• Keine Ergebnisse gefunden

This thesis identified the first circadian clock genes of the Madeira cockroach Rhyparobia ma-derae and showed circadian cycling of the mRNA of the core feedback loop genes period, time-less 1, and cryptochrome 2. The domain structure and daily expression profile of these genes were analyzed. The findings show that the circadian clock of the Madeira cockroach belongs to the basic type of insect clocks, which is more closely related to vertebrate clocks than to the derived clocks of D. melanogaster and A. pisum. No statistically significant circadian oscilla-tion in protein abundance of neither rmPER nor rmTIM1 were observed in western blots and immunohistochemical analysis of whole brain tissues. Instead, rmPER appears to stay nuclear at all times in R. maderae nervous tissue cells. Most likely, no rmPER-protein oscillations were observed due to low amplitude cycling and because oscillations in different circadian pacemaker cells were not phase-coupled. In addition, the anti rmPER (rabbit) antibody appeared to only recognize the nuclear form of the PER protein.

In the future, it is important that the genome of R. maderae is being sequenced. Various insect genomes are already published, but there is still no cockroach genome available. Although the genome of B. germanica has been sequenced recently, it is not available to the public at this time. Nevertheless, since the Madeira cockroach is an important model organism of circadian research, it will be necessary to obtain the genome of R. maderae in the near future. With the full genome available, it will be much easier to identify the complete set of circadian genes, design specific primers and analyze their expression. In addition to the genome, transcriptome data will also help to unravel the circadian system of cockroaches further. RNA-Seq may be employed in-stead of qPCR to obtain the circadian expression profile of various genes at once. As a next step towards analyzing the function of the circadian genes in R. maderae, gene silencing employing RNAi should be used to analyze the function of the circadian genes.

Although some functional data on hemimetabolous insects has already been published, for ex-ample by the lab of Kenji Tomioka and coworkers, there is still no single hemimetabolous insect species with at least the core feedback loop genes functionally analyzed. Since it became more and more obvious in the last decade that there are significant differences between insect species, it will be very interesting to understand how the molecular system of the circadian clock works in a more basic insect. mRNA sequence data of rmPer, rmTim1 and rmCry2 is now available, and gene silencing using RNAi in combination with running wheel assays may clarify the function of these genes.

In summary, this study provides the first data on the molecular circadian system of the cockroach R. maderae. In the future, a sequenced genome or transcriptome will help to characterize the complete set of circadian genes in R. maderae, and functional studies using RNAi will be used to clarify the function of clock genes in the Madeira cockroach. In addition, classical methods like RACE and qPCR will be used to analyze individual genes. With more sequence data avail-able, specific antibodies against additional circadian genes like CLK or CYC can be generated to further analyze the cellular expression pattern and subcellular localization.

Bibliography

[1] ABRUZZI, K. C., RODRIGUEZ, J., MENET, J. S., DESROCHERS, J., ZADINA, A., LUO, W., TKACHEV, S.,ANDROSBASH, M. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev 25, 22 (Nov 2011), 2374–2386.

[2] AKTEN, B., JAUCH, E., GENOVA, G. K., KIM, E. Y., EDERY, I., RAABE, T., AND JACKSON, F. R. A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6, 3 (Mar 2003), 251–257.

[3] ALLADA, R., AND CHUNG, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72 (Mar 2010), 605–624.

[4] ALLADA, R., WHITE, N. E., SO, W. V., HALL, J. C.,ANDROSBASH, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless.

Cell 93, 5 (May 1998), 791–804.

[5] ALTSCHUL, S. F., MADDEN, T. L., SCHAFFER¨ , A. A., ZHANG, J., ZHANG, Z., MILLER, W.,

ANDLIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 17 (Sep 1997), 3389–3402.

[6] ALTSCHUL, S. F., WOOTTON, J. C., GERTZ, E. M., AGARWALA, R., MORGULIS, A., SCHAFFER¨ , A. A., AND YU, Y.-K. Protein database searches using compositionally adjusted substitution matrices. FEBS J 272, 20 (Oct 2005), 5101–5109.

[7] ASCHOFF, J. Circadian timing. Ann N Y Acad Sci 423 (1984), 442–468.

[8] BACHLEITNER, W., KEMPINGER, L., W ¨ULBECK, C., RIEGER, D.,ANDHELFRICH-F ¨ORSTER, C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci U S A 104, 9 (Feb 2007), 3538–3543.

[9] BAE, K.,ANDEDERY, I. Regulating a circadian clock’s period, phase and amplitude by phospho-rylation: insights from Drosophila. J Biochem 140, 5 (Nov 2006), 609–617.

[10] BAE, K., LEE, C., SIDOTE, D., CHUANG, K. Y., AND EDERY, I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators.

Mol Cell Biol 18, 10 (Oct 1998), 6142–6151.

[11] BAJGAR, A., JINDRA, M.,ANDDOLEZEL, D. Autonomous regulation of the insect gut by circa-dian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A 110, 11 (Mar 2013), 4416–4421.

[12] BAO, S., RIHEL, J., BJES, E., FAN, J. Y., AND PRICE, J. L. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J Neurosci 21, 18 (Sep 2001), 7117–7126.

[13] BARRETT, R. K.,AND PAGE, T. L. Effects of light on circadian pacemaker development. I. The freerunning period. J Comp Physiol A 165, 1 (Apr 1989), 41–49.

141

[14] BAYLIES, M. K., WEINER, L., VOSSHALL, L. B., SAEZ, L., A.,ANDYOUNG, M. W. Genetic, molecular, and cellular studies of the per locus and its products in Drosophila melanogaster. In:

M.W Young (Ed.), Molecular Genetics of Biological Rhythms, Marcel Dekker, New York. (1993), 123–153.

[15] BEAVER, L. M., GVAKHARIA, B. O., VOLLINTINE, T. S., HEGE, D. M., STANEWSKY, R.,AND

GIEBULTOWICZ, J. M. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A 99, 4 (Feb 2002), 2134–2139.

[16] BENITO, J., HOXHA, V., LAMA, C., LAZAREVA, A. A., FERVEUR, J.-F., HARDIN, P. E.,AND

DAUWALDER, B. The circadian output gene takeout is regulated by Pdp1 epsilon. Proc Natl Acad Sci U S A 107, 6 (Feb 2010), 2544–2549.

[17] BENITO, J., ZHENG, H., NG, F. S.,ANDHARDIN, P. E. Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. Cold Spring Harb Symp Quant Biol 72 (2007), 437–444.

[18] BENNA, C., BONACCORSI, S., W ¨ULBECK, C., HELFRICH-F ¨ORSTER, C., GATTI, M., KYRIA

-COU, C. P., COSTA, R., AND SANDRELLI, F. Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr Biol 20, 4 (Feb 2010), 346–352.

[19] BLAU, J.,ANDYOUNG, M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell 99, 6 (Dec 1999), 661–671.

[20] BODENSTEIN, C., HEILAND, I.,ANDSCHUSTER, S. Temperature compensation and entrainment in circadian rhythms. Phys Biol 9, 3 (Jun 2012), 036011.

[21] BORATYN, G. M., SCHAFFER¨ , A. A., AGARWALA, R., ALTSCHUL, S. F., LIPMAN, D. J.,AND

MADDEN, T. L. Domain enhanced lookup time accelerated BLAST. Biol Direct 7 (2012), 12.

[22] BORSON, N. D., SALO, W. L.,ANDDREWES, L. R. A lock-docking oligo(dT) primer for 5’ and 3’ RACE PCR. PCR Methods Appl 2, 2 (Nov 1992), 144–148.

[23] BRADSHAW, W. E., EMERSON, K. J.,ANDHOLZAPFEL, C. M. Genetic correlations and the evo-lution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity (Edinb) 108, 5 (May 2012), 473–479.

[24] BRADSHAW, W. E., HOLZAPFEL, C. M.,ANDMATHIAS, D. Circadian rhythmicity and photope-riodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock? Am Nat 167, 4 (Apr 2006), 601–605.

[25] BRAND, A. H., AND PERRIMON, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 2 (Jun 1993), 401–415.

[26] BUSZA, A., EMERY-LE, M., ROSBASH, M.,ANDEMERY, P. Roles of the two Drosophila CRYP-TOCHROME structural domains in circadian photoreception. Science 304, 5676 (Jun 2004), 1503–

1506.

[27] B ¨UNNING. Die endogene Tagesrhythmik als Grundlage der Photoperiodischen Reaktion. Berichte der Deutschen Botanischen Gesellschaft 54 (1936), 590–607.

[28] B ¨UNNING, E. The physiological clock: circadian rhythms and biological chronometry. 1973.

[29] B ¨UNSOW, R. C. Uber tages- und jahresrhythmische ¨¨ Anderungen der photoperiodischen Lichtempfindlichkeit bei Kalanchoe blossfeldiana und ihre Beziehungen zur endogenen Tages-rhythmik. Zeitschrift f¨ur Botanik 41 (1953), 257–276.

[30] CERIANI, M. F., DARLINGTON, T. K., STAKNIS, D., M ´AS, P., PETTI, A. A., WEITZ, C. J.,

ANDKAY, S. A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 5427 (Jul 1999), 553–556.

[31] CERIANI, M. F., HOGENESCH, J. B., YANOVSKY, M., PANDA, S., STRAUME, M.,AND KAY, S. A. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior.

J Neurosci 22, 21 (Nov 2002), 9305–9319.

[32] CHANG, D. C., MCWATTERS, H. G., WILLIAMS, J. A., GOTTER, A. L., LEVINE, J. D., AND

REPPERT, S. M. Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea perny. J Biol Chem 278, 40 (Oct 2003), 38149–38158.

[33] CHANG, D. C.,ANDREPPERT, S. M. A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription. Curr Biol 13, 9 (Apr 2003), 758–762.

[34] CHATTERJEE, A.,ANDHARDIN, P. E. Time to taste: circadian clock function in the Drosophila gustatory system. Fly (Austin) 4, 4 (2010), 283–287.

[35] CHATTERJEE, A., TANOUE, S., HOUL, J. H., AND HARDIN, P. E. Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock. Curr Biol 20, 4 (Feb 2010), 300–309.

[36] CHAVES, I., POKORNY, R., BYRDIN, M., HOANG, N., RITZ, T., BRETTEL, K., ESSEN, L.-O.,

VAN DERHORST, G. T. J., BATSCHAUER, A.,ANDAHMAD, M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62 (Jun 2011), 335–364.

[37] CHAVES, I., YAGITA, K., BARNHOORN, S., OKAMURA, H., VAN DER HORST, G. T. J., AND

TAMANINI, F. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol Cell Biol 26, 5 (Mar 2006), 1743–1753.

[38] CHIU, J. C., VANSELOW, J. T., KRAMER, A., AND EDERY, I. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev 22, 13 (Jul 2008), 1758–1772.

[39] CLARIDGE-CHANG, A., WIJNEN, H., NAEF, F., BOOTHROYD, C., RAJEWSKY, N., AND

YOUNG, M. W. Circadian regulation of gene expression systems in the Drosophila head. Neuron 32, 4 (Nov 2001), 657–671.

[40] CODD, V., DOLEZEL, D., STEHLIK, J., PICCIN, A., GARNER, K. J., RACEY, S. N., STRAAT

-MAN, K. R., LOUIS, E. J., COSTA, R., SAUMAN, I., KYRIACOU, C. P., AND ROSATO, E.

Circadian rhythm gene regulation in the housefly Musca domestica. Genetics 177, 3 (Nov 2007), 1539–1551.

[41] COLLINS, B., MAZZONI, E. O., STANEWSKY, R., AND BLAU, J. Drosophila CRYP-TOCHROME is a circadian transcriptional repressor. Curr Biol 16, 5 (Mar 2006), 441–449.

[42] COLOT, H. V., HALL, J. C., AND ROSBASH, M. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO J 7, 12 (Dec 1988), 3929–3937.

[43] COLWELL, C. S.,ANDPAGE, T. L. The electroretinogram of the cockroach Leucophaea maderae.

Comp Biochem Physiol A Comp Physiol 92, 1 (1989), 117–123.

[44] CONSTANCE, C. M., GREEN, C. B., TEI, H., AND BLOCK, G. D. Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms 17, 5 (Oct 2002), 413–427.

[45] CORNWELL, P. G. The Cockroach: a laboratory insect and an industrial pest. Hutchinson of London, 1968.

[46] CORTES´ , T., ORTIZ-RIVAS, B.,ANDMART´INEZ-TORRES, D. Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19 Suppl 2 (Mar 2010), 123–139.

[47] COSTA, R., PEIXOTO, A. A., BARBUJANI, G., AND KYRIACOU, C. P. A latitudinal cline in a Drosophila clock gene. Proc Biol Sci 250, 1327 (Oct 1992), 43–49.

[48] CURRIE, J., GODA, T.,ANDWIJNEN, H. Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol 7 (2009), 49.

[49] CURTIN, K. D., HUANG, Z. J., AND ROSBASH, M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14, 2 (Feb 1995), 365–372.

[50] CYRAN, S. A., BUCHSBAUM, A. M., REDDY, K. L., LIN, M.-C., GLOSSOP, N. R. J., HARDIN, P. E., YOUNG, M. W., STORTI, R. V., AND BLAU, J. Vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 3 (Feb 2003), 329–341.

[51] CYRAN, S. A., YIANNOULOS, G., BUCHSBAUM, A. M., SAEZ, L., YOUNG, M. W., AND

BLAU, J. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci 25, 22 (Jun 2005), 5430–5437.

[52] CZARNA, A., BERNDT, A., SINGH, H. R., GRUDZIECKI, A., LADURNER, A. G., TIMIN

-SZKY, G., KRAMER, A., AND WOLF, E. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 6 (Jun 2013), 1394–1405.

[53] DANBARA, Y., SAKAMOTO, T., URYU, O., AND TOMIOKA, K. RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus. J Insect Physiol 56, 12 (Dec 2010), 1738–1745.

[54] DARLINGTON, T. K., WAGER-SMITH, K., CERIANI, M. F., STAKNIS, D., GEKAKIS, N., STEEVES, T. D., WEITZ, C. J., TAKAHASHI, J. S., AND KAY, S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 5369 (Jun 1998), 1599–1603.

[55] DE LAPAZFERNANDEZ´ , M., CHU, J., VILLELLA, A., ATKINSON, N., KAY, S. A.,ANDCERI

-ANI, M. F. Impaired clock output by altered connectivity in the circadian network. Proc Natl Acad Sci U S A 104, 13 (Mar 2007), 5650–5655.

[56] DEMAIRAN, J. J. Observation Botanique. Hist.Acad.R.Sci. (1729), 35–36.

[57] DEBRUYNE, J. P., WEAVER, D. R.,ANDREPPERT, S. M. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10, 5 (May 2007), 543–545.

[58] DENLINGER, D., YOCUM, G., AND RINEHART, J. Hormonal Control of Diapause. In Insect Endocrinology, L. I. Gilbert, Ed. Academic Press, San Diego, 2012, pp. 430 – 463.

[59] DISSEL, S., CODD, V., FEDIC, R., GARNER, K. J., COSTA, R., KYRIACOU, C. P., AND

ROSATO, E. A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci 7, 8 (Aug 2004), 834–840.

[60] DOLEZEL, D., SAUMAN, I., KOST’ ´AL, V., AND HODKOVA, M. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J Biol Rhythms 22, 4 (Aug 2007), 335–342.

[61] DOLEZELOVA, E., DOLEZEL, D., ANDHALL, J. C. Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177, 1 (Sep 2007), 329–345.

[62] DOWSE, H. B., ANDPALMER, J. D. Entrainment of circadian activity rhythms in mice by elec-trostatic fields. Nature 222, 5193 (May 1969), 564–566.

[63] EDERY, I., ZWIEBEL, L. J., DEMBINSKA, M. E.,ANDROSBASH, M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A 91, 6 (Mar 1994), 2260–2264.

[64] EMERSON, K. J., DAKE, S. J., BRADSHAW, W. E.,ANDHOLZAPFEL, C. M. Evolution of pho-toperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195, 4 (Apr 2009), 385–391.

[65] EMERY, I. F., NOVERAL, J. M., JAMISON, C. F.,ANDSIWICKI, K. K. Rhythms of Drosophila period gene expression in culture. Proc Natl Acad Sci U S A 94, 8 (Apr 1997), 4092–4096.

[66] EMERY, P., SO, W. V., KANEKO, M., HALL, J. C., AND ROSBASH, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 5 (Nov 1998), 669–679.

[67] EMERY, P., STANEWSKY, R., HELFRICH-F ¨ORSTER, C., EMERY-LE, M., HALL, J. C., AND

ROSBASH, M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 2 (May 2000), 493–504.

[68] ENGELMANN, W., HELLRUNG, W., ANDJOHNSSON, A. Circadian locomotor activity of Musca flies: recording method and effects of 10 Hz square-wave electric fields. Bioelectromagnetics 17, 2 (1996), 100–110. Magneto.

[69] EWER, J., FRISCH, B., HAMBLEN-COYLE, M. J., ROSBASH, M.,ANDHALL, J. C. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J Neurosci 12, 9 (Sep 1992), 3321–3349.

[70] FABRICIUS, J. Species insectorum exhibentes eorum differentias specificas, synonyma auctorum, loca natalia, metamorphosin. No. Bd. 1 in Species insectorum exhibentes eorum differentias speci-ficas, synonyma auctorum, loca natalia, metamorphosin. 1781.

[71] FANG, Y., SATHYANARAYANAN, S., AND SEHGAL, A. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev 21, 12 (Jun 2007), 1506–1518.

[72] FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (1985), 783–791.

[73] FOGLE, K. J., PARSON, K. G., DAHM, N. A., AND HOLMES, T. C. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331, 6023 (Mar 2011), 1409–1413.

[74] FOURTNER, C. R. & KAARS, C. J. Anatomy of the central nervous system and its usefulness as a model for neurobiology. In: Cockroaches as models for neurobiology: applications in biomedical research. Volume I. Eds.: Huber, A., Masler, E. P. & Rao, B. R. CRC press Florida, USA. (1990), 65–87.

[75] FRANC¸OIS, P., DESPIERRE, N., AND SIGGIA, E. D. Adaptive temperature compensation in circadian oscillations. PLoS Comput Biol 8, 7 (2012), e1002585.

[76] FROY, O., GOTTER, A. L., CASSELMAN, A. L.,ANDREPPERT, S. M. Illuminating the circadian clock in monarch butterfly migration. Science 300, 5623 (May 2003), 1303–1305.

[77] GEGEAR, R. J., CASSELMAN, A., WADDELL, S.,ANDREPPERT, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 7207 (Aug 2008), 1014–1018.

[78] GEGEAR, R. J., FOLEY, L. E., CASSELMAN, A.,ANDREPPERT, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 7282 (Feb 2010), 804–807.

[79] GEKAKIS, N., SAEZ, L., DELAHAYE-BROWN, A. M., MYERS, M. P., SEHGAL, A., YOUNG, M. W.,AND WEITZ, C. J. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270, 5237 (Nov 1995), 811–815.

[80] GIEBULTOWICZ, J. M.,AND HEGE, D. M. Circadian clock in Malpighian tubules. Nature 386, 6626 (Apr 1997), 664.

[81] GIEBULTOWICZ, J. M., STANEWSKY, R., HALL, J. C., AND HEGE, D. M. Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr Biol 10, 2 (Jan 2000), 107–110.

[82] GLASER, F. T., ANDSTANEWSKY, R. Temperature synchronization of the Drosophila circadian clock. Curr Biol 15, 15 (Aug 2005), 1352–1363.

[83] GLOSSOP, N. R., LYONS, L. C., AND HARDIN, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 5440 (Oct 1999), 766–768.

[84] GLOSSOP, N. R. J., HOUL, J. H., ZHENG, H., NG, F. S., DUDEK, S. M., AND HARDIN, P. E.

VRILLE feeds back to control circadian transcription of clock in the Drosophila circadian oscillator.

Neuron 37, 2 (Jan 2003), 249–261.

[85] GOTO, S. G. Roles of circadian clock genes in insect photoperiodism. Entomological Science 16, 1 (2013), 1–16.

[86] GOTO, S. G., AND DENLINGER, D. L. Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. J Insect Physiol 48, 8 (Aug 2002), 803–816.

[87] GOTO, S. G., HAN, B., ANDDENLINGER, D. L. A nondiapausing variant of the flesh fly, Sar-cophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. J Insect Physiol 52, 11-12 (2006), 1213–1218.

[88] GOTTER, A. L., LEVINE, J. D., AND REPPERT, S. M. Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromo-somes. Neuron 24, 4 (Dec 1999), 953–965.

[89] GRIMA, B., CHELOT´ , E., XIA, R.,ANDROUYER, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 7010 (Oct 2004), 869–873.

[90] GUBLER, U., AND HOFFMAN, B. J. A simple and very efficient method for generating cDNA libraries. Gene 25, 2-3 (Nov 1983), 263–269.

[91] HAO, H., ALLEN, D. L., AND HARDIN, P. E. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 17, 7 (Jul 1997), 3687–3693.

[92] HARDIN, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74 (2011), 141–173.

[93] HARDIN, P. E., HALL, J. C.,ANDROSBASH, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 6258 (Feb 1990), 536–540.

[94] HARKER, J. E. Diurnal rhythms in Periplaneta americana L. Nature 173, 4406 (Apr 1954), 689–690.

[95] HARKER, J. E. Factors controlling the diurnal rhythm of activity of Periplaneta americana L. J.

Exp. Biol. 33 (1956), 224–234.

[96] HEFTI, M. H., FRANC¸OIJS, K.-J., DE VRIES, S. C., DIXON, R., ANDVERVOORT, J. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 271, 6 (Mar 2004), 1198–1208.

[97] HELFRICH-F ¨ORSTER, C., SHAFER, O. T., W ¨ULBECK, C., GRIESHABER, E., RIEGER, D.,

AND TAGHERT, P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 500, 1 (Jan 2007), 47–70.

[98] HELFRICH-F ¨ORSTER, C., WINTER, C., HOFBAUER, A., HALL, J. C., AND STANEWSKY, R.

The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30, 1 (Apr 2001), 249–261.

[99] HELFRICH-F ¨ORSTER, C., YOSHII, T., W ¨ULBECK, C., GRIESHABER, E., RIEGER, D., BACH

-LEITNER, W., CUSAMANO, P., AND ROUYER, F. The lateral and dorsal neurons of Drosophila melanogaster: new insights about their morphology and function. Cold Spring Harb Symp Quant Biol 72 (2007), 517–525.

[100] HEMSLEY, M. J., MAZZOTTA, G. M., MASON, M., DISSEL, S., TOPPO, S., PAGANO, M. A., SANDRELLI, F., MEGGIO, F., ROSATO, E., COSTA, R.,ANDTOSATTO, S. C. E. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem Biophys Res Commun 355, 2 (Apr 2007), 531–537.

[101] HENNIG, S., STRAUSS, H. M., VANSELOW, K., YILDIZ, O., SCHULZE, S., ARENS, J., KRAMER, A., AND WOLF, E. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol 7, 4 (Apr 2009), e94.

[102] HIRAYAMA, J., NAKAMURA, H., ISHIKAWA, T., KOBAYASHI, Y., AND TODO, T. Functional and structural analyses of cryptochrome. vertebrate cry regions responsible for interaction with the clock:bmal1 heterodimer and its nuclear localization.

[103] HOANG, N., SCHLEICHER, E., KACPRZAK, S., BOULY, J.-P., PICOT, M., WU, W., BERNDT, A., WOLF, E., BITTL, R., AND AHMAD, M. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol 6, 7 (Jul 2008), e160.

[104] HODGE, J. J.,ANDSTANEWSKY, R. Function of the Shaw potassium channel within the Drosophil circadian clock. PLoS One 3, 5 (2008), e2274.

[105] HODKOVA, M., SYROVA, Z., DOLEZEL, D., AND SAUMAN, I. Period gene expression in re-lation to seasonality and circadian rhythms in the linden bug, Pyrrhocoris apterus (Heteroptera).

European Journal of Entomology 100, 2 (2003), 267–273.

[106] HOGENESCH, J. B., GU, Y. Z., JAIN, S., AND BRADFIELD, C. A. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors.

Proc Natl Acad Sci U S A 95, 10 (May 1998), 5474–5479.

[107] HOLLAND, P. M., ABRAMSON, R. D., WATSON, R., AND GELFAND, D. H. Detection of spe-cific polymerase chain reaction product by utilizing the 5’—-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88, 16 (Aug 1991), 7276–7280.

[108] HOLTON, T. A.,ANDGRAHAM, M. W. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res 19, 5 (Mar 1991), 1156.

[109] HOMBERG, U., W ¨URDEN, S., DIRCKSEN, H., AND RAO, K. R. Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell and Tissue Research 266 (1991), 343–357.

[110] HOSOKAWA, N., HATAKEYAMA, T. S., KOJIMA, T., KIKUCHI, Y., ITO, H., ANDIWASAKI, H.

Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proc Natl Acad Sci U S A 108, 37 (Sep 2011), 15396–15401.

[111] HOUL, J. H., YU, W., DUDEK, S. M.,ANDHARDIN, P. E. Drosophila CLOCK is constitutively expressed in circadian oscillator and non-oscillator cells. J Biol Rhythms 21, 2 (Apr 2006), 93–103.

[112] HU, K., REICHERT, H., AND STARK, W. Electrophysiological characterization of Drosophila ocelli. Journal of comparative physiology 126, 1 (1978), 15–24.

[113] HUANG, Z. J., CURTIN, K. D., AND ROSBASH, M. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267, 5201 (Feb 1995), 1169–1172.

[114] HUANG, Z. J., EDERY, I., AND ROSBASH, M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364, 6434 (Jul 1993), 259–262.

[115] HUNTER-ENSOR, M., OUSLEY, A., AND SEHGAL, A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 5 (Mar 1996), 677–685.

[116] IKENO, T., KATAGIRI, C., NUMATA, H., ANDGOTO, S. G. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris.

Insect Mol Biol 20, 3 (Jun 2011), 409–415.

[117] IKENO, T., NUMATA, H., AND GOTO, S. G. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions. Gene 419, 1-2 (Aug 2008), 56–61.

[118] IKENO, T., NUMATA, H., AND GOTO, S. G. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol 57, 7 (Jul 2011), 935–938.

[119] IKENO, T., NUMATA, H., AND GOTO, S. G. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem Biophys Res Commun 410, 3 (Jul 2011), 394–397.

[120] IKENO, T., TANAKA, S. I., NUMATA, H., ANDGOTO, S. G. Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol 8 (2010), 116.

[121] INGRAM, K. K., KUTOWOI, A., WURM, Y., SHOEMAKER, D., MEIER, R., AND BLOCH, G.

The molecular clockwork of the fire ant Solenopsis invicta. PLoS One 7, 11 (2012), e45715.

[122] ITO, C., GOTO, S. G., SHIGA, S., TOMIOKA, K., ANDNUMATA, H. Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A 105, 24 (Jun 2008), 8446–8451.

[123] IVANCHENKO, M., STANEWSKY, R., AND GIEBULTOWICZ, J. M. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 16, 3 (Jun 2001), 205–215.

[124] IWAI, S., FUKUI, Y., FUJIWARA, Y., ANDTAKEDA, M. Structure and expressions of two circa-dian clock genes, period and timeless in the commercial silkmoth, Bombyx mori. J Insect Physiol 52, 6 (Jun 2006), 625–637.

[125] JARAMILLO, A. M., ZENG, H., FEI, H., ZHOU, Y.,ANDLEVITAN, I. B. Expression and function of variants of slob, slowpoke channel binding protein, in Drosophila. J Neurophysiol 95, 3 (Mar 2006), 1957–1965.

[126] JARAMILLO, A. M., ZHENG, X., ZHOU, Y., AMADO, D. A., SHELDON, A., SEHGAL, A.,AND

LEVITAN, I. B. Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila. BMC Neurosci 5 (Jan 2004), 3.

[127] JEPSON, J. E. C., SHAHIDULLAH, M., LAMAZE, A., PETERSON, D., PAN, H., AND KOH, K. Dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels. PLoS Genet 8, 4 (2012), e1002671.

[128] KADENER, S., STOLERU, D., MCDONALD, M., NAWATHEAN, P., ANDROSBASH, M. Clock-work orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Genes Dev 21, 13 (Jul 2007), 1675–1686.

[129] KAMAE, Y., AND TOMIOKA, K. Timeless is an essential component of the circadian clock in a primitive insect, the firebrat Thermobia domestica. J Biol Rhythms 27, 2 (Apr 2012), 126–134.

[130] KANEKO, M., AND HALL, J. C. Neuroanatomy of cells expressing clock genes in drosophila:

transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pace-maker neurons and their projections. J Comp Neurol 422, 1 (Jun 2000), 66–94.

[131] KAPPA, S. Photoperiode-abh¨angige Plastizit¨at des circadianen Schrittmacherzentrums der Sch-abe Rhyparobia maderae - Immunzytochemiche Untersuchungen Pigment-Dispersing Faktor und Orcokinin enthaltender Neurone. Diploma Thesis, Johannes-Gutenberg-Universit¨at Mainz (2012), 118.

[132] KEEGAN, K. P., PRADHAN, S., WANG, J.-P., AND ALLADA, R. Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes. PLoS Comput Biol 3, 11 (Nov 2007), e208.

[133] KEVAN, D. K. M. Names involving the madeira and surinam cockroaches (Dictuoptera, Blattodea, Nauphoetidae). The entomologist’s Record 92 (1980), 77–82.

[134] KIM, E. Y., BAE, K., NG, F. S., GLOSSOP, N. R. J., HARDIN, P. E.,ANDEDERY, I. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34, 1 (Mar 2002), 69–81.

[135] KIM, E. Y., AND EDERY, I. Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci U S A 103, 16 (Apr 2006), 6178–6183.

[136] KIM, E. Y., KO, H. W., YU, W., HARDIN, P. E., AND EDERY, I. A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, tran-scriptional repression, and circadian clock function. Mol Cell Biol 27, 13 (Jul 2007), 5014–5028.

[137] KING, H. A., HOELZ, A., CRANE, B. R., ANDYOUNG, M. W. Structure of an enclosed dimer formed by the Drosophila period protein. J Mol Biol 413, 3 (Oct 2011), 561–572.

[138] KIVIMAE¨ , S., SAEZ, L.,ANDYOUNG, M. W. Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol 6, 7 (Jul 2008), e183.

[139] KLOSS, B., PRICE, J. L., SAEZ, L., BLAU, J., ROTHENFLUH, A., WESLEY, C. S.,ANDYOUNG, M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase I epsilon. Cell 94, 1 (Jul 1998), 97–107.

[140] KLOSS, B., ROTHENFLUH, A., YOUNG, M. W., ANDSAEZ, L. Phosphorylation of PERIOD is influenced by cycling physical associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila clock. Neuron 30, 3 (Jun 2001), 699–706.

[141] KNOWLES, A., KOH, K., WU, J.-T., CHIEN, C.-T., CHAMOVITZ, D. A., AND BLAU, J. The COP9 signalosome is required for light-dependent TIMELESS degradation and Drosophila clock resetting. J Neurosci 29, 4 (Jan 2009), 1152–1162.

[142] KO, H. W., JIANG, J., AND EDERY, I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420, 6916 (Dec 2002), 673–678.

[143] KO, H. W., KIM, E. Y., CHIU, J., VANSELOW, J. T., KRAMER, A.,ANDEDERY, I. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J Neurosci 30, 38 (Sep 2010), 12664–12675.

[144] KOH, K., ZHENG, X., AND SEHGAL, A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312, 5781 (Jun 2006), 1809–1812.

[145] KONOPKA, R. J., ANDBENZER, S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68, 9 (Sep 1971), 2112–2116.

[146] KONOPKA, R. J., PITTENDRIGH, C.,ANDORR, D. Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J Neurogenet 6, 1 (Sep 1989), 1–10.

[147] KOSTˇ AL´ , V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? J Insect Physiol 57, 5 (May 2011), 538–556.

[148] KRISHNAN, B., DRYER, S. E.,ANDHARDIN, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 6742 (Jul 1999), 375–378.

[149] KRISHNAN, B., LEVINE, J. D., LYNCH, M. K., DOWSE, H. B., FUNES, P., HALL, J. C., HARDIN, P. E., AND DRYER, S. E. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 6835 (May 2001), 313–317.

[150] KULA-EVERSOLE, E., NAGOSHI, E., SHANG, Y., RODRIGUEZ, J., ALLADA, R., AND ROS

-BASH, M. Surprising gene expression patterns within and between PDF-containing circadian neu-rons in Drosophila. Proc Natl Acad Sci U S A 107, 30 (Jul 2010), 13497–13502.

[151] KUME, K., ZYLKA, M. J., SRIRAM, S., SHEARMAN, L. P., WEAVER, D. R., JIN, X., MAY

-WOOD, E. S., HASTINGS, M. H., AND REPPERT, S. M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 2 (Jul 1999), 193–

205.

[152] KUNITZ, M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol 33, 4 (Mar 1950), 349–362.

[153] LANDSKRON, J., CHEN, K. F., WOLF, E., AND STANEWSKY, R. A role for the PE-RIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol 7, 4 (Apr 2009), e3.

[154] LANKINEN, P., ANDFORSMAN, P. Independence of genetic geographical variation between pho-toperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J Biol Rhythms 21, 1 (Feb 2006), 3–12.

[155] LEAR, B. C., LIN, J.-M., KEATH, J. R., MCGILL, J. J., RAMAN, I. M.,ANDALLADA, R. The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker.

Neuron 48, 6 (Dec 2005), 965–976.

[156] LEE, C., BAE, K., AND EDERY, I. [the Drosophila clock protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the per-tim complex.

[157] LEE, T.,ANDLUO, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 3 (Mar 1999), 451–461.

[158] LEES, A. Photoperiodic time measurement in the aphid Megoura viciae. Journal of Insect Physi-ology 19, 12 (1973), 2279 – 2316.

[159] LEES, A. Some effects of temperature on the hour glass photoperiod timer in the aphid Megoura viciae. Journal of Insect Physiology 32, 1 (1986), 79 – 89.

[160] LETUNIC, I., DOERKS, T., AND BORK, P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40, Database issue (Jan 2012), D302–D305.

[161] LEVINE, J. D., FUNES, P., DOWSE, H. B., AND HALL, J. C. Advanced analysis of a cryp-tochrome mutation’s effects on the robustness and phase of molecular cycles in isolated peripheral tissues of Drosophila. BMC Neurosci 3 (Apr 2002), 5.

[162] LILLIEFORS, H. W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of the American Statistical Association 64 (1969), 387–389.

[163] LIM, C., CHUNG, B. Y., PITMAN, J. L., MCGILL, J. J., PRADHAN, S., LEE, J., KEEGAN, K. P., CHOE, J.,AND ALLADA, R. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 17, 12 (Jun 2007), 1082–1089.

[164] LIM, C., LEE, J., CHOI, C., KILMAN, V. L., KIM, J., PARK, S. M., JANG, S. K., ALLADA, R.,

ANDCHOE, J. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature 470, 7334 (Feb 2011), 399–403.

[165] LIN, C.,ANDTODO, T. The cryptochromes. Genome Biol 6, 5 (2005), 220.

[166] LIN, G. G.-H., LIOU, R.-F., AND LEE, H.-J. The period gene of the German cockroach and its novel linking power between vertebrate and invertebrate. Chronobiol Int 19, 6 (Nov 2002), 1023–1040.

[167] LIN, J.-M., KILMAN, V. L., KEEGAN, K., PADDOCK, B., EMERY-LE, M., ROSBASH, M.,AND

ALLADA, R. A role for casein kinase 2 alpha in the Drosophila circadian clock. Nature 420, 6917 (2002), 816–820.

[168] LIN, Y., HAN, M., SHIMADA, B., WANG, L., GIBLER, T. M., AMARAKONE, A., AWAD, T. A., STORMO, G. D., VANGELDER, R. N.,AND TAGHERT, P. H. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster.

Proc Natl Acad Sci U S A 99, 14 (Jul 2002), 9562–9567.

[169] LOESEL, R., AND HOMBERG, U. Histamine-immunoreactive neurons in the brain of the cock-roach Leucophaea maderae. Brain Res 842, 2 (Sep 1999), 408–418.

[170] LUCAS-LLEDO´, J. I.,ANDLYNCH, M. Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 26, 5 (May 2009), 1143–1153.

[171] LUKAT, R., ANDWEBER, F. The structure of locomotor activity in bilobectomized cockroaches (Blaberus fuscus). Experientia 35, 1 (1979), 38–39.

[172] LUKAT, R., WEBER, F., AND WIEDENMANN, G. Cyclic layer deposition in the cockroach (Blaberus craniifer) endocuticle: A decentral circadian “clock”? . Journal of Insect Physiology 35, 4 (1989), 321 – 329.

[173] MAJERCAK, J., SIDOTE, D., HARDIN, P. E., AND EDERY, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 1 (Sep 1999), 219–230.

[174] MARCHLER-BAUER, A., LU, S., ANDERSON, J. B., CHITSAZ, F., DERBYSHIRE, M. K., DEWEESE-SCOTT, C., FONG, J. H., GEER, L. Y., GEER, R. C., GONZALES, N. R., GWADZ, M., HURWITZ, D. I., JACKSON, J. D., KE, Z., LANCZYCKI, C. J., LU, F., MARCHLER, G. H., MULLOKANDOV, M., OMELCHENKO, M. V., ROBERTSON, C. L., SONG, J. S., THANKI, N., YAMASHITA, R. A., ZHANG, D., ZHANG, N., ZHENG, C., ANDBRYANT, S. H. CDD: a Con-served Domain Database for the functional annotation of proteins. Nucleic Acids Res 39, Database issue (Jan 2011), D225–D229.

[175] MARCHUK, D., DRUMM, M., SAULINO, A.,ANDCOLLINS, F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19, 5 (Mar 1991), 1154.

[176] MARFORI, M., LONHIENNE, T. G., FORWOOD, J. K., ANDKOBE, B. Structural basis of high-affinity nuclear localization signal interactions with importin-alpha. Traffic 13, 4 (Apr 2012), 532–

548.

[177] MARKOVA, E. P., UEDA, H., SAKAMOTO, K., OISHI, K., SHIMADA, T., AND TAKEDA, M.

Cloning of Cyc (Bmal1) homolog in Bombyx mori: structural analysis and tissue specific distribu-tions. Comp Biochem Physiol B Biochem Mol Biol 134, 3 (Mar 2003), 535–542.

[178] MARTINEK, S., INONOG, S., MANOUKIAN, A. S.,ANDYOUNG, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 6 (Jun 2001), 769–779.

[179] MATHIAS, D., REED, L. K., BRADSHAW, W. E.,ANDHOLZAPFEL, C. M. Evolutionary diver-gence of circadian and photoperiodic phenotypes in the pitcher-plant mosquito, Wyeomyia smithii.

J Biol Rhythms 21, 2 (Apr 2006), 132–139.

[180] MATSUMOTO, A., UKAI-TADENUMA, M., YAMADA, R. G., HOUL, J., UNO, K. D., KA

-SUKAWA, T., DAUWALDER, B., ITOH, T. Q., TAKAHASHI, K., UEDA, R., HARDIN, P. E., TANIMURA, T., ANDUEDA, H. R. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 21, 13 (Jul 2007), 1687–

1700.

[181] MAZZOTTA, G., ROSSI, A., LEONARDI, E., MASON, M., BERTOLUCCI, C., CACCIN, L., SPO

-LAORE, B., MARTIN, A. J. M., SCHLICHTING, M., GREBLER, R., HELFRICH-F ¨ORSTER, C., MAMMI, S., COSTA, R.,ANDTOSATTO, S. C. E. Fly cryptochrome and the visual system. Proc Natl Acad Sci U S A 110, 15 (Apr 2013), 6163–6168.

[182] MAZZOTTA, G. M., SANDRELLI, F., ZORDAN, M. A., MASON, M., BENNA, C., CISOTTO, P., ROSATO, E., KYRIACOU, C. P., AND COSTA, R. The clock gene period in the medfly Ceratitis capitata. Genet Res 86, 1 (Aug 2005), 13–30.

[183] MCDONALD, M. J., ANDROSBASH, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 5 (Nov 2001), 567–578.

[184] MEHNERT, K. I., BERAMENDI, A., ELGHAZALI, F., NEGRO, P., KYRIACOU, C. P.,ANDCAN

-TERA, R. Circadian changes in Drosophila motor terminals. Dev Neurobiol 67, 4 (Mar 2007), 415–421.

[185] MEHNERT, K. I., AND CANTERA, R. A peripheral pacemaker drives the circadian rhythm of synaptic boutons in Drosophila independently of synaptic activity. Cell Tissue Res 334, 1 (Oct 2008), 103–109.

[186] MEISSNER, R.-A., KILMAN, V. L., LIN, J.-M., AND ALLADA, R. TIMELESS is an important mediator of CK2 effects on circadian clock function in vivo. J Neurosci 28, 39 (Sep 2008), 9732–

9740.

[187] MERLIN, C., FRANC¸OIS, M.-C., QUEGUINER, I., MA¨IBECHE` -COISNE´, M., AND JACQUIN -JOLY, E. Evidence for a putative antennal clock in Mamestra brassicae: molecular cloning and characterization of two clock genes – period and cryptochrome – in antennae. Insect Mol Biol 15, 2 (Apr 2006), 137–145.

[188] MERLIN, C., LUCAS, P., ROCHAT, D., FRANC¸OIS, M.-C., MA¨IBECHE` -COISNE, M., AND

JACQUIN-JOLY, E. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J Biol Rhythms 22, 6 (Dec 2007), 502–514.

[189] MEYER, P., SAEZ, L.,ANDYOUNG, M. W. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311, 5758 (Jan 2006), 226–229.

[190] MORIYAMA, Y., KAMAE, Y., URYU, O., AND TOMIOKA, K. gb’clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. J Biol Rhythms 27, 6 (Dec 2012), 467–477.

[191] MORIYAMA, Y., SAKAMOTO, T., KARPOVA, S. G., MATSUMOTO, A., NOJI, S., AND

TOMIOKA, K. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. J Biol Rhythms 23, 4 (Aug 2008), 308–318.

[192] MORIYAMA, Y., SAKAMOTO, T., MATSUMOTO, A., NOJI, S., ANDTOMIOKA, K. Functional analysis of the circadian clock gene period by RNA interference in nymphal crickets Gryllus bi-maculatus. J Insect Physiol 55, 2 (Feb 2009), 183–187.

[193] MOTE, M. I.,ANDBLACK, K. R. Action spectrum and threshold sensitivity of entrainment of cir-cadian running activity In the cockroach Periplaneta americana. Photochemistry and Photobiology 34, 2 (1981), 257–265.

[194] MOTE, M. I.,AND GOLDSMITH, T. H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J Exp Zool 173, 2 (Feb 1970), 137–145.

[195] MUGURUMA, F., GOTO, S. G., NUMATA, H., AND SHIGA, S. Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae. Cell Tissue Res 340, 3 (Jun 2010), 497–507.

[196] MURAD, A., EMERY-LE, M., AND EMERY, P. A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53, 5 (Mar 2007), 689–701.

[197] MURRE, C., MCCAW, P. S., VAESSIN, H., CAUDY, M., JAN, L. Y., JAN, Y. N., CABRERA, C. V., BUSKIN, J. N., HAUSCHKA, S. D.,ANDLASSAR, A. B. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence.

Cell 58, 3 (Aug 1989), 537–544.

[198] MYERS, M. P., WAGER-SMITH, K., ROTHENFLUH-HILFIKER, A.,ANDYOUNG, M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271, 5256 (Mar 1996), 1736–1740.

[199] MYERS, M. P., WAGER-SMITH, K., WESLEY, C. S., YOUNG, M. W., AND SEHGAL, A. Po-sitional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270, 5237 (Nov 1995), 805–808.

[200] NAIDOO, N., SONG, W., HUNTER-ENSOR, M.,ANDSEHGAL, A. A role for the proteasome in the light response of the timeless clock protein. Science 285, 5434 (Sep 1999), 1737–1741.

[201] NAKAJIMA, M., IMAI, K., ITO, H., NISHIWAKI, T., MURAYAMA, Y., IWASAKI, H., OYAMA, T., ANDKONDO, T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphoryla-tion in vitro. Science 308, 5720 (Apr 2005), 414–415.

[202] NAMBU, J. R., LEWIS, J. O., WHARTON, K. A., AND CREWS, S. T. The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67, 6 (Dec 1991), 1157–1167.

[203] NANDA, K. K., ANDHAMNER, K. C. Studies on the nature of the endogenous rhythm affecting photoperiodic response of biloxi soybean. Botanical Gazette 120, 1 (1958), pp. 14–25.

[204] NAWATHEAN, P.,ANDROSBASH, M. The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol Cell 13, 2 (Jan 2004), 213–223.

[205] NAWATHEAN, P., STOLERU, D., AND ROSBASH, M. A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional re-pressor activity. Mol Cell Biol 27, 13 (Jul 2007), 5002–5013.

[206] NELSON, W., TONG, Y. L., LEE, J. K.,ANDHALBERG, F. Methods for cosinor-rhythmometry.

Chronobiologia 6, 4 (1979), 305–323.

[207] NGUYENBA, A. N., POGOUTSE, A., PROVART, N.,ANDMOSES, A. M. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10 (2009), 202.

[208] NISHIITSUTSUJI-UWO, J. & PITTENDRIGH, C. S. Central nervous system control of circadian rhythmicity in the cockroach II. The pathway of light signals that entrain the rhythm. Zeitschrift f¨ur vergleichende Physiologie 58 (1968), 1–13.

[209] NISHIITSUTSUJI-UWO, J. & PITTENDRIGH, C. S. Central nervous system control of circadian rhythmicity in the cockroach III . The optic lobes, Locus of the driving oscillation? Zeitschrift f¨ur vergleichende Physiologie 58 (1968), 14–46.

[210] NITABACH, M. N.,ANDTAGHERT, P. H. Organization of the Drosophila circadian control circuit.

Curr Biol 18, 2 (Jan 2008), R84–R93.

[211] N ¨ASSEL, D. R., PERSSON, M. G.,ANDMUREN, J. E. Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: distribution and actions in the cockroach and locust nervous systems. J Comp Neurol 422, 2 (Jun 2000), 267–286.

[212] OHATA, K., NISHIYAMA, H., AND TSUKAHARA, Y. Action spectrum of the circadian clock photoreceptor in Drosophila melanogaster. In: Touitou, Y. (Eds), Biological Clocks: Mechanisms and Applications. Elsevier, Amsterdam. (1998), 167–171.

[213] O’NEILL, J. S.,ANDREDDY, A. B. Circadian clocks in human red blood cells. Nature 469, 7331 (Jan 2011), 498–503.

[214] O’NEILL, J. S.,VANOOIJEN, G., DIXON, L. E., TROEIN, C., CORELLOU, F., BOUGET, F.-Y., REDDY, A. B.,ANDMILLAR, A. J. Circadian rhythms persist without transcription in a eukaryote.

Nature 469, 7331 (Jan 2011), 554–558.

[215] OZBER, N., BARIS, I., TATLICI, G., GUR, I., KILINC, S., UNAL, E. B., AND KAVAKLI, I. H.

Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction. BMC Mol Biol 11 (2010), 69.

[216] PAGE, T. L. Interactions between bilaterally paired components of the cockroach circadian system.

Journal of comparative physiology 124, 3 (1978), 225–236.

[217] PAGE, T. L. Effects of localized low-temperature pulses on the cockroach circadian pacemaker.

Am J Physiol 240, 3 (Mar 1981), R144–R150.

[218] PAGE, T. L. Transplantation of the cockroach circadian pacemaker. Science 216, 4541 (Apr 1982), 73–75.

[219] PAGE, T. L. Regeneration of the optic tracts and circadian pacemaker activity in the cockroach Leucophaea maderae. Journal of comparative physiology 152, 2 (1983), 231–240.

[220] PAGE, T. L. Developmental manipulation of the circadian pacemaker in the cockroach: relationship between pacemaker period and response to light. Physiological Entomology 16 (1991), 243–248.

[221] PAGE, T. L., AND BARRETT, R. K. Effects of light on circadian pacemaker development. II.

Responses to light. J Comp Physiol A 165, 1 (Apr 1989), 51–59.

[222] PAGE, T. L., AND BLOCK, G. D. Circadian rhythmicity in cockroaches: effects of early post-embryonic development and ageing. Physiological Entomology 5, 3 (1980), 271–281.

[223] PAGE, T. L., CALDAROLA, P. C., AND PITTENDRIGH, C. S. Mutual entrainment of bilaterally distributed circadian pacemaker. Proc Natl Acad Sci U S A 74, 3 (Mar 1977), 1277–1281.

[224] PAGE, T. L., AND KOELLING, E. Circadian rhythm in olfactory response in the antennae con-trolled by the optic lobe in the cockroach. J Insect Physiol 49, 7 (Jul 2003), 697–707.

[225] PAGE, T. L., MANS, C., ANDGRIFFETH, G. History dependence of circadian pacemaker period in the cockroach. J Insect Physiol 47, 9 (Sep 2001), 1085–1093.

[226] PARTCH, C. L., GREEN, C. B.,ANDTAKAHASHI, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol (Jul 2013).

[227] PEARN, M. T., RANDALL, L. L., SHORTRIDGE, R. D., BURG, M. G.,ANDPAK, W. L. Molec-ular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J Biol Chem 271, 9 (Mar 1996), 4937–4945.

[228] PEIXOTO, A. A., CAMPESAN, S., COSTA, R., ANDKYRIACOU, C. P. Molecular evolution of a repetitive region within the per gene of Drosophila. Mol Biol Evol 10, 1 (Jan 1993), 127–139.

[229] PENDERGAST, J. S., NISWENDER, K. D., AND YAMAZAKI, S. Tissue-specific function of Pe-riod3 in circadian rhythmicity. PLoS One 7, 1 (2012), e30254.

[230] PESCHEL, N., CHEN, K. F., SZABO, G., AND STANEWSKY, R. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19, 3 (Feb 2009), 241–247.

[231] PESCHEL, N., VELERI, S.,ANDSTANEWSKY, R. Veela defines a molecular link between Cryp-tochrome and Timeless in the light-input pathway to Drosophila’s circadian clock. Proc Natl Acad Sci U S A 103, 46 (Nov 2006), 17313–17318.

[232] PETRI, B., HOMBERG, U., LOESEL, R., AND STENGL, M. Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea ma-derae. J Exp Biol 205, Pt 10 (May 2002), 1459–1469.

[233] PETRI, B., ANDSTENGL, M. Pigment-dispersing hormone shifts the phase of the circadian pace-maker of the cockroach Leucophaea maderae. J Neurosci 17, 11 (Jun 1997), 4087–4093.

[234] PETRI, B., STENGL, M., W ¨URDEN, S.,ANDHOMBERG, U. Immunocytochemical characteriza-tion of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282, 1 (Oct 1995), 3–19.

[235] PFAFFL, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, 9 (May 2001), e45.

[236] PICOT, M., CUSUMANO, P., KLARSFELD, A., UEDA, R., AND ROUYER, F. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol 5, 11 (Nov 2007), e315.

[237] PITMAN, J. L., MCGILL, J. J., KEEGAN, K. P., AND ALLADA, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 7094 (Jun 2006), 753–756.

[238] PITTENDRIGH, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25 (1960), 159–184.

[239] PITTENDRIGH, C. S. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Zeitschrift f¨ur Pflanzenphysiologie 54 (1966), 275–307.

[240] PITTENDRIGH, C. S. Circadian surfaces and the diversity of possible roles of circadian organiza-tion in photoperiodic inducorganiza-tion. Proc Natl Acad Sci U S A 69, 9 (Sep 1972), 2734–2737.

[241] PITTENDRIGH, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55 (1993), 16–54.

[242] PITTENDRIGH, C. S., ANDDAAN, S. A functional analysis of circadian pacemakers in nocturnal rodents. Journal of comparative physiology 106, 3 (1976), 333–355.

[243] PLAUTZ, J. D., STRAUME, M., STANEWSKY, R., JAMISON, C. F., BRANDES, C., DOWSE, H. B., HALL, J. C.,ANDKAY, S. A. Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12, 3 (Jun 1997), 204–217.

[244] PREIBISCH, S., SAALFELD, S., AND TOMANCAK, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 11 (Jun 2009), 1463–1465.

[245] PRICE, J. L., BLAU, J., ROTHENFLUH, A., ABODEELY, M., KLOSS, B.,AND YOUNG, M. W.

Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 1 (Jul 1998), 83–95.

[246] QIU, J., AND HARDIN, P. E. Per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol Cell Biol 16, 8 (Aug 1996), 4182–

4188.

[247] REDDY, P., JACQUIER, A. C., ABOVICH, N., PETERSEN, G., AND ROSBASH, M. The period clock locus of D. melanogaster codes for a proteoglycan. Cell 46, 1 (Jul 1986), 53–61.

[248] REHN, J. A. G. African and Malagasy Blattidae, part III. Proc. Acad. Nat. Sci. Philadelphia 89 (1937), 17–123.

[249] REISCHIG, T., PETRI, B., AND STENGL, M. Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric cir-cadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res 318, 3 (Dec 2004), 553–564.

[250] REISCHIG, T., AND STENGL, M. Morphology and pigment-dispersing hormone immunocyto-chemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leu-cophaea maderae: a light- and electron-microscopic study. Cell and Tissue Research 285 (1996), 305–319.

[251] REISCHIG, T.,AND STENGL, M. Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443, 4 (Feb 2002), 388–400.

[252] REISCHIG, T., ANDSTENGL, M. Ectopic transplantation of the accessory medulla restores circa-dian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206, Pt 11 (Jun 2003), 1877–1886.

[253] REISCHIG, T., ANDSTENGL, M. Ultrastructure of pigment-dispersing hormone-immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockroach Leucophaea ma-derae. Cell Tissue Res 314, 3 (Dec 2003), 421–435.

[254] REPPERT, S. M.,ANDSAUMAN, I. Period and timeless tango: a dance of two clock genes. Neuron 15, 5 (Nov 1995), 983–986.

[255] REPPERT, S. M., TSAI, T., ROCA, A. L.,ANDSAUMAN, I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron 13, 5 (Nov 1994), 1167–1176.

[256] RICHIER, B., MICHARD-VANHEE´ , C., LAMOUROUX, A., PAPIN, C., AND ROUYER, F. The clockwork orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J Biol Rhythms 23, 2 (Apr 2008), 103–116.

[257] RIEGER, D., SHAFER, O. T., TOMIOKA, K.,ANDHELFRICH-F ¨ORSTER, C. Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26, 9 (Mar 2006), 2531–

2543.

[258] RIEGER, D., W ¨ULBECK, C., ROUYER, F.,ANDHELFRICH-F ¨ORSTER, C. Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions. J Biol Rhythms 24, 4 (Aug 2009), 271–282.

[259] RITZ, T., ADEM, S.,ANDSCHULTEN, K. A model for photoreceptor-based magnetoreception in birds. Biophys J 78, 2 (Feb 2000), 707–718.

[260] ROBERTS, S. Circadian rhythms in cockroaches. Journal of comparative physiology 88, 1 (1974), 21–30.

[261] ROBERTS, S. K. Photoreception and Entrainment of Cockroach Activity Rhythms. Science 148, 3672 (May 1965), 958–959.

[262] RODRIGUEZ, J., TANG, C.-H. A., KHODOR, Y. L., VODALA, S., MENET, J. S.,ANDROSBASH, M. Nascent-Seq analysis of Drosophila cycling gene expression. Proc Natl Acad Sci U S A 110, 4 (Jan 2013), E275–E284.

[263] RODRIGUEZ-ZAS, S. L., SOUTHEY, B. R., SHEMESH, Y., RUBIN, E. B., COHEN, M., ROBIN

-SON, G. E.,ANDBLOCH, G. Microarray analysis of natural socially regulated plasticity in circa-dian rhythms of honey bees. J Biol Rhythms 27, 1 (Feb 2012), 12–24.

[264] ROGERS, A. S., ROSATO, E., COSTA, R.,ANDKYRIACOU, C. P. Molecular analysis of circadian clocks in Drosophila simulans. Genetica 120, 1-3 (Mar 2004), 213–222.

[265] ROSATO, E., CODD, V., MAZZOTTA, G., PICCIN, A., ZORDAN, M., COSTA, R., AND KYR

-IACOU, C. P. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr Biol 11, 12 (Jun 2001), 909–917.

[266] ROSEN´ , W. Q., HAN, G.-B., ANDL ¨OFSTEDT, C. The circadian rhythm of the sex-pheromone-mediated behavioral response in the turnip moth, Agrotis segetum, is not controlled at the peripheral level. J Biol Rhythms 18, 5 (Oct 2003), 402–408.

[267] ROTHENFLUH, A., ABODEELY, M., PRICE, J. L.,ANDYOUNG, M. W. Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics 156, 2 (Oct 2000), 665–675.

[268] ROTHENFLUH, A., YOUNG, M. W., AND SAEZ, L. A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron 26, 2 (May 2000), 505–514.

[269] RUBIN, E. B., SHEMESH, Y., COHEN, M., ELGAVISH, S., ROBERTSON, H. M., ANDBLOCH, G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16, 11 (Nov 2006), 1352–1365.

[270] RUTILA, J. E., SURI, V., LE, M., SO, W. V., ROSBASH, M., AND HALL, J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 5 (May 1998), 805–814.

[271] SAEZ, L., DERASMO, M., MEYER, P., STIEGLITZ, J., AND YOUNG, M. W. A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the timeless protein. Genetics 188, 3 (Jul 2011), 591–600.

[272] SAEZ, L., AND YOUNG, M. W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17, 5 (Nov 1996), 911–920.

[273] SAIFULLAH, A. S. M., AND PAGE, T. L. Circadian regulation of olfactory receptor neurons in the cockroach antenna. J Biol Rhythms 24, 2 (Apr 2009), 144–152.

[274] SAITOU, N., ANDNEI, M. The neighbor-joining method: a new method for reconstructing phy-logenetic trees. Mol Biol Evol 4, 4 (Jul 1987), 406–425.

[275] SAMBROOK, J., AND RUSSELL, D. Molecular cloning: a laboratory manual. No. Bd. 1 in Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001.

[276] SANDRELLI, F., COSTA, R., KYRIACOU, C. P., AND ROSATO, E. Comparative analysis of circadian clock genes in insects. Insect Mol Biol 17, 5 (Sep 2008), 447–463.

[277] SANDRELLI, F., TAUBER, E., PEGORARO, M., MAZZOTTA, G., CISOTTO, P., LANDSKRON, J., STANEWSKY, R., PICCIN, A., ROSATO, E., ZORDAN, M., COSTA, R., ANDKYRIACOU, C. P.

A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 5833 (Jun 2007), 1898–1900.

[278] SATHYANARAYANAN, S., ZHENG, X., XIAO, R.,ANDSEHGAL, A. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 4 (Feb 2004), 603–615.

[279] SAUMAN, I., TSAI, T., ROCA, A. L., AND REPPERT, S. M. Period protein is necessary for circadian control of egg hatching behavior in the silkmoth Antheraea pernyi. Neuron 17, 5 (Nov 1996), 901–909.

[280] SAUNDERS, D. S. The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma. J Insect Physiol 19, 10 (Oct 1973), 1941–1954.

[281] SAUNDERS, D. S. Thermoperiodic control of diapause in an insect: theory of internal coincidence.

Science 181, 4097 (Jul 1973), 358–360.

[282] SAUNDERS, D. S. Evidence for ‘dawn’ and ‘dusk’ oscillators in the Nasonia photoperiodic clock.

Journal of Insect Physiology 20, 1 (1974), 77 – 88.

[283] SAUNDERS, D. S. ‘Skeleton’ photoperiods and the control of diapause and development in the flesh-fly, Sarcophaga argyrostoma. Journal of comparative physiology 97, 2 (1975), 97–112.

[284] SAUNDERS, D. S. External coincidence and the photoinducible phase in the Sarcophaga photope-riodic clock. Journal of comparative physiology 132, 2 (1979), 179–189.

[285] SAUNDERS, D. S. Photoperiodic time measurement in Sarcophaga argyrostoma: an attempt to use daily temperature cycles to distinguish external from internal coincidence. Journal of Comparative Physiology A 154, 6 (1984), 789–794.

[286] SAUNDERS, D. S. Controversial aspects of photoperiodism in insects and mites. J Insect Physiol 56, 11 (Nov 2010), 1491–1502.

[287] SAUNDERS, D. S. Unity and diversity in the insect photoperiodic mechanism. Entomological Science 14, 3 (2011), 235–244.

[288] SAUNDERS, D. S. Insect photoperiodism: seeing the light. Physiological Entomology 37, 3 (2012), 207–218.

[289] SAUNDERS, D. S., GILLANDERS, S., AND LEWIS, R. Light-pulse phase response curves for the locomotor activity rhythm in Period mutants of Drosophila melanogaster. Journal of Insect Physiology 40, 11 (1994), 957 – 968.

[290] SAUNDERS, D. S., HENRICH, V. C., ANDGILBERT, L. I. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proceedings of the National Academy of Sciences 86, 10 (1989), 3748–3752.

[291] SAUNDERS, D. S., STEEL, C., VAFOPOULOU, X., AND LEWIS, R. Insect Clocks. In Insect Clocks. Elsevier, Amsterdam, 2002, p. 1560.

[292] SAWYER, L. A., HENNESSY, J. M., PEIXOTO, A. A., ROSATO, E., PARKINSON, H., COSTA, R.,ANDKYRIACOU, C. P. Natural variation in a Drosophila clock gene and temperature compen-sation. Science 278, 5346 (Dec 1997), 2117–2120.

[293] SAWYER, L. A., SANDRELLI, F., PASETTO, C., PEIXOTO, A. A., ROSATO, E., COSTA, R.,AND

KYRIACOU, C. P. The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: implications for selection. Genetics 174, 1 (Sep 2006), 465–480.

[294] SCHIESARI, L., KYRIACOU, C. P., ANDCOSTA, R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett 585, 10 (May 2011), 1450–1460.

[295] SCHMID, B., HELFRICH-F ¨ORSTER, C.,ANDYOSHII, T. A new ImageJ plug-in ”ActogramJ” for chronobiological analyses. J Biol Rhythms 26, 5 (Oct 2011), 464–467.

[296] SCHNEIDER, N.-L.,ANDSTENGL, M. Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae. J Neurophysiol 95, 3 (Mar 2006), 1996–2002.

[297] SCHUCKEL, J., SIWICKI, K. K., AND STENGL, M. Putative circadian pacemaker cells in the antenna of the hawkmoth Manduca sexta. Cell Tissue Res 330, 2 (Nov 2007), 271–278.

[298] SCHULTZ, J., MILPETZ, F., BORK, P., AND PONTING, C. P. SMART, a simple modular archi-tecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 11 (May 1998), 5857–5864.

[299] SCHULZE, J., NEUPERT, S., SCHMIDT, L., PREDEL, R., LAMKEMEYER, T., HOMBERG, U.,

ANDSTENGL, M. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 520, 5 (Apr 2012), 1078–1097.

[300] SEHADOVA´, H., MARKOVA, E. P., SEHNAL, F., AND TAKEDA, M. Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm, Bombyx mori. J Biol Rhythms 19, 6 (Dec 2004), 466–482.

[301] SEHGAL, A., PRICE, J. L., MAN, B., ANDYOUNG, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 5153 (Mar 1994), 1603–

1606.

[302] SEHGAL, A., ROTHENFLUH-HILFIKER, A., HUNTER-ENSOR, M., CHEN, Y., MYERS, M. P.,

ANDYOUNG, M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270, 5237 (Nov 1995), 808–810.

[303] SELBY, C. P., AND SANCAR, A. The Second Chromophore in Drosophila Pho-tolyase/Cryptochrome Family Photoreceptors. Biochemistry 51, 1 (2012), 167–171.

[304] SHEEBA, V., SHARMA, V. K., GU, H., CHOU, Y.-T., O’DOWD, D. K., AND HOLMES, T. C.

Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms. J Neurosci 28, 1 (Jan 2008), 217–227.

[305] SHINDO, J.-I., AND MASAKI, S. Photoperiodic control of larval development in the semivoltine cockroach Periplaneta japonica (Blattidae: Dictyoptera). Ecological Research 10, 1 (1995), 1–12.

[306] SIEBERT, P. D., CHENCHIK, A., KELLOGG, D. E., LUKYANOV, K. A.,ANDLUKYANOV, S. A.

An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23, 6 (Mar 1995), 1087–1088.

[307] SIWICKI, K. K., EASTMAN, C., PETERSEN, G., ROSBASH, M., ANDHALL, J. C. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1, 2 (Apr 1988), 141–150.

[308] SO, W. V., AND ROSBASH, M. Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J 16, 23 (Dec 1997), 7146–7155.

[309] SOKOLOVE, P. G. Localization of the cockroach optic lobe circadian pacemaker with microlesions.

Brain Res 87, 1 (Apr 1975), 13–21.

[310] STANEWSKY, R., KANEKO, M., EMERY, P., BERETTA, B., WAGER-SMITH, K., KAY, S. A., ROSBASH, M., ANDHALL, J. C. The cryb mutation identifies cryptochrome as a circadian pho-toreceptor in Drosophila. Cell 95, 5 (Nov 1998), 681–692.

[311] STEHL´IK, J., Z ´AVODSKA´, R., SHIMADA, K., SAUMAN, I., AND KOSTAL´ , V. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23, 2 (Apr 2008), 129–139.

[312] STENGL, M., AND HOMBERG, U. Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J Comp Phys-iol A 175, 2 (Aug 1994), 203–213.

[313] STOLERU, D., NAWATHEAN, P., FERNANDEZ´ , M.D.L. P., MENET, J. S., CERIANI, M. F.,AND

ROSBASH, M. The Drosophila circadian network is a seasonal timer. Cell 129, 1 (Apr 2007), 207–219.

[314] STOLERU, D., PENG, Y., AGOSTO, J.,ANDROSBASH, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 7010 (Oct 2004), 862–868.

[315] STOLERU, D., PENG, Y., NAWATHEAN, P., AND ROSBASH, M. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438, 7065 (Nov 2005), 238–242.

[316] SUH, J., AND JACKSON, F. R. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55, 3 (Aug 2007), 435–447.

[317] SUN, W. C., JEONG, E. H., JEONG, H.-J., KO, H. W., EDERY, I.,ANDKIM, E. Y. Two distinct modes of PERIOD recruitment onto dCLOCK reveal a novel role for TIMELESS in circadian transcription. J Neurosci 30, 43 (Oct 2010), 14458–14469.

[318] SUNDRAM, V., NG, F. S., ROBERTS, M. A., MILLAN´ , C., EWER, J., AND JACKSON, F. R.

Cellular requirements for LARK in the Drosophila circadian system. J Biol Rhythms 27, 3 (Jun 2012), 183–195.

[319] SYROVA´, Z., DOLEZEL, D., SAUMANN, I., AND HODKOVA´, M. Photoperiodic regulation of diapause in linden bugs: are period and clock genes involved? Cell Mol Life Sci 60, 11 (Nov 2003), 2510–2515.

[320] S ¨OHLER, S., NEUPERT, S., PREDEL, R., NICHOLS, R., AND STENGL, M. Localization of leucomyosuppressin in the brain and circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 328, 2 (May 2007), 443–452.

[321] S ¨OHLER, S., NEUPERT, S., PREDEL, R., AND STENGL, M. Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 332, 2 (May 2008), 257–269.

[322] S ¨OHLER, S., STENGL, M., AND REISCHIG, T. Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 343, 3 (Mar 2011), 559–577.

[323] TAGAYA, J., NUMATA, H.,ANDGOTO, S. G. Sexual difference in the photoperiodic induction of pupal diapause in the flesh fly Sarcophaga similis. Entomological Science 13, 3 (2010), 311–319.

[324] TAMURA, K., PETERSON, D., PETERSON, N., STECHER, G., NEI, M., AND KUMAR, S.

MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary dis-tance, and maximum parsimony methods. Mol Biol Evol 28, 10 (Oct 2011), 2731–2739.

[325] TANAKA, S., AND ZHU, D.-H. Presence of three diapauses in a subtropical cockroach: control mechanisms and adaptive significance. Physiological Entomology 28, 4 (2003), 323–330.

[326] TANOUE, S., KRISHNAN, P., KRISHNAN, B., DRYER, S. E., AND HARDIN, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14, 8 (Apr 2004), 638–649.

[327] TAUBER, E., ZORDAN, M., SANDRELLI, F., PEGORARO, M., OSTERWALDER, N., BREDA, C., DAGA, A., SELMIN, A., MONGER, K., BENNA, C., ROSATO, E., KYRIACOU, C. P., AND

COSTA, R. Natural selection favors a newly derived timeless allele in Drosophila melanogaster.

Science 316, 5833 (Jun 2007), 1895–1898.

[328] TENG, S.-W., MUKHERJI, S., MOFFITT, J. R., DE BUYL, S., AND O’SHEA, E. K. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340, 6133 (May 2013), 737–740.

[329] TOMIOKA, K., URYU, O., KAMAE, Y., UMEZAKI, Y., AND YOSHII, T. Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J Comp Physiol B 182, 6 (Aug 2012), 729–740.

[330] TOMIOKA, K., AND YOSHII, T. Entrainment of Drosophila circadian rhythms by temperature cycles. Sleep and Biological Rhythms 4, 3 (2006), 240–247.

[331] TOMITA, T., MIYAZAKI, K., ONISHI, Y., HONDA, S., ISHIDA, N., AND OISHI, K. Con-served amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYP-TOCHROME 1. Biochim Biophys Acta 1803, 4 (Apr 2010), 492–498.

[332] TYSHCHENKO, V. P. Two-oscillatory model of the physiological mechanism of insect photoperi-odic reaction. Zhurnal Obshchei Biolgii 27 (1966), 209–222.

[333] UEDA, H. R., MATSUMOTO, A., KAWAMURA, M., IINO, M., TANIMURA, T., AND

HASHIMOTO, S. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila.

J Biol Chem 277, 16 (Apr 2002), 14048–14052.

[334] URYU, O., KAMAE, Y., TOMIOKA, K., AND YOSHII, T. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. J Insect Physiol (Feb 2013).

[335] URYU, O., KARPOVA, S. G., ANDTOMIOKA, K. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus. J Insect Physiol 59, 7 (Jul 2013), 697–704.

[336] URYU, O.,ANDTOMIOKA, K. Circadian oscillations outside the optic lobe in the cricket Gryllus bimaculatus. J Insect Physiol 56, 9 (Sep 2010), 1284–1290.

[337] VOSSHALL, L. B., PRICE, J. L., SEHGAL, A., SAEZ, L.,ANDYOUNG, M. W. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 5153 (Mar 1994), 1606–1609.

[338] WASSMER, G. T.,ANDPAGE, T. L. Photoperiodic time measurement and a graded response in a cockroach. J Biol Rhythms 8, 1 (1993), 47–56.

[339] WEBER, F. Cyclic layer deposition in the cockroach (Blaberus craniifer) endocuticle: a circadian rhythm in leg pieces cultured in vitro. Journal of Insect Physiology 41, 2 (1995), 153 – 161.

[340] WEI, H.,ANDSTENGL, M. Light affects the branching pattern of peptidergic circadian pacemaker neurons in the brain of the cockroach Leucophaea maderae. J Biol Rhythms 26, 6 (Dec 2011), 507–

517.

[341] WEI, H., ANDSTENGL, M. Ca(2+) -dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons. Eur J Neurosci (Jul 2012).

[342] WEN, C.-J.,ANDLEE, H.-J. Mapping the cellular network of the circadian clock in two cockroach species. Arch Insect Biochem Physiol 68, 4 (Aug 2008), 215–231.

[343] WEN, H. W.,AND LEE, H. J. Unequal coupling between locomotor pacemakers of the German cockroach, Blattella germanica (L.). J Insect Physiol 46, 1 (Jan 2000), 89–97.

[344] WEVER, R. Influence of weak electromagnetic fields on the circadian periodicity of humans.

Naturwissenschaften 55, 1 (Jan 1968), 29–32.

[345] WHEELER, D. A., KYRIACOU, C. P., GREENACRE, M. L., YU, Q., RUTILA, J. E., ROSBASH, M.,ANDHALL, J. C. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251, 4997 (Mar 1991), 1082–1085.

[346] WIEDENMANN. Weak and strong phase shifting in the activity rhythm of the cockroach Leu-cophaea maderae (Blaberidae) after light pulses of high intensity. Zeitschrift f¨ur Naturforschung 32C (1977), 464–465.

[347] WIEDENMANN, G. Two Activity Peaks in the Circydian Rhythm of the cockroach Leucophaea maderae. J. interdiscipl. Cycle Res. 8 (1977), 378–383.

[348] WIEDENMANN, G., LUKAT, R.,ANDWEBER, F. Cyclic layer deposition in the cockroach endo-cuticle: a circadian rhythm? . Journal of Insect Physiology 32, 12 (1986), 1019 – 1027.

[349] WILLIAMS, J. A., SU, H. S., BERNARDS, A., FIELD, J., ANDSEHGAL, A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 5538 (Sep 2001), 2251–2256.

[350] WILLS, S. A., PAGE, T. L.,ANDCOLWELL, C. S. Circadian rhythms in the electroretinogram of the cockroach. J Biol Rhythms 1, 1 (1986), 25–37.

[351] WINFREE, A. T. Integrated view of resetting a circadian clock. Journal of Theoretical Biology 28, 3 (1970), 327 – 374.

[352] YAMADA, H.,ANDYAMAMOTO, M.-T. Association between circadian clock genes and diapause incidence in Drosophila triauraria. PLoS One 6, 12 (2011), e27493.

[353] YILDIZ, O., DOI, M., YUJNOVSKY, I., CARDONE, L., BERNDT, A., HENNIG, S., SCHULZE, S., URBANKE, C., SASSONE-CORSI, P.,ANDWOLF, E. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol Cell 17, 1 (Jan 2005), 69–82.

[354] YOSHII, T., FUNADA, Y., IBUKI-ISHIBASHI, T., MATSUMOTO, A., TANIMURA, T., AND

TOMIOKA, K. Drosophila crybmutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50, 6 (Jun 2004), 479–488.

[355] YOSHII, T., RIEGER, D., ANDHELFRICH-F ¨ORSTER, C. Two clocks in the brain: an update of the morning and evening oscillator model in Drosophila. Prog Brain Res 199 (2012), 59–82.

[356] YOSHII, T., W ¨ULBECK, C., SEHADOVA, H., VELERI, S., BICHLER, D., STANEWSKY, R.,AND

HELFRICH-F ¨ORSTER, C. The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci 29, 8 (Feb 2009), 2597–2610.

[357] YU, Q., JACQUIER, A. C., CITRI, Y., HAMBLEN, M., HALL, J. C., ANDROSBASH, M. Molec-ular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster. Proc Natl Acad Sci U S A 84, 3 (Feb 1987), 784–788.

[358] YU, W., ANDHARDIN, P. E. Circadian oscillators of Drosophila and mammals. J Cell Sci 119, Pt 23 (Dec 2006), 4793–4795.

[359] YUAN, Q., METTERVILLE, D., BRISCOE, A. D.,AND REPPERT, S. M. Insect cryptochromes:

gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24, 4 (Apr 2007), 948–955.

[360] ZENG, H., QIAN, Z., MYERS, M. P.,ANDROSBASH, M. A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 6570 (Mar 1996), 129–135.

[361] ZERR, D. M., HALL, J. C., ROSBASH, M.,ANDSIWICKI, K. K. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10, 8 (Aug 1990), 2749–2762.

[362] ZHANG, Y., LIU, Y., BILODEAU-WENTWORTH, D., HARDIN, P. E.,AND EMERY, P. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior.

Curr Biol 20, 7 (Apr 2010), 600–605.

[363] ZHENG, X., KOH, K., SOWCIK, M., SMITH, C. J., CHEN, D., WU, M. N., ANDSEHGAL, A.

An isoform-specific mutant reveals a role of PDP1 epsilon in the circadian oscillator. J Neurosci 29, 35 (Sep 2009), 10920–10927.

[364] ZHU, D.-H., ANDTANAKA, S. Photoperiod and temperature affect the life cycle of a subtropical cockroach, Opisoplatia orientalis: seasonal pattern shaped by winter mortality. Physiological Entomology 29, 1 (2004), 16–25.

[365] ZHU, D.-H., ANDTANAKA, S. Different photoperiodic responses in two geographic populations of a subtropical cockroach, Periplaneta japanna Asahina. Acta Ecologica Sinica 27 (2007), 3687–

3693.

[366] ZHU, H., SAUMAN, I., YUAN, Q., CASSELMAN, A., EMERY-LE, M., EMERY, P., AND REP

-PERT, S. M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6, 1 (Jan 2008), e4.

[367] ZHU, H., YUAN, Q., BRISCOE, A. D., FROY, O., CASSELMAN, A.,ANDREPPERT, S. M. The two CRYs of the butterfly. Curr Biol 15, 23 (Dec 2005), R953–R954.

[368] ZIMMERMANN, J. Westernblotanalyse des Uhrproteins PERIOD bei der Schabe Leucophaea ma-derae. Diploma Thesis, Philipps-University Marburg (2002), 130pp.

[369] ZOLTOWSKI, B. D., VAIDYA, A. T., TOP, D., WIDOM, J., YOUNG, M. W.,ANDCRANE, B. R.

Structure of full-length Drosophila cryptochrome. Nature 480, 7377 (Dec 2011), 396–399.

[370] ZUCKERKANDL, E., AND PAULING, L. Evolutionary divergence and convergence in proteins.

Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel, Academic Press, New York.

(1965), 97–166.

[371] Z ´AVODSKA´, R., SEHADOVA´, H., SAUMAN, I., AND SEHNAL, F. Light-dependent PER-like proteins in the cephalic ganglia of an apterygote and a pterygote insect species. Histochem Cell Biol 123, 4-5 (Jun 2005), 407–418.

6 Acknowledgements

I dearly thank everyone who made this dissertation possible. First of all I would like to thank Prof. Monika Stengl for introducing me to the very interesting topic of insect chronobiology, providing the basis for my work and for her support. All members of the animal physiology labs of the Universities of Marburg and Kassel, and the Institute for Integrative Neuroanatomy, Charit´e Berlin, that I had the pleasure of getting to know, I thank for their support and many interesting conversations. The members of the examination committee I thank for taking the time to review my work and their patience. Special thanks goes to Dr. Christian Derst for his collaboration, introducing me to various molecular biology techniques, and all the leisure activities he took me to during my stay in Berlin. The department members of the University of Kassel institute of biology, especially the department of biochemistry, I wish to thank for their congenial support and help. My office roommates in Marburg and the submarine crew in Kassel I thank for their company and the nice atmosphere. My friends and my family I thank for their constant support. There were times I would have given up without you. Finally I would dearly like to thank everyone whom I forgot. In case I did forget YOU, im sorry. I really am.

Credits

Prof. Monika Stengl (1st reviewer) Prof. Mireille Sch¨afer (2nd reviewer)

Prof. Charlotte F¨orster Prof. Friedrich Herberg ...members of the examination committee.

Christian Derst Azar Massah Andreas Arendt ...contributed to this work.

Nico Funk Sarah K¨orte Christiane Werckenthin

Andreas Nolte ...proofread my writings.

Andreas Nolte Christian Flecke

El-Sayed Baz Hanzey Yasar Ildefonso Atienza L´opez

Nico Funk Sarah K¨orte Sandra S¨ohler Sandy Fastner Three coffee machines Various ornamental fish ...had to stand me as roommate.

Many thanks to all people I met during my phd thesis and that helped me by one means or another (In

alphabetical order) Andreas Arendt Thordis Arnold Ildefonso Atienza L´opez

Bianca Backasch El-Sayed Baz Jonas Benzler Daniela Bertinetti

Oliver Bertinetti Prof. Horst Bohn Florian Bolze Luzie Braulke Janis Brusius Tony Burmeister

Stefan Dippel Mandy Diskar Marie-Christine Donath

David Dreyer Christian Eichler

Basil El-Jundi Cornelia Exner Sandy Fastner Julia Fischer Christian Flecke

Nico Funk Roman Fricke Tobias Fromme

Petra Gawalek Thomas Graeff Karin Große-Mohr Ewald Grosse-Wilde

Svenja Hampl Prof. Bill Hansson Prof. Paul Hardin Stanley Heinze Michael Helwig Jennifer Hermann

Penelope Higgs Verena Hirschberg Prof. Uwe Homberg

Wolf H¨utteroth Susanne Jaguttis

Martin Jastroch Timo Kanzleiter

Martina Kern Michaela Keuper Steffen Klingenh¨ofer Prof. Martin Klingenspor

Gisela Kaschlaw Matthias Knape Holger Knieps Martin Kollmann Christopher K¨onig Sarah K¨orte Steffi Krannich J¨urgen Krieger Michael Krug Angela Kurylas

Alexia Loste Robin Lorenz Azar Massah Kathrin Muda Christine Nowack

Andreas Nolte Rebecca ¨Olkrug

Keram Pfeiffer Dominik Piston Anke Prinz Ursula Reichert Thomas Reischig

Frank Richter Katrin Riedinger

Stefanie Rulla Prof. Joachim Schachtner

Nils-Lasse Schneider Julia Schendzielorz Thomas Schendzielorz

Julia Schuckel Wolfgang W. Schwippert

Norman Seger Christin Sender Jutta Seyfarth Sandra S¨ohler Ralf Stanewsky

169

Regina Stieber Kai Stieger Sigrid St¨ohr G´abor Szerencsi Magdalene Trzcionka

Bertan T¨uremis

Martina Mappes Alexander Tups Christa Uthof Maike Vetter Matthias V¨omel

Isabel Walther

Prof. Christian Wegener HongYing Wei Christina Wollenhaupt

Hanzey Yasar Mechthild Zissel

A Appendix

5’- TGCTATCCA GGCTGTGCTT TCTCTGTACG CTTCTGGTAG AACCACTGGT ATTGTGCTGG ACTCTGGTG ATGGCGTCTC GCATACAGTA CCAATTTATG AAGGTTATGC TCTTCCCCAT GCCATCCTA CGTCTGGATC TGGCTGGCCG TGACTTGACT GACTACCTCA TGAAGATCCT GACTGAGCG TGGTTACAGC-3’

Figure A.1: Part of a Rhyparobia maderae actin coding sequence.

Gene Tissue Light Regime one-way ANOVA Cosinor zero-amplitude test

P F P

rmPer brain (-AMe) LD 12:12 0.0174 4.34 0.0561

AMe LD 12:12 0.3997 1.12 0.3018

Malpighi LD 12:12 0.0802 2.61 0.0875

brain LD 12:12 0.2001 1.74 0.0553

brain LD 6:18 0.009 5.22 0.2546

brain LD 18:6 5.7598e-05 16.15 0.0010

brain DD 6:18 0.1067 2.33 0.0724

brain DD 18:6 0.0024 7.28 0.1359

rmTim1 brain (-AMe) LD 12:12 2.961e-07 43.06 0.0054

AMe LD 12:12 0.0005 10.32 0.0010

Malpighi LD 12:12 0.1213 2.21 0.8067

brain DD 12:12 0.0017 7.91 0.0072

brain LD 6:18 3.180e-05 18.15 0.0023

brain LD 18:6 6.3010e-06 24.69 6.2e-05

brain DD 6:18 0.0024 7.24 0.8686

brain DD 18:6 8.04643e-06 23.58 1.2e-07 rmCry2 brain (-AMe) LD 12:12 2.4712e-07 44.47 0.0297

AMe LD 12:12 4.09e-05 17.27 0.0526

Malpighi LD 12:12 0.4756 2.61 0.6493

brain DD 12:12 0.0014 8.18 0.00016

brain LD 6:18 0.0157 4.47 0.0771

brain LD 18:6 0.0035 6.64 0.0619

brain DD 6:18 0.2386 1.58 0.0108

brain DD 18:6 0.0385 3.39 0.8560

Table A.1: Statistics of the qPCR experiments. All statistics were carried out as described in Materials and Methods.

171