• Keine Ergebnisse gefunden

Anti-CMV-IE EGFP0

Chapter 5- Conclusion and Outlook

Conclusion and Outlook

104

5. Conclusion and Outlook

Adaptive NK cells show a significant expansion after the resolution of CMV reactivation, when the T cell compartment retracts. In addition, in vitro expanded adaptive NK cells were able to eliminate CMV-infected target cells effectively and showed significantly increased T cell recruitment capacity under the same conditions. This suggests that adaptive NK cells and CMV-CTLs may have complementary roles: adaptive NK cells may be responsible for the initiation of CMV-CTL response and may play an important role in triggering memory CMV-CTLs thus contributing to the surveillance of CMV reactivation.

This would mean that during CMV reactivation, adaptive NK cells could be responsible for the initial control of the reactivation while (memory) CMV-CTLs are recruited and initiate their clonal expansion. Furthermore, adaptive NK cells have a unique secretory profile of cytokines, chemokines and growth factor. The profile differs significantly from non-adaptive NK cells and is also altered during stimulation of adaptive NK cells with CMV-infected target cells.

Our data suggest that adaptive NK cells could be used as protection or booster against CMV reactivation. Since NK cells are rather short lived cells they may present an adequate cell type for the currently vastly investigated transfer of chimeric antigen receptors (CAR).

Transduction of CAR directed against leukemic or cellular antigens (e.g. minor histocompatibility antigens) may provide an alternative to the current CAR-T cell production.

Allogeneic NK cells offer some advantages in comparison to CAR-T cells, such as a shorter persistency in vivo and a possible additional graft-versus-leukemia effect (GvL) in the

Conclusion and Outlook

105 haploidentical setting by choosing NK cell donors in the GvL direction [252,253]. Moreover, several recent studies showed that CAR-T cell therapy may not always be effective as downregulation of the CAR-targeted antigens occur [254]. T and NK cells secrete different arrays of cytokines, therefore, the addition of adaptive NK cells to T cell therapies could be a complementary therapeutic approach. Furthermore, CAR-engineered NK cells are able to preserve their activating and inhibitory receptors expression, which will preserve their natural cytotoxicity/anti-leukemic effect in case of target antigen downregulation [255].

Taken together, this cell type harbors an array of possibilities for exploitation.

106

Chapter 6- Appendix

Appendix

107

6. Appendix

6.1 References

1. Janeway CA. How the immune system works to protect the host from infection: A personal view. Proc Natl Acad Sci. 2001;

2. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;

3. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer.

2004;4(1):11–22.

4. Nemazee D. Receptor selection in B and T lymphocytes. Annu Rev Immunol. 2000;

5. Lakkis FG, Sayegh MH. Memory T cells: A hurdle to immunologic tolerance. Journal of the American Society of Nephrology. 2003.

6. Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2012;

7. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001;

8. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol. 1999;

9. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science (80- ). 1970;

10. Witherspoon RP, Fisher LD, Schoch G, Martin P, Sullivan KM, Sanders J, Deeg HJ, Doney K, Thomas D, Storb R, Thomas ED. Secondary Cancers after Bone Marrow Transplantation for Leukemia or Aplastic Anemia. N Engl J Med. 1989;

11. Phillips AW, Woodrooffe JG, Courtenay JS, Whitaker AM, Thomas D, Woiwod AJ.

The preparation and testing of antihuman lymphoblast globulin for clinical use.

Transplantation. 1976;

12. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, Gennery A, Kröger N, Kuball J, Lanza F, Montoto S, Nagler A, Snowden JA, Styczynski J, Mohty M. Use of haploidentical stem cell transplantation continues to increase: The 2015 European Society for Blood and Marrow Transplant activity survey report. Vol. 52,

Appendix

108 Bone Marrow Transplantation. 2017. p. 811–7.

13. Osgood, E. E., Riddle, M. C. & Mathews TJ. Aplastic anemia treated with daily transfusions and intravenous marrow; case report. Ann Intern Med. 1939;13(2):357.

14. Hatzimichael E, Tuthill M. Hematopoietic stem cell transplantation. Stem Cells and Cloning: Advances and Applications. 2010.

15. Appelbaum FR. Hematopoietic-Cell Transplantation at 50. N Engl J Med.

2007;357(15):1472–5.

16. Daikeler T, Hügle T, Farge D, Andolina M, Gualandi F, Baldomero H, Bocelli-Tyndall C, Brune M, Dalle JH, Ehninger G, Gibson B, Linder B, Lioure B, Marmont A,

Matthes-Martin S, Nachbaur D, Schuetz P, Tyndall A, van Laar JM, Veys P, Saccardi R, Gratwohl A. Allogeneic hematopoietic SCT for patients with autoimmune diseases.

Bone Marrow Transplant. 2009;44(1):27–33.

17. Hirano M, Martí R, Casali C, Tadesse S, Uldrick T, Fine B, Escolar DM, Valentino ML, Nishino I, Hesdorffer C, Schwartz J, Hawks RG, Martone DL, Cairo MS, DiMauro S, Stanzani M, Garvin JH, Savage DG. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology. 2006;67(8):1458–60.

18. Caocci G, Greco M, La Nasa G. Bone marrow homing and engraftment defects of human hematopoietic stem and progenitor cells. Mediterranean Journal of Hematology and Infectious Diseases. 2017.

19. Ullah MA, Hill GR, Tey SK. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation. Frontiers in Immunology. 2016.

20. Stern L, McGuire H, Avdic S, Rizzetto S, Fazekas de St Groth B, Luciani F,

Slobedman B, Blyth E. Mass Cytometry for the assessment of immune reconstitution after hematopoietic stem cell transplantation. Frontiers in Immunology. 2018.

21. Tiercy J-M. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica. 2016;101(6):680–7.

22. Park M, Seo JJ. Role of HLA in Hematopoietic Stem Cell Transplantation. Bone Marrow Res. 2012;

23. Terasaki PI, Cai J. Humoral theory of transplantation: Further evidence. Current Opinion in Immunology. 2005.

Appendix

109 24. Hutchinson F. I1 ln1111o-. 1993;31–2.

25. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: One size does not fit all. Vol. 124, Blood. 2014. p. 344–53.

26. Atilla E, Atilla PA, Demirer T. A review of myeloablative vs reduced intensity/non-myeloablative regimens in allogeneic hematopoietic stem cell transplantations. Vol. 34, Balkan Medical Journal. 2017. p. 1–9.

27. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W,

Ljungman P, Ferrant A, Verdonck L, Niederwieser D, Van Rhee F, Mittermueller J, De Witte T, Holler E, Ansari H. Graft-versus-leukemia effect of donor lymphocyte

transfusions in marrow grafted patients. Blood. 1995;

28. Xun CQ, Thompson JS, Jennings CD, Brown SA, Widmer MB. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on

inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood. 1994;

29. Giralt S, Estey E, Albitar M, van Besien K, Rondón G, Anderlini P, O’Brien S, Khouri I, Gajewski J, Mehra R, Claxton D, Andersson B, Beran M, Przepiorka D, Koller C, Kornblau S, Kørbling M, Keating M, Kantarjian H, Champlin R. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy:

harnessing graft-versus-leukemia without myeloablative therapy. Blood. 1997;

30. Kröger N, Zabelina T, Krüger W, Renges H, Stute N, Kabisch H, Jaburg N, Löliger C, Krüll A, Zander AR. Comparison of total body irradiation vs busulfan in combination with cyclophosphamide as conditioning for unrelated stem cell transplantation in CML patients. Bone Marrow Transplant. 2001;

31. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, Apperley J, Slavin S, Pasquini M, Sandmaier BM, Barrett J, Blaise D, Lowski R, Horowitz M. Defining the Intensity of Conditioning Regimens: Working Definitions. Biol Blood Marrow

Transplant. 2009;15(12):1628–33.

32. Bacigalupo a, Sormani M. Reducing transplant-related mortality after allogeneic hematopoietic stem cell transplantation. Haematologica89. 2004;89(10):1238–47.

33. Maris M, Boeckh M, Storer B, Dawson M, White K, Keng M, Sandmaier B, Maloney

Appendix

110 D, Storb R, Storek J. Immunologic recovery after hematopoietic cell transplantation with nonmyeloablative conditioning. Exp Hematol. 2003;

34. Johansson JE, Brune M, Ekman T. The gut mucosa barrier is preserved during

allogeneic, haemopoietic stem cell transplantation with reduced intensity conditioning.

Bone Marrow Transplant. 2001;

35. Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P, Duarte RF, Dufour C, Kuball J, Farge-Bancel D, Gennery A, Kroger N, Lanza F, Nagler A, Sureda A, Mohty M. Hematopoietic stem cell transplantation in Europe 2014: More than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92.

36. Körbling M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Vol. 117, Blood. 2011. p. 6411–6.

37. Spitzer T, McAfee S, Poliquin C, Colby C. Acute gouty arthritis following recombinant human granulocyte colony-stimulating factor therapy in an allogeneic blood stem cell donor. Bone Marrow Transpl [Internet]. 1998;21(9):966–7. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/9613796

38. Parkkali T, Volin L, Siren MK, Ruutu T. Acute iritis induced by granulocyte colony-stimulating factor used for mobilization in a volunteer unrelated peripheral blood progenitor cell donor. Bone Marrow Transpl. 1996;

39. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA, Stewart FM, Heard SO. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant. 1997;

40. Körbling M, Anderlini P. Peripheral blood stem cell versus bone marrow

allotransplantation: Does the source of hematopoietic stem cells matter? Blood. 2001;

41. Holmes DR, Shaughnessy CO, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE. New England Journal. N Engl J Med. 2017;364:1315–23.

42. Ruggeri A, Ciceri F, Gluckman E, Labopin M, Rocha V. Alternative donors hematopoietic stem cells transplantation for adults with acute myeloid leukemia:

Umbilical cord blood or haploidentical donors? Best Pract Res Clin Haematol. 2010;

43. Billingham R. The biology of graft-versus-host reactions. Harvey Lect. 1966;67:21–78.

Appendix

111 44. Salomao M, Dorritie K, Mapara MY, Sepulveda A. Histopathology of graft-vs-host

disease of gastrointestinal tract and liver: An update. Vol. 145, American Journal of Clinical Pathology. 2016. p. 591–603.

45. Jagasia M, Arora M, Flowers MED, Chao NJ, McCarthy PL, Cutler CS, Urbano-Ispizua A, Pavletic SZ, Haagenson MD, Zhang M-JJ, Antin JH, Bolwell BJ, Bredeson C, Cahn J-YY, Cairo M, Gale RP, Gupta V, Lee SJ, Litzow M, Weisdorf DJ, Horowitz MM, Hahn T. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood [Internet]. 2012;119(1):296–307. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3251233&tool=pmcentrez

&rendertype=abstract

46. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, Palmer J, Weisdorf D, Treister NS, Cheng G-S, Kerr H, Stratton P, Duarte RF, McDonald GB, Inamoto Y, Vigorito A, Arai S, Datiles MB, Jacobsohn D, Heller T, Kitko CL, Mitchell SA, Martin PJ, Shulman H, Wu RS, Cutler CS, Vogelsang GB, Lee SJ, Pavletic SZ, Flowers MED. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant.

2015;21(3):389-401.e1.

47. Shlomchik WD, Couzens MS, Tang CB, Mcniff J, Robert ME, Liu J, Shlomchik MJ, Emerson SG. Prevention of Graft Versus Host Disease by Inactivation of Host. Science (80- ). 1999;285(July):412–5.

48. Maeda Y, Levy RB, Reddy P, Liu C, Clouthier SG, Teshima T, Ferrara JLM. Both perforin and Fas ligand are required for the regulation of alloreactive CD8+ T cells during acute graft-versus-host disease. Blood. 2005;105(5):2023–7.

49. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, Lerner KG, Thomas ED. Clinical manifestations of graft-versus-host disease in human recipients of marrow from hl-a-matched sibling donors1. Transplantation. 1974;

50. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, Lerner KG, Thomas ED. Clinical manifestations of graft-versus-host disease in human recipients of marrow from hl-a-matched sibling donors1. Transplantation. 1974;

Appendix

112 51. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, Martin P, Chien

J, Przepiorka D, Couriel D, Cowen EW, Dinndorf P, Farrell A, Hartzman R, Henslee-Downey J, Jacobsohn D, McDonald G, Mittleman B, Rizzo JD, Robinson M, Schubert M, Schultz K, Shulman H, Turner M, Vogelsang G, Flowers MED. National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease: I. diagnosis and staging working group report. Vol. 11, Biology of Blood and Marrow Transplantation. 2005. p. 945–56.

52. Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Vol. 6, Frontiers in Immunology. 2015.

53. Sarantopoulos S, Stevenson KE, Kim HT, Cutler CS, Bhuiya NS, Schowalter M, Ho VT, Alyea EP, Koreth J, Blazar BR, Soiffer RJ, Antin JH, Ritz J. Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host disease. Blood.

2009;113(16):3865–74.

54. Kuba A, Raida L. Graft versus Host Disease: From Basic Pathogenic Principles to DNA Damage Response and Cellular Senescence. Mediators Inflamm. 2018;2018:1– 13.

55. Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, Nagler A, Selleri C, Risitano A, Messina G, Bethge W, De Oteiza JP, Duarte R, Carella AM, Cimminiello M, Guidi S, Finke J, Mordini N, Ferra C, Sierra J, Russo D, Petrini M, Milone G, Benedetti F, Heinzelmann M, Pastore D, Jurado M, Terruzzi E, Narni F, Völp A, Ayuk F, Ruutu T, Bonifazi F. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;

56. Kottaridis PD, Milligan DW, Chopra R, Chakraverty RK, Chakrabarti S, Robinson S, Peggs K, Verfuerth S, Pettengell R, Marsh JCW, Schey S, Mahendra P, Morgan GJ, Hale G, Waldmann H, Carmen Ruiz de Elvira M, Williams CD, Devereux S, Linch DC, Goldstone AH, Mackinnon S. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood. 2000;

57. Delgado J, Thomson K, Russell N, Ewing J, Stewart W, Cook G, Devereux S, Lovell R, Chopra R, Marks DI, Mackinnon S, Milligan DW. Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: A

Appendix

113 British Society of Blood and Marrow Transplantation Study. Blood. 2006;

58. Lee CJ, Savani BN, Mohty M, Labopin M, Ruggeri A, Schmid C, Baron F, Esteve J, Gorin NC, Giebel S, Ciceri F, Nagler A. Haploidentical hematopoietic cell

transplantation for adult acute myeloid leukemia: A position statement from the acute leukemia working party of the European society for blood and marrow transplantation.

Haematologica. 2017.

59. Boeckh M, Geballe AP. Cytomegalovirus: Pathogen, paradigm, and puzzle. Vol. 121, Journal of Clinical Investigation. 2011. p. 1673–80.

60. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS. The human cytomegalovirus genome revisited: Comparison with the chimpanzee cytomegalovirus genome. Vol. 84, Journal of General Virology. 2003. p.

17–28.

61. Sinzger C, Digel M, Jahn G. Cytomegalovirus cell tropism. Current Topics in Microbiology and Immunology. 2008.

62. Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. J Immunol [Internet]. 2018;200(12):3881–9. Available from:

http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1800171

63. McGeoch DJ, Dolan A, Ralph AC. Toward a Comprehensive Phylogeny for Mammalian and Avian Herpesviruses. J Virol. 2000;74(22):10401–6.

64. Mazeron MC, Colimon R, Roseto A, Perol Y. Detection of cytomegaloviremia using monoclonal antibodies. Dev Biol Stand. 1984;57:287–91.

65. Breda G, Almeida B, Carstensen S, Bonfim CM, Nogueira MB, Vidal LR, Almeida SM, Raboni SM. Human cytomegalovirus detection by real-time PCR and pp65-antigen test in hematopoietic stem cell transplant recipients: a challenge in low and middle-income countries. Pathog Glob Health. 2013;107(6):312–9.

66. Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA, Kouzarides T, Martignetti JA, Preddie E, Satchwell SC, Tomlinson P, Weston KM, Barrell BG. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology.

1990.

Appendix

114 67. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR. Human

cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains.

J Virol. 1996;

68. Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, Gatherer D, Wilkinson GWG, Dargan DJ, Davison AJ. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol. 2009;

69. Hsu JL, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS, Davison AJ, Wilkinson GWG, Lehner PJ. Plasma Membrane Profiling Defines an Expanded Class of Cell Surface Proteins Selectively Targeted for Degradation by HCMV US2 in Cooperation with UL141. PLoS Pathog.

2015;

70. Wilkinson GWG, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang ECY, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ. Human cytomegalovirus: taking the strain. Medical Microbiology and Immunology. 2015.

71. Murrell I, Wilkie GS, Davison AJ, Statkute E, Fielding CA, Tomasec P, Wilkinson GWG, Stanton RJ. Genetic Stability of Bacterial Artificial Chromosome-Derived Human Cytomegalovirus during Culture In Vitro . J Virol. 2016;

72. Close WL, Bhandari A, Hojeij M, Pellett PE. Generation of a novel human

cytomegalovirus bacterial artificial chromosome tailored for transduction of exogenous sequences. Virus Res. 2017;

73. Sampaio KL, Weyell A, Subramanian N, Wu Z, Sinzger C. A TB40/E-derived human cytomegalovirus genome with an intact US-gene region and a self-excisable BAC cassette for immunological research. Biotechniques. 2017;63(5):205–14.

74. Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells article. Nat Immunol. 2018;

75. Teira P, Battiwalla M, Ramanathan M, Barrett AJ, Ahn KW, Chen M, Green JS, Saad A, Antin JH, Savani BN, Lazarus HM, Seftel M, Saber W, Marks D, Aljurf M, Norkin

Appendix

115 M, Wingard JR, Lindemans CA, Boeckh M, Riches ML, Auletta JJ. Early

cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: A CIBMTR analysis. Blood. 2016;127(20):2427–38.

76. Broers a E, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, Löwenberg B, Cornelissen JJ. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood.

2000;95(7):2240–5.

77. Ljungman P. Risk assessment in haematopoietic stem cell transplantation: Viral status.

Best Pract Res Clin Haematol. 2007;20(2):209–17.

78. Nichols WG, Corey L, Gooley T, Davis C, Boeckh M. High Risk of Death Due to Bacterial and Fungal Infection among Cytomegalovirus (CMV)–Seronegative

Recipients of Stem Cell Transplants from Seropositive Donors: Evidence for Indirect Effects of Primary CMV Infection. J Infect Dis [Internet]. 2002;185(3):273–82.

Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/338624 79. Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P, White K, Corey L, Boeckh M. Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: Impact of host factors, drug therapy, and subclinical reactivation. Blood. 2003;102(8):3060–7.

80. Camargo JF, Komanduri K V. Emerging concepts in cytomegalovirus infection following hematopoietic stem cell transplantation. Hematol Oncol Stem Cell Ther.

2017;10(4):233–8.

81. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, Corthesy P, Devevre E, Speiser DE, Rufer N. Four Functionally Distinct Populations of Human Effector-Memory CD8 + T Lymphocytes . J Immunol. 2007;

82. Wolint P, Betts MR, Koup RA, Oxenius A. Immediate Cytotoxicity but Not

Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells. J Exp Med. 2004;

83. Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the Differentiation and Function of CD8+ T Cells. Arch Immunol Ther Exp (Warsz). 2014;

Appendix

116 84. Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8+ regulatory t cell

research (Review). Oncology Letters. 2018.

85. Srenathan U, Steel K, Taams LS. IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunol Lett. 2016;

86. Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R. Human Effector and Memory CD8+

T Cell Responses to Smallpox and Yellow Fever Vaccines. Immunity. 2008;

87. Bachmann MF, Barner M, Viola A, Kopf M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur J Immunol. 1999;

88. Wherry EJ, Ahmed R. Memory CD8 T-Cell Differentiation during Viral Infection. J Virol. 2004;

89. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol. 1996;

90. Derhovanessian E, Maier AB, Hähnel KH, Beck R, de Craen AJM, Slagboom EP, Westendorp RGJ, Pawelec G. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of latedifferentiated CD4 + and CD8 + T-cells in humans. J Gen Virol. 2011;

91. Van Leeuwen EMM, De Bree GJ, Ten Berge IJM, Van Lier RAW. Human virus-specific CD8+ T cells: Diversity specialists. Immunological Reviews. 2006.

92. Reddehase MJ. Antigens and immunoevasins: Opponents in cytomegalovirus immune surveillance. Nature Reviews Immunology. 2002.

93. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PAH. Cytomegalovirus Seropositivity Drives the CD8 T Cell Repertoire Toward Greater Clonality in Healthy Elderly Individuals. J Immunol. 2002;

94. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4 +T cells: Differentiation and functions. Clinical and Developmental Immunology. 2012.

95. Fleischer B. Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in

Appendix

117 culture. Nature. 1984;

96. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of t-cell clones from the donor. N Engl J Med.

1995;

97. Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Current Opinion in Immunology. 2013.

98. Chahroudi A, Silvestri G, Lichterfeld M. T Memory Stem Cells and HIV: a Long-Term Relationship. Current HIV/AIDS Reports. 2015.

99. Shook DR, Campana D. Natural killer cell engineering for cellular therapy of cancer.

Vol. 78, Tissue Antigens. 2011. p. 409–15.

100. Kiessling R, Klein E, Wigzell H. ???Natural??? killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112–7.

101. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Münz C, Thiel A, Moretta L,

101. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Münz C, Thiel A, Moretta L,