• Keine Ergebnisse gefunden

This study demonstrated and evaluated practical applicability of the integrated VetMAX MAP Real-Time PCR kit on reconstituted infant milk samples, artificially spiked milk, and field milk samples obtained from dairy herds. The standardized protocol was provided by a DNA isolation method, possible cross contamination between samples was avoided with a semi-automatic system, resulting in a high throughput rate of tested samples. An IAC is critical for PCR systems because it allows monitoring of reactions for associated inhibition and amplification efficiency. The results of this study suggest that real-time PCR using ISMAP02 primers is useful in practice, being both fast and cost-effective, to identify MAP as a possible cause for chronic individual and herd health problems. Furthermore, the results supported the validity of the MAP real-time PCR kit as a powerful tool to detect MAP in milk samples. However, fecal samples appear to be more suitable for predicting an association between MAP infection and the health status.

SUMMARY

69 7 SUMMARY

Ahmad Alajmi

Occurence of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine milk and feces samples from Nothern Germany

MAP, the etiological agent of paratuberculosis, is economically important in dairy operations because it affects ruminants such as cattle as the causative agent of Johne's disease as well as perhaps the causative agent of CD. The many different commercially produced tests for detecting MAP in different matrices have varied advantages, disadvantages and applications.

In the present study, the first aim was to evaluate the VetMAX MAP Real-Time PCR Screening Kit (Thermo Fisher Scientific) using milk samples since the commercial kit is certified only for the detecting of MAP in feces and environmental samples. The second aim was to evaluate the practicability of the applied new molecular technique using the previously mentioned real-time PCR kit and the MagVET Mycobacterium paratuberculosis Isolation Kit (Thermo Fisher Scientific) to quickly detect MAP in feces, composite foremilk samples and bulk milk samples of chronically diseased milking cows on dairy farms in Northern Germany.

The integrated VetMAX MAP Real-Time PCR kit was evaluated, including a unique transposon sequence; (ISMAP02) that was targeted to provide sensitive-specific results. The analytical sensitivity of the assays was determined using MAP type strain ATCC 19698 (DSM 44133). The assay's specificity was validated by testing 15 isolates of MAP, 13 isolates of non-MAP Mycobacterium species and 8 isolates of other related bacterial non-Mycobacterium species. Six spiked experiments were performed using multiple 50 mL-1 samples of both raw milk and reconstituted infant milk (BEBA®) that were spiked with a tenfold serial dilution containing 100 to 105 MAP cells mL-1. However, 3 raw milk samples from a local farm and 3 reconstituted infant milk formula samples were tested independently.

The detection probability in raw milk for the samples containing 1.4 × 101 MAP cell 50 mL-1 amounted to 16.6% and the detection probability for reconstituted infant milk samples containing 1.7 × 101 MAP cell 50 mL-1 amounted to 91.6%.

Additionally, the diagnostic kit was applied on the field samples for MAP detection. A total of 928 fecal, 922 composite foremilk and 92 bulk milk samples obtained from 58 case and 35

70

control dairy herds were investigated. The real-time PCR showed MAP positive results for 11 (18.96%) and 6 (17.14%) of the case and control herds, respectively. The odds ratio for the association between MAP-positive PCR results from milk and fecal samples and the herd disease status were OR = 1.9 (95% CI = 0.75.4) and OR = 5.7 (95% CI = 2.016.2), respectively. All bulk milk samples were MAP negative. The result of fecal and milk samples were moderately correlated (kappa = 0.27).

Finally, the validity of the commercial MAP real-time PCR kit to detect MAP in milk was supported by the study results. The data results indicate that real-time PCR results have diagnostic value for diagnosing MAP positive animals, whereby fecal samples are more suitable than composite foremilk samples when the assay is applied on samples from diseased cows.

ZUSAMMENFASSUNG

71 8 ZUSAMMENFASSUNG

Ahmad Alajmi

Vorkommen von Mycobacterium avium subspecies paratuberculosis (MAP) in Kuhmilch und Facesproben aus Norddeutschland

Mycobacterium avium subspecies paratuberculosis (MAP), der Erreger der Paratuberkulose (auch als Johne’sche Krankheit bekannt), stellt aufgrund des chronisch-auszehrenden Verlaufes einen wichtigen Wirtschaftsfaktor für die Milchwirtschaft dar. Darüber hinaus besteht die Möglichkeit eines Zusammenhangs mit dem den Menschen betreffenden Morbus Crohn. Die vielen verschiedenen kommerziellen Tests zur Erkennung von MAP in unterschiedlichen Matrices haben eine Reihe von Vor- und Nachteilen. In der hier vorgelegten Studie ging es vorrangig darum, die Effizienz des VetMAX MAP Real-Time PCR Screening Kit (Thermo Fisher Scientific) in Milchproben zu ermitteln, da sich die Zertifizierung dieses kommerziellen Testsystems eigentlich auf den Nachweis von MAP in Kot- und Umweltproben begrenzt. Das zweite Ziel war, die Praktikabilität der angewandten, neuen molekularbiologischen Technik unter Verwendung des oben genannten Real-Time-PCR-Kits und dem MagVET Mycobacterium paratuberculosis Isolationskits (Thermo Fisher Scientific) zum schnellen Nachweis von MAP in Kot- und Gesamtviertelgemelksproben chronisch erkrankter Milchrinder in Norddeutschland sowie in Tankmilchproben aus Herden, in denen sich diese chronisch kranken Tiere befinden, zu beurteilen.

Das VetMAX-MAP-Real-Time-PCR-Kit arbeitet mit einer individuellen Transposonsequenz (ISMAP02) als Target für sensitiv spezifische Nachweise. Die analytische Sensitivität des Testsystems wurde anhand des MAP-Typstammes ATCC 19698T (DSM 44133)T bestimmt, die Spezifität mit 15 weiteren MAP-Isolaten, 13 Isolaten von Nicht-MAP-Mykobakterien und 8 weiteren Isolaten verwandter Nicht-Mykobakterien. Dabei wurden alle Stämme sicher als MAP bzw. als Nicht-MAP erkannt. Sechs Experimente mit künstlicher Kontamination wurden mit 50 ml-Proben von Rohmilch und rekonstituierter Säuglingsnahrung durchgeführt. Jede Probe wurde mit einer Verdünnung in Zehnerschritten mit 100 bis 105 MAP-Zellen/ml künstlich kontaminiert. Rohmilch und Säuglingsmilch wurden jeweils an unterschiedlichen Tagen untersucht. Die Nachweiswahrscheinlichkeit in Rohmilch

72

mit 1,4 × 101 MAP-Zellen/50 ml betrug dabei 16,6 %, die von 1,7 × 101 MAP-Zellen/50 ml in der Säuglingsnahrung 91,6 %.

Darüber hinaus wurde das Testsystem an Feldproben zur Diagnostik von MAP verwendet.

Insgesamt wurden 928 Kot-, 922 Gesamtviertelgemelks- und 92 Tankmilchproben aus 58 Fall- und 35 Kontrollherden (die eine Anzahl von Kriterien bezüglich chronischer Erkrankungen erfüllen mussten bzw. nicht aufweisen durften) untersucht. Mittels Real-Time-PCR wurden 11 (18,96) der Fall- und 6 (17,14 %) der Kontrollherden positiv auf MAP getestet. Die Odds Ratio als Maß des Zusammenhanges zwischen MAP-positiven Ergebnissen aus Milch und aus Kotproben sowie dem Krankheitsstatus der Herde belief sich auf OR = 1,9 (95% CI = 0,75,4) bzw. OR = 5,7 (95% CI = 2,0  16,2). Alle Tankmilchproben waren MAP-negativ. Die Ergebnisse für Kot- und Milchproben stimmten weitestgehend überein (kappa = 0,27).

Zusammenfassend ist festzuhalten, dass die Validität des kommerziellen Real-Time-PCR-Kits zum Nachweis von MAP in Milch durch die Ergebnisse dieser Studie bestätigt werden konnte. Diese belegen, dass Real-Time-PCR-Ergebnisse MAP-positive Tiere detektieren können, wobei sich Kotproben als aussagekräftiger als Gesamtviertelgemelke erwiesen, wenn der Test an erkrankten Kühen durchgeführt wird.

REFERENCES

73 9 REFERENCES

ABDULMAWJOOD A., S. ROTH and M. BÜLTE (2002):

Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction.

Mol. Cell. Probes 16, 335-339.

ABD EL-MALEK S., K.F. MOHAMED (2011):

Detection of Mycobacterium avium subspecies paratuberculosis IS900 in baby milk powder in Egypt.

It. J. Microbiol. Res. 2, 54-60.

AHLSTROM C., H.W. BARKEMA, K. STEVENSON, R.N. ZADOKS, R. BIEK, R. KAO, H. TREWBY, D. HAUPSTEIN, D.F. KELTON, G. FECTEAU, O. LABRECQUE, G.P.

KEEFE, S.L. MCKENNA and J. DE BUCK (2015):

Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level.

BMC Genomics 16, 161.

ALAJMI A., G. KLEIN, M. GREINER, N. GRABOWSKI, S. FOHLER, A. CAMPE, T.

SCHEU, M. HOEDEMAKER and A. ABDULMAWJOOD (2016):

Potential role of real-time PCR for detection of Mycobacterium avium subsp.

paratuberculosis (MAP) in chronically diseased milking cows: a case control study.

Berl Münch Tierärztl Wochenschr. Berl. Münch. Tierärztl. Wochenschr. 129, 304-309.

ALEXANDER D.C., C.Y. TURENNE and M.A. BEHR (2009):

Insertion and deletion events that define the pathogen Mycobacterium avium subsp.

paratuberculosis.

ALLEN A.J., K.T. PARK, G.M. BARRINGTON, K.K. LAHMERS, G.S. ABDELLRAZEQ, H.M. RIHAN, S. SREEVATSAN, C. DAVIES, M.J. HAMILTON and W.C. DAVIS (2011):

Experimental infection of a bovine model with human isolates of Mycobacterium avium subsp. paratuberculosis.

Vet. Immunol. Immunopathol. 141, 258-266.

ALONSO-HEARN M., E. MOLINA, M. GEIJO, P. VAZQUEZ, I. SEVILLA, J.M.

GARRIDO and R.A. JUSTE (2009):

Isolation of Mycobacterium avium subsp. paratuberculosis from muscle tissue of naturally infected cattle.

74

Foodborne Pathog. Dis. 6, 513-518.

ALTIC L.C., M.T. ROWE and I.R. GRANT (2007):

UV Light inactivation of Mycobacterium avium subsp. Paratuberculosis in milk as assessed by FAST Plaque TB phage assay and culture.

Appl. Environ. Microbiol. 73, 3728-3733.

ANONYMOUS (2005):

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV).

Leitlinie fuer den Umgang mit der Paratuberkulose in Wiederkäuerbeständen (Paratuberkuloseleitlinie).

BAnz. Nr. 28, 10.02.2005, p. 2165.

ANONYMOUS (2010):

National Reference Laboratory for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (last time accessed 2014 April 16.)

http://www.merckvetmanual.com/mvm/generalized_conditions/paratuberculosis/overview_of _paratuberculosis.html?qt=Overview%20of%20paratuberculosis&alt=sh

ANONYMOUS (2013):

Regulation on reportable diseases - Verordnung über meldepflichtige Tierkrankheiten - in the amended version of 12. FEB. 2011 (BGBI. I p. 252), last amended by article 2 of the regulation of 12. June 2013 (BGBI. P. 1576).

ARAGON T.J., M.P. FAY, D. WOLLSCHLAEGER (2012):

R package for epidemiologic data and graphics.

EpiTools, http://medepi.com/epitools/.

ARMITAGE E., H.E. DRUMMOND, D.C. WILSON and S. GHOSH (2001):

Increasing incidence of both juvenile-onset Crohn’s disease and ulcerative colitis in Scotland.

European Journal of Gastroenterology and hospital. 13, 1439-1447.

AUTSCHBACH F., S. EISOLD, U. HINZ, S. ZINSER, M. LINNEBACHER, T. GIESE, T.

LOFFLER, M.W. BUCHLER and J. SCHMIDT (2005):

High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease.

Gut 54, 944-949.

AYELE W.Y., M. MACHACKOVA and I. PAVLIK (2001):

The transmission and impact of paratuberculosis infections in domestic and wild ruminants.

Vet Med. 46, 205-224.

AYELE W.Y., P. SVASTOVA, P. ROUBAL, M. BARTOS and I. PAVLIK (2005):

Mycobacterium avium subsp. paratuberculosis cultured from locally and commercially pasteurized cow's milk in the Czech Republic.

Appl. Environ. Microbial. 71, 1210-1214.

REFERENCES

75 BANNANTINE J.P., L.E. BERMUDEZ (2013):

No Holes Barred: Invasion of the Intestinal Mucosa by Mycobacterium avium subsp.

paratuberculosis.

Infect. Immun. 81, 3960-3965.

BARCLAY R., D.F. EWING and C. RATLEDGE (1985):

Isolation, identification, and structural analysis of the mycobactins of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, and Mycobacterium paratuberculosis.

J. Bacteriol. 164, 896-903.

BARTOS M., P. HLOZEK, P. SVASTOVA, L. DVORSKA, T. BULL, L. MATLOVA, I.

PARMOVA, I. KUHN, J. STUBBS, M. MORAVKOVA, J. KINTR, V. BERAN, I.

MELICHAREK, M. OCEPEK and I. PAVLIK (2006):

Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards.

J. Microbiol. Methods. 64, 333-345.

BASTIDA F., R.A. JUSTE (2011):

Paratuberculosis control: a review with a focus on vaccination.

J Immune Based Ther Vaccines. 9, 1-17.

BAUERFEIND R., S. BENAZZI, R. WEISS, T. SCHLIESSER, H. WILLEMS and G.

BALJER (1996):

Molecular characterization of Mycobacterium paratuberculosis isolates from sheep, goats, and cattle by hybridization with a DNA probe to insertion element IS900.

J. Clin. Microbiol. 34, 1617-1621.

BEARD P.M., M.J. DANIELS, D. HENDERSON, A. PIRIE, K. RUDGE, K. BUXTON, S.

RHIND, A. GREIG, M.R. HUTCHINGS, I. MCKENDRICK, K. STEVENSON and J.M.

SHARP (2001):

Paratuberculosis infection of nonruminant wildlife in Scotland.

J. Clin. Microbiol. 39, 1517-1521.

BEAUDEAU F., M. BELLIARD, A. JOLY and H. SEEGERS (2007):

Reduction in milk yield associated with Mycobacterium avium subspecies paratuberculosis (Map) infection in dairy cows.

Vet. Res. 38, 625-634.

BENEDICTUS G., A.A. DIJKHUIZEN and J. STELWAGEN (1987):

Economic losses due to paratuberculosis in dairy cattle.

Vet. Rec. 121, 142-146.

BENNETT R. (2003):

The 'Direct costs' of livestock disease: The development of a system of models for the analysis of 30 endemic livestock diseases in Great Britain.

Journal of Agricultural Economics 54, 55-71.

76

BERHAUS R.D., T.B. FARVER, R.J. ANDERSON, C.C. JARAVATA and I.A.

GARDNER (2006):

Environmental sampling for detection of Mycobacierium avium ssp. paratuberculosis on large California dairies.

J Dairy Sci. 89, 963-970.

BEUMER A., D. KING, M. DONOHUE, J. MISTRY, T. COVERT and S. PFALLER (2010):

Detection of Mycobacterium avium subsp. paratuberculosis in drinking water and biofilms by quantitative PCR.

Appl. Environ. Microbiol. 76, 7367-7370.

BIET F., M.L. BOSCHIROLI, M.F. THOREL and L.A. GUILLOTEAU (2005):

Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC).

Vet. Res. 36, 411-436.

BOELAERT F.K. P. WALRAVENS, J.P. BIRONT, D. VERMEERSCH, INITIAL.

BERKVENS and J. GODFROID (2000):

Prevalence of paratuberculosis (Johne’s disease) in the Belgian cattle population.

Vet. Microbiol. 77, 269-281.

BOETTCHER J., A. GANGL (2004):

Mycobacterium avium spp. paratuberculosis -combined serological testing and classification of individual animals and herds.

J. Vet. Med. B. Infect .Dis. Vet. Public Health. 51, 443-448.

BÖGLI-STUBER K., C. KOHLER, G. SEITERT, B. GLANEMANN, M.C. ANTOGNOLI, M.D. SALMAN, M.M. WITTENBRINK, M. WITTWER, T. WASSENAAR, T. JEMMI and B. BISSIG-CHOISAT (2005):

Detection of Mycobacterium avium subspecies paratuberculosis in Swiss dairy cattleby real-time PCR and culture: a comparison of the two assays.

J. Appl. Microbiol. 99, 587-597.

BÖLSKE G., D. HERTHNEK (2010):

Diagnosis of paratuberculosis by PCR.

Chapter: 23. Paratuberculosis: Organism, Disease, Control Hardback / 392 Pages / 9781845936136.

BOSSHARD C., R. STEPHAN and T. TASARA (2006):

Application of an F57 sequence-based real-time PCR assay for Mycobacterium paratuberculosis detection in bulk tank raw milk and slaughtered healthy dairy cows.

J. Food Prot. 69, 1662-1667.

BOTSARIS G., B.M SWIFT, I. SLANA, M. LIAPI, M. CHRISTODOULOU, M.

HATZITOFI, V. CHRISTODOULOU and C.E. REES (2016):

Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture.

REFERENCES

77 Int J Food Microbiol. 216, 91-94.

BRADY C., D. O’GRADY, F. O’MERA, J. EGAN and H. BASSET (2008):

Relationships between clinical signs, pathological changes and tissue distribution of Mycobacterium avium subspecies paratuberculosis in 21 cows from herds affected by Johne's disease.

Vet. Rec. 162, 147-152.

BUERGELT C.D., C. HALL, K. MCENTEE and J.R. DUNCAN (1978):

Pathological evaluation of paratuberculosis in naturally infected cattle.

Vet. Pathol. 15, 196-207.

BUERGELT C.D., A.W. LAYTON, P.E. GINN, M. TAYLOR, J.M. KING, P.L.

HABECKER, E. MAULDIN, R. WHITLOCK, C. ROSSITER and M.T. COLLINS (2000):

The pathology of spontaneous paratuberculosis in the North American bison (Bison bison).

Vet. Pathol. 37, 428-438.

A study of immunological responses of sheep clinically-affected with paratuberculosis (Johne’s disease). The relationship of blood, mesenteric lymph node and intestinal lymphocyte responses to gross and microscopic pathology.

Vet. Immunol. Immunopathol. 66, 343-358.

CHACON O., L.E. BERMUDEZ and R.G. BARLETTA (2004):

Johne’s disease, inflammatory bowel disease and Mycobacterium paratuberculosis. Annu.

Rev. Microbiol. 58, 329-363.

CHIODINI R.J. (1986):

Biochemical characteristics of various strains of Mycobacterium paratuberculosis.

Am. J. Vet. Res. 47, 1442-1445.

CHIODINI R.J. (1989):

Crohn's disease and the mycobacterioses - A Review and Comparison of 2 Disease Entritis.

Clin. Microbiol. Rev. 2, 90-117.

CHIODINI R.J. (1993):

The History of Paratuberculosis (Johne’s Disease). A Review of the Literature 1895-1992.

Intl Assoc Paratuberculosis, Inc, Publ. 658. XX-XX.

78

CHIODINI, R.J. (1996):

Immunology: Resistance to paratuberculosis.

Vet. Clin. North Am. Food Anim. Pract. 12, 313-343.

CHIODINI R.J., W.M. CHAMBERLIN, J. SAROSIEK and R.W.MCCALLUM (2012):

Crohn's disease and the mycobacterioses: a quarter century later. Causation or simple association?.

Crit. Rev. Microbiol. 38, 52-93.

CHIODINI R.J., W.M. CHAMBERLIN and S. PFALLER (2011):

What is Mycobacterium avium subsp. paratuberculosis?

Appl. Environ. Microbiol. 77, 1923–1924.

CHIODINI R. J., D. HASSAN and R.H. WHITLOCK (2001):

Council for agriculture science and technology-3 for agricultural science and technology. No.

17 May 2001.

CHIODINI, R.J., H.J. VAN KRUININGEN and R.S. MERKAL (1984):

Ruminant paratuberculosis (Johne’s disease): the current status and future prospects.

Cornell Vet. 74, 218-262.

CHUI L.W., R. KING, P. LU, K. MANNINEN and J. SIM (2004):

Evaluation of four DNA extraction methods for the detection of Mycobacterium avium subsp.

paratuberculosis by polymerase chain reaction.

Diagn. Microbiol. Infect. Dis. 48, 39-45.

CIERKE F., H. KOHLER (2009):

Tenacity, excretion and transmission of Mycobacterium paratuberculosis - consequences for the control of paratuberculosis in cattle herds.

Prakt. Tierarzt. 90.

CLARK D.L., J.L. ANDERSON, J.J. KOZICZKOWSKI and J.L. ELLINGSON (2006):

Detection of Mycobacterium avium subspeciesparatuberculosis genetic components in retail cheese curds purchased in Wisconsin and Minnesota by PCR.

Mol Cell Probes. 20, 197-202.

CLARK D.L. Jr., J.J. KOZICZKOWSKI, R.P. RADCLIFF, R.A. CARLSON and J.L.

ELLINGSON (2008):

Detection of Mycobacterium avium subspecies paratuberculosis: comparing fecal culture versus serum enzyme-linked immunosorbent assay and direct fecal polymerase chain reaction.

J Dairy Sci. 91, 2620-2627.

CLARKE C.J. (1997):

The pathology and pathogenesis of paratuberculosis in ruminants and other species.

J. Comp. Path. 116, 217-261.

REFERENCES

79 CLARKE C.J., D. LITTLE (1996):

The pathology of ovine paratuberculosis: gross and histological changes in the intestine and other tissues.

J. Compo. Pathol. 114, 419-437.

COCITO C., P. GILOL, M. COENE, M. DE KESEL, P. POUPART and P. VANNUFFEL (1994):

Paratuberculosis.

Clin. Microbiol. Rev. 7, 328-345.

COELHO A.C., M.L. PINTO, S. SILVA, A.M. COELHO, J. RODRIGUES and R.A.

JUSTE (2007):

Seroprevalence of ovine paratuberculosis infection in the Northeast of Portugal.

Small Rum. Res. 71, 298-303.

COLLINS M.T. (1996):

Diagnosis of paratuberculosis. Vet Clin North Am Food Anim.

Pract. 12, 357-373.

COLLINS M.T. (2003):

Update on paratuberculosis: 2. Pathology and diagnosis.

Irish Veterinary Journal. 56, 619-621.

COLLINS M.T. (2004):

Update on paratuberculosis: 3. Control and zoonotic potential Paratuberculosis in cattle.

Irish Veterinary Journal. 57, 49-51.

Consensus recommendations on diagnostic testing for the detection of paratuberculosis in cattle in the United States.

J Am Vet Med Assoc. 299, 1912-1919.

COLLINS M.T., S.J. WELLS, K.R. ETRINI, J.E. COLLINS, R.D. SCHULTZ and R.H.

WHITLOCK (2005):

Evaluation of five antibody detection tests for diagnosis of bovine paratuberculosis.

Clin Diagn Lab Immunol. 12, 685-692.

COLLINS D.M., D.M. GABRIC and G.W. DE LISLE (1990):

Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization.

J. Clin. Microbiol. 28, 1591-1596.

80

COLLINS D.M., D.M. GABRIC and G.W. DE LISLE (1989):

Identification of a repetitive DNA sequence specific to Mycobacterium paratuberculosis.

FEMS Microbiol. Lett. 51, 175-178.

COLLINS M.T., D.C. SOCKETT (1993):

Accuracy and economic of the USDA-licensed enzyme-linked immunosorbent assay for bovine paratuberculosis.

J. Am. Vat. Med. Assoc. 203, 1456-1463.

CORE TEAM (2013):

A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R 2013.

http://www.R-project.org/

CORN J.L., E.J. MANNING, S. SREEVATSAN and J.R. FISCHER (2005):

Isolation of Mycobacterium avium subsp. paratuberculosis from free ranging Birds and Mammals on Livestock Premises.

Appl Environ Microbiol. 71, 6963-6967.

COSSU A., V. ROSU, D. PACCAGNINI, D. COSSU, A. PACIFICO and L.A. SECHI (2011):

MAP3738c and MptD are specific tags of Mycobacterium avium subsp. paratuberculosis infection in type I diabetes mellitus.

Clin. Immunol. 141, 49-57.

COUSINS D.V., R.J. CONDRON, G.J. EAMENS, R.J. WHITTINGTON and G.W. DE LISLE (2008):

Johne’s disease. In: Australian Standard Diagnostic Tests. Sub-Committee on Animal Health Laboratory Standards.

http://www.scahls.org.au/asdt.htm

COUSINS D.V., R. WHITTINGTON, I. MARSH, A. MASTERS, R.J. EVANS and P.

KLUVER (1999):

Mycobacteria distenct from Mycobacterium avium subsp. paratuberculosis isolated from the faeces of ruminants possess IS900-like sequences detectable IS900 polymerase chain reaction: implications for diagnosis.

Mol. Cell. Probes. 13, 431-442.

COUSINS D.V., S.N. WILLIAMS, A. HOPE and G.J. EAMENS (2000):

DNA fingerprinting of Australian isolates of Mycobacterium avium subsp. paratuberculosis using IS900 RFLP.

Aust. Vet. J. 78, 184-190.

COUSSENS P.M. (2004):

Model for Immune Responses to Mycobacterium avium subspecies paratuberculosis in cattle.

Infect. Immun. 72, 3089-3096.

REFERENCES

81 COX J.C., D.P. DRANE, S.L. JONES, S. RIDGE and A.R. MILNER (1991):

Development and evaluation of a rapid absorbed enzyme immunoassay test for the diagnosis of Johne's disease in cattle.

Aust. Vet. J. 68, 157-160.

CROHN B., L. GINZBERG and G. OPPENHEIMER (1932) Regional ileitis, a pathological and clinical entity.

J. Am. Med. Assoc. 99, 1323-1329.

DAI J., Y. CHEN and M. LAUZARDO (2011):

Web-Accessible Database of hsp65 Sequences from Mycobacterium Reference Strains.

J Clin Microbiol. 49, 2296-2303.

DALZIEL T. K. (1989):

Thomas Kennedy Dalziel 1861-1924. Chronic interstitial enteritis.

Dis Colon Rectum. 32, 1076-1078.

DALZIEL T.K. (1913):

Chronic interstitial enteritis.

BMJ ii, 1068-1070.

DANIELS M.J., M.R. HUTCHINGS, P.M. BEARD, D. HENDERSON, A. GREIG, A.

STEVENSON and J.M. SHARP (2003):

Do non-ruminant wildlife pose a risk of paratuberculosis to domestic livestock and vice versa in Scotland?

J. Wildl. Dis. 39, 10-15.

DARGATZ D.A., B.A. BYRUM, L.K. BARBER, R.W. SWEENEY, R.H. WHITLOCK, W.P. SHULAW, R.H. JACOBSON and J.R. STABEL (2001):

Evaluation of a commercial ELISA for diagnosis of paratuberculosis in cattle.

J. Am. Vet. Med. Assoc. 218, 1163-1166.

DENZIN N., B. GEHRMANN, B. EWERT and H. ROHDE (2011):

Estimation of the prevalence at animal level of paratuberculosis in female cattle of Saxony-Anhalt (Germany).

Veterinary Science Development 1e: 10, 42-46.

DOHMANN K., B. STROMMENGER, K. STEVENSON, L. DE JUAN, J. STRATMANN, V. KAPUR, T.J. BULL and G. GERLACH G (2003):

Characterization of Genetic Differences between Mycobacterium avium subsp.

paratuberculosis Type I and Type II Isolates.

J. Clin. Microbiol. 41, 5215-5223.

DONAGHY J.A., J. JOHNSTON and M.T. ROWE (2010):

Detection of Mycobacterium avium ssp. paratuberculosis in cheese, milk powder and milk using IS900 and f57-based qPCR assays.

J. Appl. Microbiol. 110, 479-489.

82

DORE E., J. PARE, G. COTE, S. BUCZINSKI, O. LABRECQUE, J.P. ROY and G.

FECTEAU (2012):

Risk factors associated with transmission of Mycobacterium avium subsp. paratuberculosis to calves within dairy herd: a systematic review.

J. Vet. Intern. Med. 26, 32-45.

DOUARRE P. E., W. CASHMAN, J. BUCKLEY, A. COFFEY AND J.M. O MAHONY (2010):

Isolation and detection of Mycobacterium avium subsp. paratuberculosis (Map) from cattle in Ireland using traditional culture and molecular based methods.

Gut Pathog. 2, 11.

DUFOUR B., R. POUILLOT and B. DURAND (2004):

A cost/benefit study of paratuberculosis certification in French cattle herds.

Vet. Res. 35, 69-81.

DUGASSA H., T. DEMISIE (2014):

Review on Different Diagnostic Methods for Detection of Mycobacterium avium subsp.

paratuberculosis infections.

World Journal of Medical Sciences. 11, 273-288.

DZIECIOL M., P. VOLGGER, J. KHOL, W. BAUMGARTNER, M. WAGNER and I. HEIN (2010):

A novel real-time PCR assay for specific detection and quantification of Mycobacterium avium subsp. paratuberculosis in milk with the inherent possibility of differentiation between viable and dead cells.

WHITLOCK and C.A. SPEER (2005):

New method of serological diagnosis for Mycobacterium avium subsp. paratuberculosis (Johne's disease) by flowcytometry.

Food borne Pathog. Dis. 2, 250-262.

ELLINGSON, J.L.E., J.L. ANDERSON, J.J. KOZICZKOWSKI, R.P. RADCLIFF, S.J.

SLOAN, S.E. ALLEN and N.M. SULLIVAN (2005):

Detection of viable Mycobacterium avium subsp. paratuberculosis in retail pasteurized whole milk by two culture methods and PCR. J.

Food Prot. 68, 966-972.

REFERENCES

83 ELTHOLTH M.M., V.R. MARSH, S. VAN WINDEN and F.G. GUITIAN (2009):

Contamination of food products with Mycobacterium avium paratuberculosis: asystematic review.

J. Appl. Microbiol. 107, 1061-1071.

ELZO M.A., D.O. RAE, S.E. LANHART, F.G. HEMBRY, J.G. WASDIN and J.D. DRIVER (2009):

Association between cow reproduction and calf growth traits and ELISA scores for paratuberculosis in a mutibreed herd of beef cattle. Trop.

Anim. Health Prod. 41, 851-858.

EMBLEY T.M., E. STACKEBRANDT (1994):

The molecular phylogeny and systematics of the actinomycetes.

Annu. Rev. Microbiol. 48, 257 - 289.

ENGLUND S., A. BALLAGI-PORDÁNY, G. BOLSKE and K.E. JOHANSSON (1999):

Single PCR and nested PCR with a mimic molecule for detection of Mycobacterium avium

Single PCR and nested PCR with a mimic molecule for detection of Mycobacterium avium