• Keine Ergebnisse gefunden

The results of this dissertation contribute to the existing literature on neurovascular coupling by suggesting that:

x Simultaneous measurement of neuronal and hemodynamic signals by means of EEG and NIRS represents a powerful tool to study the relationship between direct and indirect neuronal signals in human.

x The resonance phenomenon, a local maximum that appears when the stimulation frequency matches the endogenous alpha-frequency, is not accompanied by an increase in vascular parameters. The scenario depicts a mismatch between the hemodynamic response and dominant electrophysiological signals such as evoked potentials and alpha-power.

x Electrophysiological resting state parameters can provide predictive information for the magnitude of evoked potential, alpha-power and the magnitude of the hemodynamic response upon stimulation.

x Evoked potential and ongoing oscillatory activity in the alpha-range represent no independent electrophysiological signals. The entangled relationship of both signals is manifested in the resonance phenomenon and the relationship of resting alpha-frequency and magnitude of evoked potentials.

x Oscillations in the gamma-range play a pivotal role in visual processing and behavioural performance. The parametrically varied visual stimulus yield to systematic changes in the band only. Faster response times were preceded by a phasic increase in gamma-band activity.

x Higher oscillatory activity represents a neuronal component with a major influence on the hemodynamic signal, irrespective whether the modulatory component origins from external stimulus variation or internal state modulation.

Taken together, the work summarized in this dissertation supports the view that evidence from complementary experiments in humans and animals, as well as the application of concurrent direct electrophysiological based and indirect vascular based methods, can help to elucidate the neurovascular coupling mechanisms. These are of relevance on basic scientific grounds and need to be understood in more detail to fully appreciate the results of neuroimaging techniques relying on the vascular rather than electrophysiological response.

28

References

Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M, Ohnishi T, Yumoto M, Matsuda H, Saitoh O (2003) Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging. NeuroImage 19:281-295.

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868-1871.

Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101:803-806.

Arthurs OJ, Donovan T, Spiegelhalter DJ, Pickard JD, Boniface SJ (2007) Intracortically distributed neurovascular coupling relationships within and between human somatosensory cortices. Cerebral Cortex (New York, NY: 1991) 17:661-668.

Barlow JS (1983) The electroencephalogram: Its patterns and origins. Cambridge: MIT Press.

Barry RJ, Kirkaikul S, Hodder D (2000) EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. IntJPsychophysiol 39:39-50.

Bartley SH (1968) Temporal features of input as crucial factors in vision. Contrib Sens Physiol 3:81-124.

Basar-Eroglu C, Strüber D, Schürmann M, Stadler M, Basar E (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance.

International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 24:101-112.

Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. IntJPsychophysiol 39:241-248.

Berger H (1929) Über das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527-570.

Bodis-Wollner I, Davis J, Tzelepi A, Bezerianos T (2001) Wavelet transform of the EEG reveals differences in low and high gamma responses to elementary visual stimuli. Clinical EEG (electroencephalography) 32:139-144.

Brandt ME, Jansen BH (1991) The relationship between prestimulus-alpha amplitude and visual evoked potential amplitude. IntJNeurosci 61:261-268.

Brinker G, Bock C, Busch E, Krep H, Hossmann KA, Hoehn-Berlage M (1999) Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 41:469-473.

Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26:302-308.

Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. International Journal of Psychophysiology:

Official Journal of the International Organization of Psychophysiology 51:97-116.

Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 115:1810-1820.

Caesar K, Gold L, Lauritzen M (2003) Context sensitivity of activity-dependent increases in cerebral blood flow. Proceedings of the National Academy of Sciences of the United States of America 100:4239-4244.

Cooper NR, Burgess AP, Croft RJ, Gruzelier JH (2006) Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport 17:205-208.

Cope M, Delpy DT (1988) System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. MedBiolEng Comput 26:289-294.

29 Cope M, Delpy DT, Wray S, Wyatt JS, Reynolds EO (1989) A CCD spectrophotometer to

quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm. Advances in Experimental Medicine and Biology 248:33-40.

Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain: A Journal of Neurology 121 (Pt 12):2301-2315.

Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis.

I. Alpha and beta event-related desynchronization. Brain: A Journal of Neurology 121 (Pt 12):2271-2299.

de Munck JC, Gonçalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study.

NeuroImage 35:1142-1151.

Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 18:9099-10111.

Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex.

Neuron 39:353-359.

Devor A, Ulbert I, Dunn AK, Narayanan SN, Jones SR, Andermann ML, Boas DA, Dale AM (2005) Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America 102:3822-3827.

Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira-Ferreira AI, Fabricius M, Hartings JA, Vajkoczy P, Lauritzen M, Dirnagl U, Bohner G, Strong AJ (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain: A Journal of Neurology 132:1866-1881.

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. BiolCybern 60:121-130.

Elul R (1971) The genesis of the EEG. IntRevNeurobiol 15:227-272.

Engel A, Singer W (2001) Temporal binding and the neural correlates of sensory awareness.

Trends in Cognitive Sciences 5:16-25.

Engel AK, Fries P, König P, Brecht M, Singer W (1999) Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition 8:128-151.

Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anaesthesia. The European Journal of Neuroscience 15:744-752.

Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Research Cognitive Brain Research 20:376-383.

Feige B, Scheffler K, Esposito F, Di SF, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. JNeurophysiol 93:2864-2872.

Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neuroscience 4:22.

Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56:171-184.

Fox PT, Raichle ME (1984) Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. Journal of Neurophysiology 51:1109-1120.

Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P (2009) Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. NeuroImage 48:94-108.

Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences 9:474-480.

Fries P, Reynolds JH, Rorie AE, Desimone R (2001a) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560-1563.

30 Fries P, Schröder JH, Singer W, Engel AK (2001b) Conditions of perceptual selection and

suppression during interocular rivalry in strabismic and normal cats. Vision Research 41:771-783.

Goldman RI, Stern JM, Engel J, Jr., Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487-2492.

Goloshevsky AG, Silva AC, Dodd SJ, Koretsky AP (2008) BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw. Brain Res 1195:67-76.

Gonçalves SI, de Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM, Hoogduin JM, Van Someren EJW, Heethaar RM, Lopes da Silva FH (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. NeuroImage 30:203-213.

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. ProcNatlAcadSciUSA 86:1698-1702.

Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334.

Gray CM, Engel AK, König P, Singer W (1990) Stimulus-Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence. The European Journal of Neuroscience 2:607-619.

Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain:

a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America 100:253-258.

Grusser OJ, Creutzfeldt O (1957) Neurophysiological basis of Brucke-Bartley effect; maxima of impulse frequency of retinal and cortical neurons in flickering light of middle frequency.

Pflugers Arch 263:668-681.

Hadjipapas A, Adjamian P, Swettenham JB, Holliday IE, Barnes GR (2007) Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. NeuroImage 35:518-530.

Hall SD, Holliday IE, Hillebrand A, Singh KD, Furlong PL, Hadjipapas A, Barnes GR (2005) The missing link: analogous human and primate cortical gamma oscillations. Neuroimage 26:13-17.

Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T (2005) Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. NeurosciLett 375:64-68.

Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T, Birbaumer N (2007) Alpha phase reset contributes to the generation of ERPs. Cerebral Cortex (New York, NY: 1991) 17:1-8.

Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M (1997) Magnetoencephalographic cortical rhythms. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 26:51-62.

Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks.

Neuron 47:423-435.

Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? NatNeurosci 3:631-633.

Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded effect of stimulus contrast. JNeurophysiol 94:479-490.

Herrmann CS (2001) Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research 137:346-353.

Herrmann CS, Munk MHJ, Engel AK (2004a) Cognitive functions of gamma-band activity:

memory match and utilization. Trends in Cognitive Sciences 8:347-355.

Herrmann CS, Lenz D, Junge S, Busch NA, Maess B (2004b) Memory-matches evoke human gamma-responses. BMC Neuroscience 5:13.

Hoogenboom N, Schoffelen JM, Oostenveld R, Parkes LM, Fries P (2006) Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 29:764-773.

Hummel F, Andres F, Altenmüller E, Dichgans J, Gerloff C (2002) Inhibitory control of acquired motor programmes in the human brain. Brain: A Journal of Neurology 125:404-420.

31 Janz C, Heinrich SP, Kornmayer J, Bach M, Hennig J (2001) Coupling of neural activity and

BOLD fMRI response: new insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magnetic Resonance in Medicine:

Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 46:482-486.

Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. The European Journal of Neuroscience 15:1395-1399.

Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences 30:317-324.

Kahana MJ (2006) The cognitive correlates of human brain oscillations. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 26:1669-1672.

Kaiser J, Leiberg S, Lutzenberger W (2005) Let's talk together: memory traces revealed by cooperative activation in the cerebral cortex. International Review of Neurobiology 68:51-78.

Kawabata N (1972) Nonstationary power spectrum analysis of the photic alpha blocking.

Kybernetik 12:40-44.

Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. JCerebBlood Flow Metab 16:817-826.

Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Brain Research Reviews 29:169-195.

Klimesch W, Schack B, Sauseng P (2005) The functional significance of theta and upper alpha oscillations. Experimental Psychology 52:99-108.

Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews 53:63-88.

Klimesch W, Doppelmayr M, Pachinger T, Ripper B (1997) Brain oscillations and human memory:

EEG correlates in the upper alpha and theta band. Neuroscience Letters 238:9-12.

Koch SP, Habermehl C, Mehnert J, Schmitz CH, Holtze S, Villringer A, Steinbrink J, Obrig, H.

(submitted) High-resolution optical functional mapping of the human somatosensory cortex.

Kooi KA, Bagchi BK (1964) Observations on early components of the visual evoked response and occipital rhythms. Electroencephalography and Clinical Neurophysiology 17:638-643.

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89:5675-5679.

Lachaux J-P, Fonlupt P, Kahane P, Minotti L, Hoffmann D, Bertrand O, Baciu M (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Human Brain Mapping 28:1368-1375.

Lachaux J-P, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, Kahane P, Renault B (2005) The many faces of the gamma band response to complex visual stimuli.

NeuroImage 25:491-501.

Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463-1476.

Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America 100:11053-11058.

Liu J, Newsome WT (2006) Local field potential in cortical area MT: stimulus tuning and behavioral correlations. JNeurosci 26:7779-7790.

Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proceedings of the National Academy of Sciences of the United States of America 88:897-901.

Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 357:1003-1037.

32 Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging

signal. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 23:3963-3971.

Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annual Review of Physiology 66:735-769.

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150-157.

Lopes da Silva (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. ElectroencephalogrClinNeurophysiol 79:81-93.

Lopes da Silva FH, Vos JE, Mooibroek J, Van Rotterdam A (1980) Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalography and Clinical Neurophysiology 50:449-456.

Lopes da Silva FH, van RA, Barts P, van HE, Burr W (1976) Models of neuronal populations: the basic mechanisms of rhythmicity. ProgBrain Res 45:281-308.

Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690-694.

Mathiesen C, Caesar K, Akgören N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. The Journal of Physiology 512 (Pt 2):555-566.

Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin 54:287-298.

Mentis MJ, Alexander GE, Grady CL, Horwitz B, Krasuski J, Pietrini P, Strassburger T, Hampel H, Schapiro MB, Rapoport SI (1997) Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex. NeuroImage 5:116-128.

Mima T, Oluwatimilehin T, Hiraoka T, Hallett M (2001) Transient interhemispheric neuronal synchrony correlates with object recognition. JNeurosci 21:3942-3948.

Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex:

investigation of evoked potentials and EEG phenomena. Physiological Reviews 65:37-100.

Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145-158.

Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951-954.

Ngai AC, Jolley MA, D'Ambrosio R, Meno JR, Winn HR (1999) Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Research 837:221-228.

Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology 38:356-368.

Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948-951.

Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. CurrBiol 17:1275-1285.

Nogawa T, Katayama K, Tabata Y, Ohshio T, Kawahara T (1976) Changes in amplitude of the EEG induced by a photic stimulus. ElectroencephalogrClinNeurophysiol 40:78-88.

Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. The Behavioral and Brain Sciences 23:371-398; discussion 399-437.

Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping 13:125-164.

Ozus B, Liu HL, Chen L, Iyer MB, Fox PT, Gao JH (2001) Rate dependence of human visual cortical response due to brief stimulation: an event-related fMRI study. Magnetic Resonance Imaging 19:21-25.

33 Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends in

Neurosciences 30:150-158.

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience 5:805-811.

Pfurtscheller G (2001) Functional brain imaging based on ERD/ERS. Vision Res 41:1257-1260.

Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. ClinNeurophysiol 110:1842-1857.

Pfurtscheller G, Stancák A, Neuper C (1996) Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 24:39-46.

Pigeau RA, Frame AM (1992) Steady-state visual evoked responses in high and low alpha subjects.

ElectroencephalogrClinNeurophysiol 84:101-109.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America 98:676-682.

Ray WJ, Cole HW (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750-752.

Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. NatNeurosci 3:716-723.

Regan D (1977) Steady-state evoked potentials. Journal of the Optical Society of America 67:1475-1489.

Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. The European Journal of Neuroscience 25:603-610.

Ritter P, Freyer F, Curio G, Villringer A (2008) High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. NeuroImage 42:483-490.

Rodin EA, Grisell JL, Gudobba RD, Zachary G (1965) Relationship of EEG background rhythms to photic evoked responses. Electroencephalography and Clinical Neurophysiology 19:301-304.

Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430-433.

Roy CS, Sherrington CS (1890) On the Regulation of the Blood-supply of the Brain. The Journal of Physiology 11:85-158.117.

Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M (2007) Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience 146:1435-1444.

Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. The European Journal of Neuroscience 22:2917-2926.

Sayers BM, Beagley HA, Henshall WR (1974) The mechansim of auditory evoked EEG responses.

Nature 247:481-483.

Schadow J, Lenz D, Thaerig S, Busch NA, Frund I, Rieger JW, Herrmann CS (2007) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. IntJPsychophysiol 66:28-36.

Schurmann M, Basar E (1994) Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans. BiolCybern 72:161-174.

Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR (2003) Theta and gamma oscillations during encoding predict subsequent recall. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 23:10809-10814.

Sewards TV, Sewards MA (1999) Alpha-band oscillations in visual cortex: part of the neural correlate of visual awareness? Int J Psychophysiol 32:35-45.

Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67-77, 111-125.

ÄHNLICHE DOKUMENTE