• Keine Ergebnisse gefunden

7. Conclusion and Outlook

A new analysis of dierent methods to determine the wave slope distribution from the series of light speckle images is made. It shows that a simple position detection of the light speckles is not sucient, though the light speckle properties 'area' and 'intensity' have to be taken into account. The overall uncertainty of the total mean square slope values can be estimated to be less than 10 % from an intercomparison of the dierent analysis methods.

The height measurement is calibrated to an ultrasonic distance sensor and yields an error of less than 2 mm for a at water surface. However, for a rough water surface, the measured water height is biased, so unrealistic height values appear. Lens eects due to the high curvature at the surface and fast changes of the wave slope can be an explanation for a dierent light speckle shape in corresponding IR and RED images and an additional variation of the light intensity in the images. This error cannot be corrected for, so the small wave amplitudes in the ume represent a relatively small signal compared to the noise due to the lens eects and fast slope changes. For a better understanding of the lens eects an exact ray tracing model at the water surface would be necessary. Changes of the slope between two images could be avoided with an even shorter time period between the two LED pulses. Limiting the t range to realistic values, the root mean square wave height can still be estimated from the height probability distribution with a Gaussian t.

A characterization of the wave eld in the new linear wave ume is accomplished. Waves start to develop abruptly at a wind speed of 3.5m/s or a water side friction velocity of 0.7cm/s. A measurement at a wind speed of 5.0m/s shows that the wave eld develops within the rst 1.40 m of the fetch and remains constant from there to the beach concerning the parameters mean square wave slope and rms wave height. At the maximum wind speed of 6.7m/s and a fetch of 2.38 m the mean square slope is 0.059 and the rms wave height is 6 mm.

In addition to the usual use of the wave gauge at the linear wave ume, the wave gauge will be tested at the large circular ume, where the dominant wave height is higher by a factor of up to 100. Therefore the height measurement has a better signal to noise ratio and is expected to yield correct wave height values of the dominant gravity waves.

The height values are needed in the large ume to correct the height dependent slope measurement. A correlation analysis of the height of the large scale waves and the slope can provide information about the long wave - short wave interaction.

A Reective Slope Gauge (RSG) is planned to accompany heat transfer measurements in the eld in 2009-2010. The detailed analysis of the single light speckle images shown in this study allows for a determination of the speckle properties. The ndings can improve a quantitative evaluation of the RSG measurements.

Bibliography

[1] G. Balschbach. Untersuchungen statistischer und geometrischer Eigenschaften von Windwellen und ihrer Wechselwirkung. PhD thesis, Universität Heidelberg, Febru-ary 2000.

[2] S. Banerjee. The Air-Water Interface: Turbulence and Scalar Exchange, pages 87101. Springer-Verlag, 2007.

[3] M. Bass. Handbook of Optics, Volume 1, Fundamentals, Techniques, and Design.

McGraw Hill, New York, 1995.

[4] E. J. Bock and T. Hara. Optical measurements of capillary-gravity wave spectra using a scanning laser slope gauge. Journal of Atmospheric and Oceanic Technology, 12(2):395403, April 1995.

[5] E. J. Bock, T. Hara, N. M. Frew, and W. R. McGillis. Relationship between air-sea gas transfer and short wind waves. Journal of Geophysical Research-Oceans, 104 (C11):2582125831, 1999. J NOV 15.

[6] J.-I. Bouguet. Camera calibration toolbox for matlab. on http://www.vision.caltech.edu/bouguetj/; 25.07.2008, 2008.

[7] G. Caulliez, V. K. Makin, and V. N. Kudryavtsev. Drag on the water surface at very short fetches: observations and modelling. Journal of Physical Oceanography, preprint, 2008.

[8] C. Cox and W. Munk. Measurements of the roughness of the sea surface from photographs of the sun's glitter. Journal of the Optical Society of America, 44(11):

838850, 1954.

[9] C. Cox and W. Munk. Statistics of the sea surface derived from sun glitter. Journal of Marine Research, 13(2):198227, 1954.

[10] G. D. Crapper. Non-linear capillary waves generated by steep gravity waves. Jour-nal of Fluid Mechanics, 40(I):149159, 1970.

Bibliography

[11] S. R. Duke, L. M. Wol, and T. J. Hanratty. Slopes of small-scale wind waves and their relation to mass transfer rates. Experiments in Fluids, 19:280292, 1995.

[12] N. Ebuchi, H. Kawamura, and Y. Toba. Fine structure of laboratory wind-wave surfaces studied using a optical method. Boundary-Layer Meteorology, 39:133151, 1987.

[13] N. M. Frew, E. J. Bock, and U. e. a. Schimpf. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface lms. Journal of Geophysical Research, 109(C8):C08S17, 2004.

[14] N. M. Frew, D. Glover, E. Bock, and S. McCue. A new approach to estimation of global air-sea gas transfer velocity elds using dual-frequency altimeter backscatter.

J. Geophys. Res., 112:C11003, 2007.

[15] D. Fuÿ. Kombinierte Höhen- und Neigungsmessung von winderzeugten Wasser-wellen am Heidelberger Aeolotron. PhD thesis, University of Heidelberg, Heidel-berg, Germany, 2004.

[16] G. M. Hale and M. R. Querry. Optical constants of water in the 200 nm to 200 µm wavelength region. Appl.Opt., 12:555563, 1973.

[17] B. Jähne. Parametrisierung des Gasaustauschs mit Hilfe von Laborexperimenten.

Phd thesis, Universität Heidelberg, 1980.

[18] B. Jähne. Digitale Bildverarbeitung. Springer Verlag, fünfte edition, 2002.

[19] B. Jähne, J. Klinke, and S. Waas. Imaging of short ocean wind waves: a critical theoretical review. J.Opt.Soc.Am., 11(8):21972209, 1994.

[20] B. Jähne, K. O. Münnich, R. Bösinger, A. Dutzi, W. Huber, and P. Libner. On the parameters inuencing airwater gas exchange. Journal of Geophysical Research, 92(C2):19371949, February 1987.

[21] B. Jähne, K. O. Münnich, and U. Siegenthaler. Measurements of gas exchange and momentum transfer in a circular wind-water tunnel. Tellus, 31:321329, 1979.

[22] B. Jähne and K. Riemer. Two-dimensional wave number spectra of small-scale water surface waves. J.Geophys.Res., 95(C7):1153111646, 1990.

[23] B. Jähne, M. Schmidt, and R. Rocholz. Combined optical slope/height measure-ments of short wind waves: principles and calibration. Measurement Science &

Technology, 16(10):19371944, 2005.

Bibliography [24] I. S. F. Jones and Y. Toba. Wind Stress over the Ocean. Cambridge University

Press, Cambridge,UK, 2001.

[25] J. Klinke. Optical Measurements of Small-Scale Wind Generated Water Surface Waves in the Laboratory and the Field. PhD thesis, University of Heidelberg, Heideleberg, Germany, 1996.

[26] G. Komen, editor. Dynamics and modelling of ocean waves. Cambridge University Press, 1994.

[27] P. K. Kundu. Fluid Mechanics. Academic Press, San Diego, CA, 1990.

[28] H. Lauer. Messung der Neigungsverteilung von Wasseroberaechenwellen mittels digitaler Bildverarbeitung. Master's thesis, Universität Heidelberg, 1994.

[29] H. Lauer. Untersuchung der Neigungsstatistik von Wasseroberächenwellen mittels eines schnellen, bildaufnehmenden Verfahrens. Dissertation, Universität Heidel-berg, 05 1998.

[30] P. S. Liss and L. Merlivat. Air-sea gas exchange rates: Introduction and synthesis.

In P. Buat-Menard, editor, The role of air-sea exchange in geochemical cycling, pages 113129. Reidel, Boston,MA, 1986.

[31] M. S. Longuet-Higgins. The statistical analysis of a random, moving surface. Jour-nal of Marine Research, 249:321387, February 1957. A. 966.

[32] K. V. N. Makin, V. K. Coupled sea surface-atmosphere model. part 1. wind over waves coupling. Journal of Geophysical Research, 104:76137623, 1999.

[33] W. R. McGillis, J. B. Edson, J. E. Hare, and C. W. Fairall. Direct covariance air-sea CO2 uxes. Journal of Geophysical Research, 106(C8):1672916745, 2001.

[34] H. Mitsuyasu. A note on the momentum transfer from wind to waves. Journal of Geophysical Research, 90:33433346, 1985.

[35] P. D. Nightingale, P. S. Liss, and P. Schlosser. Measurements of air-sea gas transfer during an open ocean algal bloom. Geophysical Research Letters, 27:21172120, July 2000.

[36] O. M. Phillips. The dynamics of the upper ocean. Cambridge University Press, 1969.

[37] R. A. Pierson, W. J. (Jr) Stacy. The elevation, slope, and curvature spectra of a wind roughened sea surface, 1973.

Bibliography

[38] W. J. Plant. A new interpretation of sea-surface slope probability density functions.

Journal of Geophysical Research, 108(C9):3295, 2003.

[39] R. Rocholz. Bildgebendes system zur simultanen neigungs- und höhenmessung an kleinskaligen wind-wasserwellen. Diploma thesis, University of Heidelberg, 2005.

[40] R. Rocholz. Spatiotemporal Measurement of Short Wind-Driven Water Waves. PhD thesis, University of Heidelberg, 2008. in preperation.

[41] W. Roedel. Physik unserer Umwelt: die Atmosphäre. Springer-Verlag, 3 edition, 2000.

[42] D. Segelstein. The complex refractive index of water. M.S. Thesis, University of Missouri-Kansas City, 1981.

[43] W. Tsai and L. Hung. A Numerical Study on the Characteristic Flow Structures of a Micro-Breaking Wind Wave. Springer-Verlag, 2007.

[44] W. Tsai and L. Hung. Three-dimensional modeling of small-scale processes in the upper boundary layer bounded by a dynamic ocean surface. Journal of Geophysical Research, 112:C02019, 2007.

[45] K. Ueltzhöer. Windprolmesungen am linearen Wind-Wellenkanal. Technical report, Institut für Umweltphysik, Heidelberg, 2008.

[46] S. Waas. Entwicklung eines Verfahrens zur Messung kombinierter Höhen- u. Nei-gungsverteilungen von Wasseroberächenwellen mit Stereoaufnahmen. Master's thesis, University of Heidelberg, 1988.

[47] WAMDI. The wam model - a third generation ocean wave prediction model. Jour-nal of Physical Oceanography, 18:17751810, 1988.

[48] R. Wanninkhof. Relationship between gas exchange and wind speed over the ocean.

Journal of Geophysical Research, 97(C5):73737382, 1992.

[49] C. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emanuel, L. B. Wol, and J. Yal-cin. Retrieval of short ocean wave slope using polarimetric imaging. Meas. Sci.

Technol., 19, 2008.

[50] X. Zhang. Capillary-gravity and capillary waves generated in a wind wave tank:

Observations and theories. Journal of Fluid Mechanics, 189:5182, 1995.

Erklärung:

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, 03.09.2008

Danksagung

Besonders bedanken möchte ich mich bei Prof. Dr. Bernd Jähne, der diese Arbeit betreut und sie erst möglich gemacht hat. Ein groÿer Dank geht auch an Prof. Dr.

Platt für die Übernahme der Zweitkorrektur.

Auÿerdem möchte ich noch meinen Dank aussprechen

Roland Rocholz, der mir seine Zeit geopfert hat für ausführliche Diskussionen und wertvolle Tipps,

der ganzen Arbeitsgruppe "Gasaustausch und Wellen" am Institut für Umweltphysik in Heidelberg für ihre tolle Unterstützung meiner Arbeit, der Beantwortung der vielen Fragen und die allzeit nette Stimmung im Windkanal Labor,

der Institutswerkstatt im IUP und Herrn Spiegel in der Diplomandenwerkstatt für die freundliche Beratung in technischen Fragen,

und nicht zuletzt meiner Freundin und meinen Eltern dafür, dass sie immer da sind.

Appendices

A. Calculations

A.1. Water height amplitude from IR and RED speckle intensities

The slant absorption lengthlin water is

l = − 1

IR−αRED) ln IIR

IRED

+C (A.1)

l = b+C (A.2)

with measured IR intensity IIR and RED intensity IRED of the same speckle. C is a constant length.

The correction from the slant absorption lengthl to the vertical water heightη is

η =l cosθ2 (A.3)

withθ2 as dened in Fig. 3.1.

landcosθ2are not totally uncorrelated, but the error is small, hlcosθ2i−hlihcoshηi θ2i = 0.1%, so

d2 = hηi=hlcosθ2i ≈ hlihcosθ2i (A.4) hli ≈ hηi

hcosθ2i = d2

hcosθ2i (A.5)

with the mean water heighthηi=d2. Hence,

l− hli = b− hbi+C− hCi (A.6)

l = b− hbi+hli (A.7)

l = b− hbi+ d2

hcosθ2i (A.8)

So with Eq. A.3 and Eq. A.8 the water surface amplitudehbecomes

h = η− hηi (A.9)

= l cosθ2−d2 (A.10)

=

b− hbi+ d2

hcosθ2i

cosθ2−d2 (A.11)