• Keine Ergebnisse gefunden

In conclusion, the specific spatiotemporal expression patterns of galectin-1, -3, -4 and -9 in the bovine uterus and placenta throughout gestation suggests their involvement in placentation and maintenance of pregnancy. Moreover, differences in the expression depending on the immunological status of the cow lead to the assumption that galectins could be involved in the development of postpartal diseases. Our results stress the need of further in vitro experiments to elucidate the exact function of this protein in the placentome.

7 Summary

Rebecca Froehlich Galectin expression in the bovine uterus and placenta through the course of pregnancy with focus on the peripartal period

Galectins, lectins with beta-galactosidase affinity, play important regulatory roles in cell adhesion, proliferation and migration and are involved in the modulation of the adaptive and innate immunity. These proteins are promising candidates for participating in placentation processes, maintenance of pregnancy and local immune regulation in the uterus. To provide a base for future functional analysis galectin fingerprinting was performed for interplacentomal endometrium and placenta during bovine gestation. Special interest was paid to the prepartal period in connection with the serum-IGF-1 level of the cow.

In the past it was demonstrated that in dairy cows a severe negative energy balance, indicated by lower levels of serum IGF-1, could be associated with elevated inflammation markers in the endometrium and subsequently a higher incidence of postpartum metritis. Therefore the second objective of this study was to investigate if the local galectin expression is influenced by different IGF-1 serum levels.

For the galectin fingerprinting placentomal (P) and interplacentomal tissue (IP) was collected at a slaughterhouse and assigned to three stages of pregnancy: early gestation (day 30-130, n=9); mid gestation (day 130-220, n=7); late gestation (day 220-275, n=7). The collected samples were snap-frozen or fixed in Bouin’s solution and embedded in paraffin. The mRNA level gene expression for galectin-1, -3, -4 and -9 in late gestational stages was examined by RTq-PCR. The protein localisation was investigated by immunohistochemistry. Antibody specifity has been proven by Western Blotting.

For the characterisation of the prepartal period 17 clinically healthy, pregnant cows from the same farm and with similar body condition were chosen and grouped according to their IGF-1 blood levels into an IGF high (n=9) and an IGF low group (n=7 IGF-1<140ng/ml). A caesarean section was performed on day 275 after artificial insemination where two placentomes (P) and interplacentomal uterine tissue (IP) were sampled. Gene expression at mRNA level was investigated for galectin-1, -3,

-4, -9 and -13 by RT-qPCR and at the protein level for galectin-1, -3, -4 and -9 by immunohistochemistry

The mRNA expression of galectin-1, -3, -4 and -9 could be demonstrated in late gestational P and IP. Through gestation galectin-1 was mainly localised in vessel walls and stroma while galectin-3 showed a distribution in epithelia and the fetal mesenchyme. Similarly to galectin-3, galectin-4 and galectin-9 showed an epithelial localisation pattern with an additional expression of galectin-4 in stroma and vessel walls. Galectin-9 was not detectable in midgestational P but showed strongly stained granules in TGC in late gestational P.

In the prepartal period galectin-9 mRNA expression was significantly higher in IP (p< 0.05) in IGF high animals. Additionally galectin-13 showed a highly significant higher and galectin-4 a trend of higher (p<0.1) expression in IGF high animals. No difference in expression occurred in P as well as in P and IP for galectin-1 and galectin-3. Only slight changes were detectable on the protein level for all analysed molecules.

The expression and distinct localisation patterns with spatiotemporal changes indecates a function of galectins in the bovine uterus and placenta. Especially the different expression in IGF high and IGF low cows suggest that galectins might be involved in the local immune regulation and therefore have an impact on the incidence of postpartal diseases.

This study clearly indicates that galectins are promising candidates to be involved in maintenance of pregnancy, placentation and local uterine immunity. Therefore, it can be a base for further investigations on the actual galectin functions in the bovine placenta.

8 Zusammenfassung

Rebecca Fröhlich Galektinexpression im bovinen Uterus and Plazenta im Verlauf der Trächtigkeit mit spezieller Betrachtung der präpartalen Phase

Galektine spielen eine wichtige Rolle in der Regulation biologischer Prozesse wie Zell-Adhäsion, Proliferation und Migration, sowie in der Modulation der angeborenen als auch der erworbenen Immunität. Es ist daher wahrscheinlich, dass Galektine auch an der Steuerung der Plazentation, dem Erhalt der Trächtigkeit und der lokalen Immunregulation im bovinen Uterus maßgeblich beteiligt sind. Um eine Basis für zukünftige Untersuchungen zu liefern, war das erste Ziel dieser Studie ein Galektinprofil für das interplazentomäre Endometrium und das Plazentom während der Trächtigkeit des Rindes zu erstellen. Besondere Aufmerksamkeit galt der präpartalen Phase und dem immunolgischen Status der Kuh. In den letzten Jahren konnte gezeigt werden, dass eine schwere negative Energiebilanz während der Trächtigkeit, sichtbar durch erniedrigte IGF-1 Serumspiegel bei Milchkühen, in vermehrten Entzündungszeichen im postpartalen Uterus sowie einer höheren Inzidenz an postpartalen Erkrankungen resultiert. Daher war es ein weiteres Ziel dieser Studie zu untersuchen, ob die lokale Galektinexpression auf mRNA- und Proteinebene von unterschiedlichen IGF-Serum-spiegeln beeinflusst wird.

Für die Erstellung eines Galektinprofils wurden am Schlachthof Gewebeproben von interplazentomalem (IP) und plazentomalem (P) Bereichen des Uterus trächtiger Kühe verschiedener Stadien genommen und mittels Scheitel-Steiß-Länge in 3 Gruppen eingeteilt: Frühe Trächtigkeit (Tag 30-130, n=9); Mittlere Phase der Trächtigkeit (Tag 130-220, n=7); Späte Trächtigkeit (Tag 220-275, n=7). Die Proben wurden nach der Entnahme in flüssigem Stickstoff bzw. in Bouin’scher Lösung fixiert.

Galektin-1, -3, -4 und -9 wurden immunhistochemisch lokalisiert. Proben der späten Trächtigkeit wurden auch auf mRNA-Ebene mittels RT-qPCR untersucht. Die Spezifität der benutzen Antikörper konnte mittels Western Blot gezeigt werden.

Zur Charakterisierung der präpartalen Periode wurden 17 gesunde, trächtige Kühe von einem Milchviehbetrieb ausgewählt und anhand präpartaler IGF-1 Serumwerte in eine IGF-1 high (n=10; IGF-1>140ng/ml) und IGF-1 low (n=7; IGF-1< 140ng/ml)

Gruppe eingeteilt. Im Rahmen von Kaiserschnitten am 275.Tag der Trächtigkeit wurden Proben aus dem IP sowie zwei Plazentome entnommen. Die Analyse der Genexpression erfolgte für Galektin-1, -3, -4, -9 und -13 auf mRNA-Ebene mittels RT-qPCR und auf Proteinebene (mit Ausnahme von Galektin-13) mittels Immunhistochemie.

Für alle untersuchten Galektine konnte eine Expression im IP und im P während der Trächtigkeit auf mRNA-Ebene dargestellt werden. Galektin-1 zeigte eine Lokalisation im maternalen Stroma und den Gefäßwänden, sowie im plazentomalen Gewebe im Karunkelepithel. Dagegen konnte Galektin-3 hauptsächlich im Drüsenepithel, dem maternalen Epithel und dem fetalen Stroma nachgewiesen werden. Galektin-4 und -9 zeigten, ähnlich zu Galektin-3, eine Verteilung in den Epithelien, wobei Galektin-4 zusätzlich im Stroma und den Gefäßwänden zu finden war. Galektin-9 konnte in der mittleren Phase der Trächtigkeit nicht im P lokalisiert, jedoch in der späten Phase in Granula der TGC.

In der präpartalen Periode zeigte Galektin-13 eine hoch signifikant (p<0,001), Galektin-9 eine signifikant (p<0,05) erhöhte Expression und Galektin-4 den Trend (p<0,1) einer stärkeren Expression im interplazentomalen Gewebe von IGF-1 high Kühen, während die Galektin-1 und -3 Expressionen in beiden Untersuchungsgruppen gleich hoch waren. Im Plazentom konnten für keines der untersuchten Galektine Unterschiede zwischen den Gruppen festgestellt werden. Auf Proteinebene zeigten sich leichte Unterschiede in der Immunreaktivität.

Die Expression der Galektine sowie deren spezifische Lokalisation mit ihren Änderungen im Verlauf der Trächtigkeit deutet darauf hin, dass diese Proteine an Regulationsprozessen im bovinen Uterus beteiligt sind. Insbesondere die Expressionsunterschiede zwischen IGF high und low Kühen sind ein Hinweis darauf, dass Galektine an der Regulation der lokalen Immunantwort im Uterus beteiligt sein könnten. Diese Studie sollte als Basis für künftige Untersuchungen genutzt werden, in denen die genaue Funktion der Galektine im bovinen Uterus, beispielsweise am Zellkulturmodell, im Mittelpunkt stehen wird.

9 References

Andre, S., H. Sanchez-Ruderisch, H. Nakagawa, M. Buchholz, J. Kopitz, P. Forberich, W. Kemmner, C. Bock, K. Deguchi, K. M. Detjen, B. Wiedenmann, M. von Knebel Doeberitz, T. M. Gress, S.

Nishimura, S. Rosewicz and H. J. Gabius (2007). "Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells." FEBS J 274(13): 3233-56.

Asselin, E., P. Drolet and M. A. Fortier (1998). "In vitro response to oxytocin and interferon-Tau in bovine endometrial cells from caruncular and inter-caruncular areas." Biol Reprod 59(2): 241-7.

Barondes, S. H., D. N. Cooper, M. A. Gitt and H. Leffler (1994). "Galectins. Structure and function of a large family of animal lectins." J Biol Chem 269(33): 20807-10.

Bauer, M. K., J. E. Harding, N. S. Bassett, B. H. Breier, M. H. Oliver, B. H. Gallaher, P. C. Evans, S.

M. Woodall and P. D. Gluckman (1998). "Fetal growth and placental function." Mol Cell Endocrinol 140(1-2): 115-20.

Bevan, B. H., D. C. Kilpatrick, W. A. Liston, J. Hirabayashi and K. Kasai (1994). "Immunohistochemical localization of a beta-D-galactoside-binding lectin at the human maternofetal interface." Histochem J 26(7): 582-6.

Bitar, M. S. (2000). "Insulin and glucocorticoid-dependent suppression of the IGF-I system in diabetic wounds." Surgery 127(6): 687-95.

Bjorkman, N. (1954). "Morphological and histochemical studies on the bovine placenta." Acta Anat (Basel) 22: 1-91.

Blois, S. M., J. M. Ilarregui, M. Tometten, M. Garcia, A. S. Orsal, R. Cordo-Russo, M. A. Toscano, G.

A. Bianco, P. Kobelt, B. Handjiski, I. Tirado, U. R. Markert, B. F. Klapp, F. Poirier, J. Szekeres-Bartho, G. A. Rabinovich and P. C. Arck (2007). "A pivotal role for galectin-1 in fetomaternal tolerance." Nat Med 13(12): 1450-7.

Boscher, C., J. W. Dennis and I. R. Nabi (2011). "Glycosylation, galectins and cellular signaling." Curr Opin Cell Biol(Aug;23(4)): 383-92.

Bowman, C. J., R. D. Streck and R. E. Chapin (2010). "Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development." Birth Defects Res B Dev Reprod Toxicol 89(4): 339-49.

Bucher, K., R. Leiser, U. Tiemann and C. Pfarrer (2006). "Platelet-activating factor receptor (PAF-R) and acetylhydrolase (PAF-AH) are co-expressed in immature bovine trophoblast giant cells throughout gestation, but not at parturition." Prostaglandins Other Lipid Mediat 79(1-2): 74-83.

Burger, O., E. Pick, J. Zwickel, M. Klayman, H. Meiri, R. Slotky, S. Mandel, L. Rabinovitch, Y. Paltieli, A. Admon and R. Gonen (2004). "Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies." Placenta 25(7): 608-22.

Camby, I., N. Belot, F. Lefranc, N. Sadeghi, Y. de Launoit, H. Kaltner, S. Musette, F. Darro, A.

Danguy, I. Salmon, H. J. Gabius and R. Kiss (2002). "Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases." J Neuropathol Exp Neurol 61(7): 585-96.

Cerliani, J. P., S. R. Stowell, I. D. Mascanfroni, C. M. Arthur, R. D. Cummings and G. A. Rabinovich

"Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity." J Clin Immunol 31(1): 10-21.

Cerliani, J. P., S. R. Stowell, I. D. Mascanfroni, C. M. Arthur, R. D. Cummings and G. A. Rabinovich (2010). "Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity." J Clin Immunol 31(1): 10-21.

Chabot, S., Y. Kashio, M. Seki, Y. Shirato, K. Nakamura, N. Nishi, T. Nakamura, R. Matsumoto and M.

Hirashima (2002). "Regulation of galectin-9 expression and release in Jurkat T cell line cells."

Glycobiology 12(2): 111-8.

Chaouat, G., N. Ledee-Bataille, K. B. Chea and S. Dubanchet (2005). "Cytokines and implantation."

Chem Immunol Allergy 88(1): 34-63.

Choe, Y. S., C. Shim, D. Choi, C. S. Lee, K. K. Lee and K. Kim (1997). "Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation." Mol Reprod Dev 48(2): 261-6.

Clark, D. A., P. C. Arck and G. Chaouat (1999). "Why did your mother reject you? Immunogenetic determinants of the response to environmental selective pressure expressed at the uterine level." Am J Reprod Immunol 41(1): 5-22.

Clark, R. (1997). "The somatogenic hormones and insulin-like growth factor-1: stimulators of lymphopoiesis and immune function." Endocr Rev 18(2): 157-79.

Cohen, P. (2006). "Overview of the IGF-I system." Horm Res 65 Suppl 1: 3-8.

Colnot, C., M. A. Ripoche, G. Milon, X. Montagutelli, P. R. Crocker and F. Poirier (1998).

"Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice." Immunology 94(3): 290-6.

Constancia, M., M. Hemberger, J. Hughes, W. Dean, A. Ferguson-Smith, R. Fundele, F. Stewart, G.

Kelsey, A. Fowden, C. Sibley and W. Reik (2002). "Placental-specific IGF-II is a major modulator of placental and fetal growth." Nature 417(6892): 945-8.

Cooper, D., L. V. Norling and M. Perretti (2008). "Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow." J Leukoc Biol 83(6): 1459-66.

Cummings, R. D. and F. T. Liu (2009). Galectins. Essentials of Glycobiology.33. Cold Spring Harbor (NY), Cold Spring Harbor Laboratory Press.

Dalton, P., H. C. Christian, C. W. Redman, I. L. Sargent and C. A. Boyd (2007). "Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells--implication for placental cell fusion." FEBS J 274(11):

2715-27.

DeChiara, T. M., E. J. Robertson and A. Efstratiadis (1991). "Parental imprinting of the mouse insulin-like growth factor II gene." Cell 64(4): 849-59.

Demetriou, M., M. Granovsky, S. Quaggin and J. W. Dennis (2001). "Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation." Nature 409(6821): 733-9.

Dhirapong, A., A. Lleo, P. Leung, M. E. Gershwin and F. T. Liu (2009). "The immunological potential of galectin-1 and -3." Autoimmun Rev 8(5): 360-3.

Diez-Revuelta, N., S. Velasco, S. Andre, H. Kaltner, D. Kubler, H. J. Gabius and J. Abad-Rodriguez (2010). "Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution." J Cell Sci 123(Pt 5): 671-81.

Dumic, J., S. Dabelic and M. Flogel (2006). "Galectin-3: an open-ended story." Biochim Biophys Acta 1760(4): 616-35.

Dunphy, J. L., A. Balic, G. J. Barcham, A. J. Horvath, A. D. Nash and E. N. Meeusen (2000). "Isolation and characterization of a novel inducible mammalian galectin." J Biol Chem 275(41): 32106-13.

Elola, M. T., C. Wolfenstein-Todel, M. F. Troncoso, G. R. Vasta and G. A. Rabinovich (2007).

"Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival." Cell Mol Life Sci 64(13): 1679-700.

Farmer, J. L., R. C. Burghardt, F. D. Jousan, P. J. Hansen, F. W. Bazer and T. E. Spencer (2008).

"Galectin 15 (LGALS15) functions in trophectoderm migration and attachment." FASEB J 22(2): 548-60.

Fouillit, M., R. Joubert-Caron, F. Poirier, P. Bourin, E. Monostori, M. Levi-Strauss, M. Raphael, D.

Bladier and M. Caron (2000). "Regulation of CD45-induced signaling by galectin-1 in Burkitt lymphoma B cells." Glycobiology 10(4): 413-9.

Friedrichs, J., A. Manninen, D. J. Muller and J. Helenius (2008). "Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV." J Biol Chem 283(47): 32264-72.

Gabius, H.-J. (2009). The Sugar code. fundamentals of glycosciences, Wiley-VCH, Weinheim.

Gabius, H. J., S. Andre, J. Jimenez-Barbero, A. Romero and D. Solis (2011). "From lectin structure to functional glycomics: principles of the sugar code." Trends Biochem Sci.

Gabius, H. J., P. L. Debbage, R. Engelhardt, R. Osmers and W. Lange (1987). "Identification of endogenous sugar-binding proteins (lectins) in human placenta by histochemical localization and biochemical characterization." Eur J Cell Biol 44(2): 265-72.

Gabius, H. J., P. L. Debbage, N. Lang and W. Lange (1989). "Malignant and normally developing trophoblastic cells of human placenta display different characteristics defined by histochemical and biochemical mapping of endogenous lectins." Histochemistry 92(4): 283-9.

Gibson, L. F., D. Piktel and K. S. Landreth (1993). "Insulin-like growth factor-1 potentiates expansion of interleukin-7-dependent pro-B cells." Blood 82(10): 3005-11.

Gier, H. T. and G. B. Marion (1968). "Uterus of the cow after parturition: involutional changes." Am J Vet Res 29(1): 83-96.

Gitt, M. A., C. Colnot, F. Poirier, K. J. Nani, S. H. Barondes and H. Leffler (1998). "Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract." J Biol Chem 273(5): 2954-60.

Gray, C. A., D. L. Adelson, F. W. Bazer, R. C. Burghardt, E. N. Meeusen and T. E. Spencer (2004).

"Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm." Proc Natl Acad Sci U S A 101(21): 7982-7.

Gray, C. A., K. A. Dunlap, R. C. Burghardt and T. E. Spencer (2005). "Galectin-15 in ovine uteroplacental tissues." Reproduction 130(2): 231-40.

Green, J. A., S. Xie, X. Quan, B. Bao, X. Gan, N. Mathialagan, J. F. Beckers and R. M. Roberts (2000). "Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy." Biol Reprod 62(6): 1624-31.

Greenwald, A. G., R. Jin and T. K. Waddell (2009). "Galectin-3-mediated xenoactivation of human monocytes." Transplantation 87(1): 44-51.

Groebner, A. E., K. Schulke, S. Unterseer, H. D. Reichenbach, M. Reichenbach, M. Buttner, E. Wolf, H. H. Meyer and S. E. Ulbrich (2010). "Enhanced proapoptotic gene expression of XAF1, CASP8 and TNFSF10 in the bovine endometrium during early pregnancy is not correlated with augmented apoptosis." Placenta 31(3): 168-77.

Grosser, O. (1927). Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. München, J.F. Bergmann.

Gualberto, A. and M. Pollak (2009). "Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions." Oncogene 28(34): 3009-21.

Han, V. K., N. Bassett, J. Walton and J. R. Challis (1996). "The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface." J Clin Endocrinol Metab 81(7): 2680-93.

Hansen, P. J. (1998). "Regulation of uterine immune function by progesterone--lessons from the sheep." J Reprod Immunol 40(1): 63-79.

He, J. and L. G. Baum (2006). "Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration." Lab Invest 86(6): 578-90.

Hikita, C., S. Vijayakumar, J. Takito, H. Erdjument-Bromage, P. Tempst and Q. Al-Awqati (2000).

"Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3."

J Cell Biol 151(6): 1235-46.

Hirabayashi, J. and K. Kasai (1984). "Human placenta beta-galactoside-binding lectin. Purification and some properties." Biochem Biophys Res Commun 122(3): 938-44.

Hoeflich, A., L. Bunger, S. Nedbal, U. Renne, M. W. Elmlinger, W. F. Blum, C. Bruley, H. J. Kolb and E. Wolf (2004). "Growth selection in mice reveals conserved and redundant expression patterns of the insulin-like growth factor system." Gen Comp Endocrinol 136(2): 248-59.

Hokama, A., E. Mizoguchi and A. Mizoguchi (2008). "Roles of galectins in inflammatory bowel disease." World J Gastroenterol 14(33): 5133-7.

Honjo, Y., P. Nangia-Makker, H. Inohara and A. Raz (2001). "Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells." Clin Cancer Res 7(3): 661-8.

Houzelstein, D., I. R. Goncalves, A. J. Fadden, S. S. Sidhu, D. N. Cooper, K. Drickamer, H. Leffler and F. Poirier (2004). "Phylogenetic analysis of the vertebrate galectin family." Mol Biol Evol 21(7): 1177-87.

Hsu, D. K. and F. T. Liu (2004). "Regulation of cellular homeostasis by galectins." Glycoconj J 19(7-9):

507-15.

Hsu, D. K., R. Y. Yang, Z. Pan, L. Yu, D. R. Salomon, W. P. Fung-Leung and F. T. Liu (2000).

"Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses."

Am J Pathol 156(3): 1073-83.

Huflejt, M. E., E. T. Jordan, M. A. Gitt, S. H. Barondes and H. Leffler (1997). "Strikingly different localization of galectin-3 and galectin-4 in human colon adenocarcinoma T84 cells. Galectin-4 is localized at sites of cell adhesion." J Biol Chem 272(22): 14294-303.

Huflejt, M. E. and H. Leffler (2004). "Galectin-4 in normal tissues and cancer." Glycoconj J 20(4): 247-55.

Hughes, R. C. (1999). "Secretion of the galectin family of mammalian carbohydrate-binding proteins."

Biochim Biophys Acta 1473(1): 172-85.

Hughes, R. C. (2004). "Galectins in kidney development." Glycoconj J 19(7-9): 621-9.

Ilarregui, J. M., G. A. Bianco, M. A. Toscano and G. A. Rabinovich (2005). "The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders." Ann Rheum Dis 64 Suppl 4: iv96-103.

Iqbal, A. J., A. L. Sampaio, F. Maione, K. V. Greco, T. Niki, M. Hirashima, M. Perretti and D. Cooper (2011). "Endogenous galectin-1 and acute inflammation: emerging notion of a galectin-9 pro-resolving effect." Am J Pathol 178(3): 1201-9.

Jeschke, U., D. Mayr, B. Schiessl, I. Mylonas, S. Schulze, C. Kuhn, K. Friese and H. Walzel (2007).

"Expression of galectin-1, -3 (gal-1, gal-3) and the Thomsen-Friedenreich (TF) antigen in normal, IUGR, preeclamptic and HELLP placentas." Placenta 28(11-12): 1165-73.

Jeschke, U., T. Reimer, C. Bergemann, I. Wiest, S. Schulze, K. Friese and H. Walzel (2004). "Binding of galectin-1 (gal-1) on trophoblast cells and inhibition of hormone production of trophoblast tumor cells in vitro by gal-1." Histochem Cell Biol 121(6): 501-8.

Jeschke, U., H. Walzel, I. Mylonas, P. Papadopoulos, N. Shabani, C. Kuhn, S. Schulze, K. Friese, U.

Karsten, D. Anz and M. S. Kupka (2009). "The human endometrium expresses the glycoprotein mucin-1 and shows positive correlation for Thomsen-Friedenreich epitope expression and galectin-1 binding." J Histochem Cytochem 57(9): 871-81.

Johnson, G. A., F. W. Bazer, L. A. Jaeger, H. Ka, J. E. Garlow, C. Pfarrer, T. E. Spencer and R. C.

Burghardt (2001). "Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep." Biol Reprod 65(3): 820-8.

Jones, J. I. and D. R. Clemmons (1995). "Insulin-like growth factors and their binding proteins:

biological actions." Endocr Rev 16(1): 3-34.

Kaltner, H., K. Seyrek, A. Heck, F. Sinowatz and H. J. Gabius (2002). "Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization." Cell Tissue Res 307(1): 35-46.

Kashio, Y., K. Nakamura, M. J. Abedin, M. Seki, N. Nishi, N. Yoshida, T. Nakamura and M. Hirashima (2003). "Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway." J Immunol 170(7): 3631-6.

Katoh, S., N. Ishii, A. Nobumoto, K. Takeshita, S. Y. Dai, R. Shinonaga, T. Niki, N. Nishi, A. Tominaga, A. Yamauchi and M. Hirashima (2007). "Galectin-9 inhibits CD44-hyaluronan interaction and

suppresses a murine model of allergic asthma." Am J Respir Crit Care Med 176(1): 27-35.

Kehrli, M. E., Jr., B. J. Nonnecke and J. A. Roth (1989). "Alterations in bovine lymphocyte function during the periparturient period." Am J Vet Res 50(2): 215-20.

Kim, M., S. Kim, H. Kim, H. G. Joo and T. Shin (2008). "Immunohistochemical localization of galectin-3 in the reproductive organs of the cow." Acta Histochem 110(6): 473-80.

Klisch, K., N. M. De Sousa, J. F. Beckers, R. Leiser and A. Pich (2005). "Pregnancy associated glycoprotein-1, -6, -7, and -17 are major products of bovine binucleate trophoblast giant cells at midpregnancy." Mol Reprod Dev 71(4): 453-60.

Klisch, K., W. Hecht, C. Pfarrer, G. Schuler, B. Hoffmann and R. Leiser (1999). "DNA content and ploidy level of bovine placentomal trophoblast giant cells." Placenta 20(5-6): 451-8.

Klisch, K. and R. Leiser (2003). "In bovine binucleate trophoblast giant cells, pregnancy-associated glycoproteins and placental prolactin-related protein-I are conjugated to asparagine-linked N-acetylgalactosaminyl glycans." Histochem Cell Biol 119(3): 211-7.

Klisch, K., C. Pfarrer, G. Schuler, B. Hoffmann and R. Leiser (1999). "Tripolar acytokinetic mitosis and formation of feto-maternal syncytia in the bovine placentome: different modes of the generation of multinuclear cells." Anat Embryol (Berl) 200(2): 229-37.

Kooijman, R., A. Coppens and E. Hooghe-Peters (2002). "Igf-I inhibits spontaneous apoptosis in human granulocytes." Endocrinology 143(4): 1206-12.

Kopcow, H. D., F. Rosetti, Y. Leung, D. S. Allan, J. L. Kutok and J. L. Strominger (2008). "T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1." Proc Natl Acad Sci U S A 105(47): 18472-7.

Kopitz, J., C. von Reitzenstein, S. Andre, H. Kaltner, J. Uhl, V. Ehemann, M. Cantz and H. J. Gabius (2001). "Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3." J Biol Chem 276(38): 35917-23.

Kornfeld, S. (1992). "Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors." Annu Rev Biochem 61(1): 307-30.

Krzeminski, M., T. Singh, S. Andre, M. Lensch, A. M. Wu, A. M. Bonvin and H. J. Gabius (2010).

"Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region." Biochim Biophys Acta 1810(2): 150-61.

Kuwabara, I. and F. T. Liu (1996). "Galectin-3 promotes adhesion of human neutrophils to laminin." J

Kuwabara, I. and F. T. Liu (1996). "Galectin-3 promotes adhesion of human neutrophils to laminin." J