]: The Finite Element Method. Volume 1:

The Basis. Butterworth Heinemann.

[159] Zienkiewicz, O.C.; Taylor, R. [2000]: The Finite Element Method. Volume 2:

Solid Mechanics. Butterworth Heinemann.

Curriculum Vitae

Personal Data

Name Felix Eberhard Hildebrand

Date of Birth November 20, 1979 Place of Birth T¨ubingen a.N., Germany

School Education/Community Service

1986–1987 Elementary school “Grundschule Hofen”, Stuttgart 1987–1990 Elementary school “Wilhelm-Hauff Schule”, Stuttgart 1990–1992 High school “Karlsgymnasium”, Stuttgart

1992–1999 High school “Beethovengymnasium”, Bonn

1996–1997 Maple Ridge Secondary School, Vancouver, Canada 1999–2000 Community Service “Jugendcolloquium e.V.”, Bonn

University Education

2000–2003 Pre-Diploma Studies in Mechanical Engineering, Technical University of Berlin

2003–2004 Master of Science in Mechanical Engineering, University of Michigan, Ann Arbor, USA 2004–2006 Diploma studies in Engineering Science,

Technical University of Berlin

2005–2006 Master thesis at the Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, USA

Professional Occupation

2006–2009 Research Associate at the Center of Mechanics,

Swiss Federal Institute of Technology, Zurich, Switzerland 2009–2013 Research Associate and Assistant Lecturer at the

Institute of Applied Mechanics (CE), University of Stuttgart

In dieser Schriftenreihe bisher erschienene Berichte:

I-1(1996) Theoretische und algorithmische Konzepte zur ph¨anomenologischen Beschrei-bung anisotropen Materialverhaltens, J. Schr¨oder, Dissertation, 1996.

I-2(1996) Zur Theorie und Numerik finiter elastoplastischer Deformationen von Scha-lentragwerken, B. Seifert, Dissertation, 1996.

I-3(1996) Zur Modellierung des k¨unstlichen Infrarot-Dichroismus in Poymerfolien bei großen Verformungen, J. Buhler, Dissertation, 1996.

I-4(1998) Verfahren zur Ermittlung der Erdbebenlasten mit Ber¨ucksichtigung des stochastischen Charakters des Bebens, S. Zhang, Dissertation, 1998.

I-5(1998) Zur Beschreibung finiter Deformationen von Polymeren: Experimente, Mod-ellbildung, Parameteridentikation und Finite-Elemente- Formulierung, J.

Keck, Dissertation, 1998.

I-6(1999) Berechnungsverfahren instation¨ar erregter Systeme im Frequenzbereich, A.

Jaworek, Dissertation, 1999.

I-7(2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilit¨atsproblemen, J. Schr¨oder, Habilitation, 2000.

I-8(2002) Theorie und Numerik von Materialinst¨abilitaten elastoplastischer Festk¨orper auf der Grundlage inkrementeller Variationsformulierungen, M. Lambrecht, Dissertation, 2002.

I-9(2002) Mikromechanisch motivierte Modelle zur Beschreibung finiter Deformationen gummiartiger Polymere: physikalische Modellbildung und numerische Simu-lation, F. Lulei, Dissertation, 2002.

I-10(2003) Adaptive Finite-Elemente-Berechnungen der nichtlinearen Festk¨orper-mechanik bei kleinen und großen Verzerrungen, A. Koch, Dissertation, 2003.

I-11(2003) Theorie und Numerik der Parameteridentikation von Materialmodellen der finiten Elastizit¨at und Inelastizit¨at auf der Grundlage optischer Feld-meßmethoden, G. Scheday, Dissertation, 2003.

I-12(2004) Approaches to the Description of Anisotropic Material Behaviour at Finite Elastic and Plastic Deformations, Theory and Numerics, N. Apel, Disserta-tion, 2004.

I-13(2004) Temperaturabh¨angige Beschreibung visko-elasto-plastischer Deformationen kurzglasfaserverst¨arkter Thermoplaste: Modellbildung, Numerik und Experi-mente, S. Rieger, Dissertation, 2004.

I-14(2005) Zur Parameteridentikation komplexer Materialmodelle auf der Basis realer und virtueller Testdaten, A. Rieger, Dissertation, 2005.

I-15(2005) Viskoelastisches Verhalten von Elastomeren bei finiten Verzerrungen: Exper-imente, Modellierung und Simulationen, H. Zecha, Dissertation, 2005.

2005.

I-17(2005) Static and Dynamic Homogenization Analyses of Discrete Granular and Atomistic Structures on Different Time and Length Scales, J. Dettmar, Dis-sertation, 2005.

I-18(2006) Incompatibility and Instability Based Size Effects in Crystals and Composites at Finite Elastoplastic Strains, M. Becker, Dissertation, 2006.

I-19(2007) Aspects of Energy Minimization in Solid Mechanics: Evolution of Inelastic Microstructures and Crack Propagation, E. G¨urses, Dissertation, 2007.

I-20(2007) Micro-Macro Approaches to Rubbery and Glassy Polymers: Predictive Micromechanically-Based Models and Simulations, S. G¨oktepe, Dissertation, 2007.

I-21(2008) Material Forces in Finite Inelasticity and Structural Dynamics: Topology Optimization, Mesh Refinement and Fracture, D. Zimmermann, Dissertation, 2008.

I-22(2010) Thermoviscoplasticity of Glassy Polymers: Experimental Characterization, Parameter Identification and Model Validation, J. M´endez Diez, Dissertation, 2010.

I-23(2010) On the Formulation and Numerical Implementation of Dissipative Electro–

Mechanics at Large Strains, D. Rosato, Dissertation, 2010.

I-24(2011) A Variational Framework for Gradient-Extended Dissipative Continua. Ap-plication to Damage Mechanics, Fracture, and Plasticity, F. Welschinger, Dissertation, 2011.

I-25(2013) Variational Multifield Modeling of the Formation and Evolution of Laminate Microstructure, F. Hildebrand, Dissertation, 2013.

This is a pseudo text typed to get blank pages in the beginning of the thesis.