• Keine Ergebnisse gefunden

Multiple methods yield different results – so the robustness of results is only valid if (a) methods converge to similar results or (b) methods can be vali-dated by external justification. If they do not – no claim can be made, because each method is equally justifiable but leads to different results or, worse, if only one of the appropriate methods would be used, a false claim could be made. In the first study, the multiple comparison problem could be ameliorated by taking the HC vs CHR contrast as a benchmark and evaluate those with an independent FA patient group. By doing so, sensory gating deficits were found to be a robust measure in schizophrenia across patient groups and quantification methods. In the second study, a partial external justification could be found for a simple net-work model, but if the model was extended to other potential brain areas, no claim could be made. For the simple network model of information flows between the strongest auditory and frontal source, an information flow from auditory to frontal was found for healthy controls but not for schizophrenia patients. This information flow was correlated with the independent measure of sensory gating, which served as an external validation.

List of Tables

Table 2.1: Demographic information on samples: healthy controls (HC), chronic schizophrenia patients (CHR) and firstly admitted schizophrenia patients (FA) ... 40 Table 2.2: Metrics and group comparisons for M50 quantifications ... 51

Supplementary Table 2.1: Metrics and group comparisons for adjusted

quantifications ... 59 Supplementary Table 2.2: Metrics and group comparisons for quantifications

with separate S1 and S2 baseline ... 61 Supplementary Table 2.3: Metrics and group comparisons for S1- and

S2-evoked response amplitudes ... 62 Supplementary Table 2.4: Metrics and group comparisons for M100 scores

instead of M50 ... 63 Supplementary Table 2.5: Metrics and group comparisons for quantifications

with separate peak latencies ... 64 Supplementary Table 2.6: Metrics for M40-M50 peak to peak scoring ... 69 Supplementary Table 2.7A: Metrics and group comparisons for M50

quantifications per hemisphere ... 70

Table 3.1: Demographic information for healthy participants and schizophrenia patients ... 77 Table 3. 2: Extended network analysis ... 84

Table 4.1: Aims, results and conclusions of the present dissertation ... 94

List of Figures

Figure 1.1: Stimulus sequence used in the present dissertation ... 4 Figure 1.2: ERF of the sensors surrounding the M50 peak on the right

hemisphere, averaged over all subjects ... 5 Figure 1.3: Preliminary pipeline of tested methods ... 9 Figure 1.4: ERF of the sensors surrounding the M50 peak on the right

hemisphere, averaged over all subjects with different filter settings. ... 17 Figure 1.5: Selected preprocessing and quantification methods for study 1. ... 27 Figure 1.6: Univariate autoregression. ... 29 Figure 1.7: Bivariate autoregression ... 30

Figure 2.1: Topography 40-65 ms (M50, panel A) and 65-130 ms (M100, panel B) after S1 averaged across all participants ... 43 Figure 2.2: S1 minus S2 power in parcellated regions averaged across all

participants... 46 Figure 2.3: Time course of activity for sensor and source analysis averaged

across participants within group. ... 48 Figure 2.4: Metrics combining S1 and S2 scores. ... 52

Figure 3.1: A: Statistical difference between S1 (0-200ms) and S2 (500-700ms) source strength. B: Time course of activity in virtual sensors C: Granger Causality values for CMR and HGR. D: Correlation between prestimulus connectivity and sensory gating. ... 86

References

Ackenheil, M., Stotz-Ingenlath, G., Dietz-Bauer, R., & Vossen, A. M. I. N. I.

(1999). MINI mini international neuropsychiatric interview, German version 5.0.0 DSM IV. Munich: Psychiatric University Clinic.

Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freed-man, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychi-atry, 17(6), 639–54. Retrieved from

http://www.ncbi.nlm.nih.gov/pub-med/7104417

Ahveninen, J., Jääskeläinen, I. P., Osipova, D., Huttunen, M. O., Ilmoniemi, R.

J., Kaprio, J., … Cannon, T. D. (2006). Inherited Auditory-Cortical Dysfunc-tion in Twin Pairs Discordant for Schizophrenia. Biological Psychiatry, 60(6), 612–620. https://doi.org/10.1016/j.biopsych.2006.04.015

Allen, A. J., Griss, M. E., Folley, B. S., Hawkins, K. A., & Pearlson, G. D. (2009).

Endophenotypes in schizophrenia: A selective review. Schizophrenia Re-search, 109(1–3), 24–37. https://doi.org/10.1016/j.schres.2009.01.016 Arnfred, S.M., & Chen, A.C.N. (2004). Exploration of somatosensory P50 gating

in schizophrenia spectrum patients: reduced P50 amplitude correlates to social anhedonia. Psychiatry Research, 125, 147-160.

https://doi.org/10.1016/j.psychres.2003.12.008

Bachmann, S., Weisbrod, M., Röhrig, M., Schröder, J., Thomas, C., Scherg, M.,

& Rupp, A. (2010). MEG does not reveal impaired sensory gating in first-episode schizophrenia. Schizophrenia Research, 121(1–3), 131–138.

https://doi.org/10.1016/j.schres.2010.03.007

Baillet, S., Mosher, J. C., & Leahy, R. M. (2001). Electromagnetic brain map-ping. IEEE Signal Processing Magazine, 18(6), 14–30.

https://doi.org/10.1109/79.962275

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J. R., … Fries, P. (2015). Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron, 85(2), 390–401. https://doi.org/10.1016/j.neuron.2014.12.018

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–

1159. https://doi.org/10.1162/neco.1995.7.6.1129

Bilder, R. M., Wu, H., Degreef, G., Ashtari, M., Mayerhoff, D. I., Loebel, A., … Scarone, S. (1993). Yakovlevian Torque Is Absent in First Episode Schizo-phrenia Structural Characteristics of the Corpus Callosum and Neuropsy-chological Correlates in Schizophrenics and Normal Controls. Schizophre-nia Research, 9(2), 193. Retrieved from http://www.schres-journal.com/arti-cle/0920-9964(93)90396-Z/pdf

Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sen-sory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126(3), 203–

215. https://doi.org/10.1016/j.psychres.2004.01.007

Braff, D. L., & Geyer, M. A. (1990). Sensorimotor Gating and Schizophrenia. Ar-chives of General Psychiatry, 47(2), 181. https://doi.org/10.1001/arch-psyc.1990.01810140081011

Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology. https://doi.org/10.1007/s002130100810

Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004).

Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizo-phrenia Research, 70(2–3), 315–329.

https://doi.org/10.1016/j.schres.2004.01.004

Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., … Ruhrmann, S. (2008). Sensory Gating in Schizophrenia:

P50 and N100 Gating in Antipsychotic-Free Subjects at Risk, First-Episode, and Chronic Patients. Biological Psychiatry, 64(5), 376–384.

https://doi.org/10.1016/j.biopsych.2008.02.006

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science (New York, N.Y.), 315(5820), 1860–1862.

https://doi.org/10.1126/sci-ence.1138071

Button, K. S., A Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., J Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size under-mines the reliability of neuroscience. https://doi.org/10.1038/nrn3475 Carolus, A. M., Schubring, D., Popov, T. G., Popova, P., Miller, G. A., &

Rock-stroh, B. S. (2014). Functional cognitive and cortical abnormalities in chronic and first-admission schizophrenia. Schizophrenia Research, 157(1–3), 40–47. https://doi.org/10.1016/j.schres.2014.05.012

Chan, R. C. K., & Gottesman, I. I. (2008). Neurological soft signs as candidate endophenotypes for schizophrenia: A shooting star or a Northern star?

Neuroscience and Biobehavioral Reviews, 32(5), 957–971.

https://doi.org/10.1016/j.neubiorev.2008.01.005

Chang, W. P., Arfken, C. L., Sangal, M. P., & Boutros, N. N. (2011). Probing the

relative contribution of the first and second responses to sensory gating in-dices: A meta-analysis. Psychophysiology, 48(7), 980–992.

https://doi.org/10.1111/j.1469-8986.2010.01168.x

Cheyne, D. O., & Papanicolaou, A. C. (2015). Magnetoencephalography and Magnetic Source Imaging. In A. C. Papanicolaou (Ed.), The oxford hand-book of funtional brain imaging in neuropsychology and cognitive neurosci-ences (Vol. 1, pp. 369–417). Oxford University Press.

https://doi.org/10.1093/oxfordhb/9780199764228.013.6

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences. Jour-nal of the American Statistical Association, 73(363), 680.

https://doi.org/10.2307/2286629

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

https://doi.org/10.1037/0033-2909.112.1.155

Cohen, M. X. (2014). Analyzing Neural Time Series Data. MIT Press.

https://doi.org/10.1007/s13398-014-0173-7.2

Croft, R. J., Lee, A., Bertolot, J., & Gruzelier, J. H. (2001). Associations of P50 suppression and desensitization with perceptual and cognitive features of

“unreality” in schizotypy. Biological Psychiatry, 50(6), 441-446.

https://doi.org/10.1016/S0006-3223(01)01082-4

Crow, T. J. (1990). Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophrenia Bulletin, 16(3), 433–43.

https://doi.org/10.1093/schbul/16.3.433

Dalal, S. S., Sekihara, K., & Nagarajan, S. S. (2006). Modified beamformers for coherent source region suppression. IEEE Transactions on Biomedical En-gineering, 53(7), 1357–1363. https://doi.org/10.1109/TBME.2006.873752 Dalal, S. S., Zumer, J. M., Agrawal, V., Hild, K. E., Sekihara, K., & Nagarajan,

S. S. (2004). NUTMEG: a neuromagnetic source reconstruction toolbox.

Neurology & clinical neurophysiology: NCN, 2004, 52.

Dalecki, A., Croft, R. J., & Johnstone, S. J. (2011). An evaluation of P50 paired-click methodologies. Psychophysiology, 48(12), 1692–1700.

https://doi.org/10.1111/j.1469-8986.2011.01262.x

de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H. T. M., & Linszen, D. H. (2007). A meta-analysis of P50 studies in patients with schizophrenia and relatives: Differences in methodology between research groups. Schi-zophrenia Research, 97(1–3), 137–151. https://doi.org/10.1016/j.sch-res.2007.04.028

Dilling, H., Mombour W., Schmidt, M.H., Schulte-Markwort, E. (2011). Internati-onale Klassifikation psychischer Störungen: ICD-10 Kapitel V (F). 8. Über-arbeitete Auflage. Bern, Switzerland: Huber.

Edgar, J. C., Hanlon, F. M., Huang, M.-X., Weisend, M. P., Thoma, R. J., Car-penter, B., … Miller, G. A. (2008). Superior temporal gyrus spectral abnor-malities in schizophrenia. Psychophysiology, 45(5), 812–24.

https://doi.org/10.1111/j.1469-8986.2008.00682.x

Edgar, J. C., Huang, M. X., Weisend, M. P., Sherwood, A., Miller, G. A., Adler, L. E., & Cañive, J. M. (2003). Interpreting abnormality: An EEG and MEG study of P50 and the auditory paired-stimulus paradigm. Biological Psycho-logy, 65(1), 1–20. https://doi.org/10.1016/S0301-0511(03)00094-2

Edgar, J. C., Stewart, J. L., & Miller, G. A. (2005). Digital Filter in ERP Re-search. In T. C. Handy (Ed.), Event-related potentials: A handbook (pp.

85–113). Cambridge, Massachusetts: The MIT Press.

Erwin, R.J., Turetsky, B.I., Moberg, P., Gur, R.C., Gur, R.E. (1998). P50 abnor-malities in schizophrenia: relationship to clinical and neuropsychological

indices of attention. Schizophrenia Research, 33, 157-167.

Freedman, Adler, L. E., Gerhardt, G. a, Waldo, M., Baker, N., Rose, G. M., … Franks, R. (1987). Neurobiological studies of sensory gating in schizophre-nia. Schizophrenia Bulletin, 13(4), 669–678.

https://doi.org/10.1093/schbul/13.4.669

Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23(2), 172–178. https://doi.org/10.1016/j.conb.2012.11.010

Fuerst, D. R., Gallinat, J., & Boutros, N. N. (2007). Range of sensory gating val-ues and test-retest reliability in normal subjects. Psychophysiology, 44(4), 620–626. https://doi.org/10.1111/j.1469-8986.2007.00524.x

Gelman, A., & Loken, E. (2014). The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition”

or “p-hacking” and the research hypothesis was posited ahead of time.

Psychological Bulletin, 140(5), 1272–1280.

https://doi.org/dx.doi.org/10.1037/a0037714

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Mod-els and Cross-spectral Methods. Econometrica, 37(3), 424–438.

https://doi.org/10.2307/1912791

Grunwald, T., Boutros, N. N., Pezer, N., Von Oertzen, J., Fernández, G., Schal-ler, C., & Elger, C. E. (2003). Neuronal substrates of sensory gating within the human brain. Biological Psychiatry, 53(6), 511–519.

https://doi.org/10.1016/S0006-3223(02)01673-6

Guy, W., Ban, T.A., Bobon, D., Hoenig, J., Jamieson, R., Lapierre, Y., … , Sar-torius, N. (1982). The AMDP System: Manual for the Assessment and Documentation of Psychopathology. Berlin, Germany: Springer Verlag.

Hamilton, H.K., Williams, T.J., Joseph J., Jasperse, L.J., Owens, E.M., Miller, G.A., Subotnik, K.L., Nuechterlein, K.H., & Yee, C.M. (in press). Clinical and cognitive significance of auditory sensory processing deficits in schiz-ophrenia. The American Journal of Psychiatry.

Hasler, G., Drevets, W. C., Gould, T. D., Gottesman, I. I., & Manji, H. K. (2006).

Toward Constructing an Endophenotype Strategy for Bipolar Disorders. Bi-ological Psychiatry, 60(2), 93–105.

https://doi.org/10.1016/j.bi-opsych.2005.11.006

Haufe, S., Nikulin, V. V., Müller, K. R., & Nolte, G. (2013). A critical assessment of connectivity measures for EEG data: A simulation study. NeuroImage, 64(1), 120–133. https://doi.org/10.1016/j.neuroimage.2012.09.036

He, Z., & Maekawa, K. (2001). On spurious Granger causality. Economics Let-ters, 73(3), 307–313. https://doi.org/10.1016/S0165-1765(01)00498-0 Heinrichs, R. W. (2004). Meta-analysis and the science of schizophrenia:

Vari-ant evidence or evidence of variVari-ants? Neuroscience and Biobehavioral Re-views, 28(4), 379–394. https://doi.org/10.1016/j.neubiorev.2004.06.003 Hetrick, W. P., Erickson, M. A., & Smith, D. A. (2012). Phenomenological

di-mensions of sensory gating. Schizophrenia Bulletin, 38(1), 178–191.

https://doi.org/10.1093/schbul/sbq054

Hirano, Y., Hirano, S., Maekawa, T., Obayashi, C., Oribe, N., Monji, A., … Onit-suka, T. (2010). Auditory gating deficit to human voices in schizophrenia: A MEG study. Schizophrenia Research, 117(1), 61–67.

https://doi.org/10.1016/j.schres.2009.09.003

Hirt, V. (2014). Sensory Gating in Schizophrenia. Power of Methods. (Master’s thesis). University of Konstanz, Germany.

Huang, M. X., Edgar, J. C., Thoma, R. J., Hanlon, F. M., Moses, S. N., Lee, R.

R., … Canive, J. M. (2003). Predicting EEG responses using MEG

sources in superior temporal gyrus reveals source asynchrony in patients with schizophrenia. Clinical Neurophysiology, 114(5), 835–850.

https://doi.org/10.1016/S1388-2457(03)00041-5

Hyvärinen, A., & Oja, E. (2000, June). Independent component analysis: Algo-rithms and applications. Neural Networks. https://doi.org/10.1016/S0893-6080(00)00026-5

Jin, Y., & Potkin, S. G. (1996). P50 changes with visual interference in normal subjects: a sensory distraction model for schizophrenia. Clinical EEG and Neuroscience, 27(3), 151-154.

https://doi.org/10.1177/155005949602700308

John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psycho-logical Science, 23(5), 524–532.

https://doi.org/10.1177/0956797611430953

Kanno, A., Nakasato, N., Murayama, N., & Yoshimoto, T. (2000). Middle and long latency peak sources in auditory evoked magnetic fields for tone bursts in humans. Neuroscience Letters, 293(3), 187–190.

https://doi.org/10.1016/S0304-3940(00)01525-1

Kay, S.R., Fiszbein, A., Opler, L.A., 1987. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13 (2), 261–276.

http://dx.doi.org/10. 1093/schbul/13.2.261.

Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J.,

… Yee, C. M. (2014). Committee report: Publication guidelines and recom-mendations for studies using electroencephalography and

magne-toencephalography. Psychophysiology, 51(1), 1–21.

https://doi.org/10.1111/psyp.12147

Keil, J., Roa Romero, Y., Balz, J., Henjes, M., & Senkowski, D. (2016). Positive and Negative Symptoms in Schizophrenia Relate to Distinct Oscillatory Sig-natures of Sensory Gating. Frontiers in Human Neuroscience, 10, 104.

https://doi.org/10.3389/fnhum.2016.00104

Keil, J., Weisz, N., Paul-Jordanov, I., & Wienbruch, C. (2010). Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity.

NeuroImage, 51(1), 404–411. https://doi.org/10.1016/j.neu-roimage.2010.02.003

Königs, L., & Gutschalk, A. (2012). Functional lateralization in auditory cortex under informational masking and in silence. European Journal of Neurosci-ence, 36(9), 3283–3290. https://doi.org/10.1111/j.1460-9568.2012.08240.x Krim, H., & Viberg, M. (1996). Two decades of array signal processing

re-search: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94. https://doi.org/10.1109/79.526899

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychol-ogy, 4(NOV). https://doi.org/10.3389/fpsyg.2013.00863

Lecaignard, F., Bouet, R. M., & Mattout, J. (2008). Comparing models of cortical anatomy for MEG source reconstruction. Abstract, Biomag.

Lehrl, S. (2005). Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B [Multiple Choice Vocabulary Test, version B]. Balingen, Germany: Spitta-Verlag.

Light, G. A., & Braff, D. L. (1998). The “incredible shrinking” P50 event-related potential. Biological psychiatry, 43(12), 918-920.

Louchart-de la Chapelle, S., Levillain, D., Ménard, J.-F., Van der Elst, A., Allio,

G., Haouzir, S., Dollfus, S., Campion, D., & Thibaut, F. (2005). P50 inhibi-tory gating deficit is correlated with the negative symptomatology of schiz-ophrenia. Psychiatry Research, 136, 27-34.

Lu, B. Y., Edgar, J. C., Jones, A. P., Smith, A. K., Huang, M. X., Miller, G. A., &

Cañive, J. M. (2007). Improved test-retest reliability of 50-ms paired-click auditory gating using magnetoencephalography source modeling. Psycho-physiology, 44(1), 86–90.

https://doi.org/10.1111/j.1469-8986.2006.00478.x

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave De Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001

Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covari-ance. Journal of Abnormal Psychology, 110(1), 40-48.

https://dx.doi.org/10.1037/0021-843X.110.1.40

Miller, G. A., & Rockstroh, B. (2013). Endophenotypes in Psychopathology Re-search: Where Do We Stand? Annual Review of Clinical Psychology, 9(1), 177–213. https://doi.org/10.1146/annurev-clinpsy-050212-185540

Moran, Z. D., Williams, T. J., Bachman, P., Nuechterlein, K. H., Subotnik, K. L.,

& Yee, C. M. (2012). Spectral decomposition of P50 suppression in schiz-ophrenia during concurrent visual processing. Schizschiz-ophrenia Research, 140(1–3), 237–242. https://doi.org/10.1016/j.schres.2012.07.002

Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approxima-tion and its use for magnetoencephalography forward calculaapproxima-tion in realis-tic volume conductors. Physics in Medicine and Biology, 48(22), 3637–

3652. https://doi.org/10.1088/0031-9155/48/22/002

Nuechterlein, K. H., & Green, M. F. (2006). MATRICS Consensus Cognitive

Battery Manual. Los Angeles, MATRICS Assessment. Los Angeles, CA:

MATRICS Assessment Inc.

Olincy, A., Ross, R.G., Harris, J.G., Young, D.A., McAndrews, M.A., Cawthra, E., McRae, K.A., Sullivan, B., Adler, L.E., Freedman, R., 2000. The P50 au-ditory event-evoked potential in adult attention-deficit disorder: comparison with schizophrenia. Biol. Psychiatry 47, 969–977.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. M. (2011). FieldTrip:

Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011(1), 1–9. https://doi.org/10.1016/j.neuroimage.2009.02.041

Open Science Collaboration. (2015). Estimating the reproducibility of psycho-logical science. Science, 349(6251), aac4716-aac4716.

https://doi.org/10.1126/science.aac4716

Patterson, J. V., Hetrick, W. P., Boutros, N. N., Jin, Y., Sandman, C., Stern, H.,

… Bunney Jr., W. E. (2008). P50 sensory gating ratios in schizophrenics and controls: A review and data analysis. Psychiatry Research, 158(2), 226–247. https://doi.org/10.1016/j.psychres.2007.02.009

Picton, T. W., Hillyard, S., Krausz, H., & Galambos, R. (1974). Human auditory evoked potentials. I: Evaluation of components. Electroencephalography and Clinical Neurophysiology, 36, 179–190. https://doi.org/10.1016/0013-4694(74)90155-2

Popov, T. G., Carolus, A., Schubring, D., Popova, P., Miller, G. A., & Rockstroh, B. S. (2015). Targeted training modifies oscillatory brain activity in schizo-phrenia patients. NeuroImage: Clinical, 7, 807–814.

http://doi.org/10.1016/j.nicl.2015.03.010

Popov, T., Jordanov, T., Rockstroh, B., Elbert, T., Merzenich, M. M., & Miller, G.

A. (2011). Specific cognitive training normalizes auditory sensory gating in schizophrenia: A randomized trial. Biological Psychiatry, 69(5), 465–471.

https://doi.org/10.1016/j.biopsych.2010.09.028

Popov, T., Jordanov, T., Weisz, N., Elbert, T., Rockstroh, B., & Miller, G. A.

(2011). Evoked and induced oscillatory activity contributes to abnormal au-ditory sensory gating in schizophrenia. NeuroImage, 56(1), 307–314.

https://doi.org/10.1016/j.neuroimage.2011.02.016

Potter, D., Summerfelt, A., Gold, J., & Buchanan, R. W. (2006). Review of clini-cal correlates of P50 sensory gating abnormalities in patients with schizo-phrenia. Schizophrenia Bulletin, 32(4), 692–700.

https://doi.org/10.1093/schbul/sbj050

Reig, S., Parellada, M., Castro-Fornieles, J., Janssen, J., Moreno, D., Baeza, I.,

… Desco, M. (2011). Multicenter study of brain volume abnormalities in children and adolescent-onset psychosis. Schizophrenia Bulletin, 37(6), 1270–1280. https://doi.org/10.1093/schbul/sbq044

Reith, M. (2014). M50 als Verlaufsindikator für Sensorisches Gating bei Schizo-phrenien. (Bachelor’s thesis). Unversity of Konstanz, Germany.

Rentzsch, J., Jockers-Scherübl, M. C., Boutros, N. N., & Gallinat, J. (2008).

Test-retest reliability of P50, N100 and P200 auditory sensory gating in healthy subjects. International Journal of Psychophysiology, 67(2), 81–90.

https://doi.org/10.1016/j.ijpsycho.2007.10.006

Ringel, T.M., Heidrich, A., Jacob, C.P., Pfuhlmann, B., Stoeber, G., & Fallgatter, A.J. (2004). Sensory gating deficit in a subtype of chronic schizophrenic patients. Psychiatry Research, 125, 237-245.

Rojas, D. C. (2014). Review of schizophrenia research using MEG. In Magne-toencephalography: From Signals to Dynamic Cortical Networks (Vol.

9783642330, pp. 849–874). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-33045-2_41

Rosburg, T., Boutros, N. N., & Ford, J. M. (2008). Reduced auditory evoked po-tential component N100 in schizophrenia - A critical review. Psychiatry Re-search, 161(3), 259–274. https://doi.org/10.1016/j.psychres.2008.03.017 Sakkalis, V. (2011). Review of advanced techniques for the estimation of brain

connectivity measured with EEG/MEG. Computers in Biology and Medi-cine, 41(12), 1110–1117.

https://doi.org/10.1016/j.compbio-med.2011.06.020

Sarris, V., & Reiß, S. (2005). Kurzer Leitfaden der Experimentalpsychologie, 226. Retrieved from

http://www.pearson.ch/download/me-dia/9783827371775_SP.pdf

Scherg, M., & Picton, T. W. (1991). Separation and identification of event-re-lated potential components by brain electric source analysis. Electroen-cephalography and Clinical Neurophysiology. Supplement, 42(August), 24–

37. Retrieved from http://pubman.mpdl.mpg.de/pubman/faces/viewIte-mOverviewPage.jsp?itemId=escidoc:1632211

Sekihara, K., Nagarajan, S., Poeppel, D., & Miyashita, Y. (2001). Reconstruct-ing spatio-temporal activities of neural sources from\nmagnetoencephalo-graphic data using a vector beamformer. 2001 IEEE International Confer-ence on Acoustics, Speech, and Signal Processing. Proceedings (Cat.

No.01CH37221), 3(7), 760–771.

https://doi.org/10.1109/ICASSP.2001.941346

Seth, A. K., Chorley, P., & Barnett, L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not

downsampling. NeuroImage, 65, 540–555. https://doi.org/10.1016/j.neu-roimage.2012.09.049

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychol-ogy: Undisclosed Flexibility in Data Collection and Analysis Allows Present-ing AnythPresent-ing as Significant. Psychological Science, 22(11), 1359–1366.

https://doi.org/10.1177/0956797611417632

Smith, A. K., Edgar, J. C., Huang, M., Lu, B. Y., Thoma, R. J., Hanlon, F. M., … Cañive, J. M. (2010). Cognitive abilities and 50- and 100-msec paired-click processes in schizophrenia. American Journal of Psychiatry, 167(10), 1264–1275. https://doi.org/10.1176/appi.ajp.2010.09071059

Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 au-ditory event-related potential indices of sensory gating. Psychophysiology, 31(5), 495–502. https://doi.org/10.1111/j.1469-8986.1994.tb01053.x Sommer, I., Aleman, A., Ramsey, N., Bouma, A., & Kahn, R. (2001).

Handed-ness, language lateralisation and anatomical asymmetry in schizophrenia:

Meta-analysis. British Journal of Psychiatry, 178(APR.), 344–351.

https://doi.org/10.1192/bjp.178.4.344

Thibaut, F., Boutros, N. N., Jarema, M., Oranje, B., Hasan, A., Daskalakis, Z. J.,

… Wfsbp Task Force on Biological Markers. (2015). Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part I: Neurophysiology. The World Jour-nal of Biological Psychiatry : The Official JourJour-nal of the World Federation of Societies of Biological Psychiatry, 16(5), 280–90.

https://doi.org/10.3109/15622975.2015.1050061

Thoma, R. J., Hanlon, F. M., Moses, S. N., Edgar, J. C., Huang, M., Weisend, M. P., … Cañive, J. M. (2003). Lateralization of auditory sensory gating and

neuropsychological dysfunction in schizophrenia. American Journal of Psy-chiatry, 160(9), 1595–1605. https://doi.org/10.1176/appi.ajp.160.9.1595 Thoma, R. J., Hanlon, F. M., Moses, S. N., Ricker, D., Huang, M., Edgar, C., …

Canive, J. M. (2005). M50 sensory gating predicts negative symptoms in schizophrenia. Schizophrenia Research, 73(2–3), 311–318.

https://doi.org/10.1016/j.schres.2004.07.001

Tregellas, J. R., Davalos, D. B., Rojas, D. C., Waldo, M. C., Gibson, L., Wylie, K., … Freedman, R. (2007). Increased hemodynamic response in the hip-pocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophrenia Research, 92(1–3), 262–272.

https://doi.org/10.1016/j.schres.2006.12.033

Tu, P. C., Lee, Y. C., Chen, Y. S., Li, C. T., & Su, T. P. (2013). Schizophrenia and the brain’s control network: Aberrant within- and between-network con-nectivity of the frontoparietal network in schizophrenia. Schizophrenia Re-search, 147(2–3), 339–347. https://doi.org/10.1016/j.schres.2013.04.011 Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activa-tions in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

https://doi.org/10.1006/nimg.2001.0978

van Tricht, M. J., Nieman, D. H., Koelman, J. T. M., Mensink, A. J. M., Bour, L.

J., van der Meer, J. N., … de Haan, L. (2015). Sensory gating in subjects at ultra high risk for developing a psychosis before and after a first psy-chotic episode. The world journal of biological psychiatry , 16(1), 12-21.

https://doi.org/10.3109/15622975.2012.680911

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Local-ization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on biomedical engineering, 44(9), 867-880.

Venables, P. H. (1964). Input Dysfunction in Schizophrenia. Progress in Experi-mental Personality Research, 72, 1–47.

Verona, E., & Miller, G. A. (2015). Analysis of covariance. In R. L. Cautin & S.

O. Lilienfeld (Eds.), The encyclopedia of clinical psychology. Chichester, West Sussex Malden, MA: John Wiley and Sons, Inc.

https://dx.doi.org/10.1002/9781118625392.wbecp224

Vrba, J., & Robinson, S. E. (2001). Signal Processing in Magnetoencephalog-raphy. METHODS, 25, 249–271. https://doi.org/10.1006

Wan, L., Friedman, B. H., Boutros, N. N., & Crawford, H. J. (2008). P50 sensory gating and attentional performance. International Journal of Psychophysi-ology, 67(2), 91–100. https://doi.org/10.1016/j.ijpsycho.2007.10.008 Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for

electro-physiological data - a practical approach. Journal of Neuroscience Meth-ods, 250, 34–46. https://doi.org/10.1016/j.jneumeth.2014.08.002

Winkler, I., & Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations.

Winkler, I., & Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations.