• Keine Ergebnisse gefunden

This thesis demonstrates the relevance of veterinary glycoimmunology and species-orientated immunologic research. The ovine CTL hFc-fusion protein library generated within the scope of this work represents an addition to the currently available human and mouse recombinant CTL hFc-fusion protein libraries.

Initial results obtained in ELISA- and flow cytometry-based binding studies with the ovine CTL library emphasize both the similarities of CTL ligand recognition in animals belonging to different orders as distant as rodents and even-toed ungulates, as well as differences, highlighting that results of experiments performed in phylogenetically remote models need to be interpreted with caution.

The newly discovered interaction between Mmc and sheep CTLs, observed in the proof-of-principle pathogen screening with the generated library, might stimulate further research.

Investigations aiming at the identification of ligands and elucidation of signaling pathways might lead to novel CTL-targeting therapeutic and immunization concepts, and advance basic veterinary research in the future.

XI. References

1. Bradde, S., et al., The size of the immune repertoire of bacteria. Proc Natl Acad Sci U S A, 2020. 117(10): p. 5144-5151.

2. Makarova, K.S., et al., Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts.

mBio, 2019. 10(3).

3. Horvath, P. and R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010. 327(5962): p. 167-70.

4. Patterson, A.G., et al., Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems. Mol Cell, 2016. 64(6): p. 1102-1108.

5. Song, S., et al., Phages Mediate Bacterial Self-Recognition. Cell Rep, 2019. 27(3): p.

737-749 e4.

6. Williams, P., et al., Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci, 2007. 362(1483): p. 1119-34.

7. Aframian, N. and A. Eldar, A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol, 2020.

8. Dunin-Horkawicz, S., K.O. Kopec, and A.N. Lupas, Prokaryotic ancestry of eukaryotic protein networks mediating innate immunity and apoptosis. J Mol Biol, 2014. 426(7):

p. 1568-82.

9. Antonioli, L., et al., Rethinking Communication in the Immune System: The Quorum Sensing Concept. Trends Immunol, 2019. 40(2): p. 88-97.

10. Antonioli, L., et al., Quorum sensing in the immune system. Nat Rev Immunol, 2018.

18(9): p. 537-538.

11. Xu, X., et al., Bioactive proteins from mushrooms. Biotechnol Adv, 2011. 29(6): p. 667-74.

12. Wu, J., B. Gao, and S. Zhu, The fungal defensin family enlarged. Pharmaceuticals (Basel), 2014. 7(8): p. 866-80.

13. Nobori, T., A. Mine, and K. Tsuda, Molecular networks in plant-pathogen holobiont.

FEBS Lett, 2018. 592(12): p. 1937-1953.

14. Alagarasan, G. and K.S. Aswathy, Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. Front Plant Sci, 2017. 8: p. 556.

15. Yuan, S., et al., Comparative immune systems in animals. Annu Rev Anim Biosci, 2014.

2(1): p. 235-58.

16. Boscardin, S.B., et al., Dendritic Cells in Tolerance and Immunity against Pathogens. J Immunol Res, 2016. 2016: p. 6438036.

17. Zimmermann, W., Evolution: Decoy Receptors as Unique Weapons to Fight Pathogens.

Curr Biol, 2019. 29(4): p. R128-R130.

18. Piliponsky, A.M., M. Acharya, and N.J. Shubin, Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci, 2019. 20(12): p. 2851.

19. Qin, Y. and P.A. Wade, Crosstalk between the microbiome and epigenome: messages from bugs. J Biochem, 2018. 163(2): p. 105-112.

20. Bunker, J.J., et al., Natural polyreactive IgA antibodies coat the intestinal microbiota.

Science, 2017. 358(6361): p. eaan6619.

21. Chin, V.K., et al., Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm, 2020. 2020: p. 9560684.

22. Audiger, C., et al., The Importance of Dendritic Cells in Maintaining Immune Tolerance. J Immunol, 2017. 198(6): p. 2223-2231.

23. Kothandan, V.K., et al., Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel), 2020. 8(2): p. 172.

24. Rivera, A., et al., Innate cell communication kick-starts pathogen-specific immunity.

Nat Immunol, 2016. 17(4): p. 356-63.

25. Leng, Q. and Z. Bentwich, Beyond self and nonself: fuzzy recognition of the immune system. Scand J Immunol, 2002. 56(3): p. 224-32.

26. Cao, X., Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol, 2016. 16(1): p. 35-50.

27. Germic, N., et al., Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ, 2019. 26(4):

p. 715-727.

28. Bonilla, F.A. and H.C. Oettgen, Adaptive immunity. J Allergy Clin Immunol, 2010.

125(2 Suppl 2): p. S33-40.

29. Shishido, S.N., et al., Humoral innate immune response and disease. Clin Immunol, 2012. 144(2): p. 142-58.

30. Dimitrov, J.D. and S. Lacroix-Desmazes, Noncanonical Functions of Antibodies.

Trends Immunol, 2020. 41(5): p. 379-393.

31. Citi, S., The mechanobiology of tight junctions. Biophys Rev, 2019. 11(5): p. 783-793.

32. Gunther, J. and H.M. Seyfert, The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol, 2018. 40(6): p. 555-565.

33. Rengarajan, M., A. Hayer, and J.A. Theriot, Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes. PLoS Pathog, 2016. 12(5): p. e1005603.

34. Gasteiger, G., et al., Cellular Innate Immunity: An Old Game with New Players. J Innate Immun, 2017. 9(2): p. 111-125.

35. Bragulla, H.H. and D.G. Homberger, Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat, 2009. 214(4): p. 516-59.

36. Coates, M., S. Blanchard, and A.S. MacLeod, Innate antimicrobial immunity in the skin:

A protective barrier against bacteria, viruses, and fungi. PLoS Pathog, 2018. 14(12): p.

e1007353.

37. Giang, J., et al., Complement Activation in Inflammatory Skin Diseases. Front Immunol, 2018. 9: p. 639.

38. Tam, C., et al., Efficacy and Structure-Activity of Keratin-Derived Antimicrobial Peptides (kDAMPs): A Novel Role for Intermediate Filament Proteins in Corneal Innate Defense. Invest Ophthalmol Vis Sci, 2012. 53(14): p. 3146-3146.

39. Radhakrishnan, L., et al., A Study on Anti Bacterial Activity of Keratin Nanoparticles from Chicken Feather Waste Against Staphylococcus aureus (Bovine Mastitis Bacteria) and its Anti Oxidant Activity. European J Biotechnol Biosci, 2015. 3: p. 1-5.

40. Kisich, K.O., et al., The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on beta-defensin 3. J Invest Dermatol, 2007.

127(10): p. 2368-80.

41. Magana, M., et al., The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis, 2020. 20(9): p. e216-e230.

42. Holodick, N.E., N. Rodriguez-Zhurbenko, and A.M. Hernandez, Defining Natural Antibodies. Front Immunol, 2017. 8: p. 872.

43. Malaczewska, J., et al., Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet Res, 2019. 15(1): p. 318.

44. Samaranayake, Y.H., et al., Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human

immunodeficiency virus-infected southern Chinese cohort. J Clin Microbiol, 2001.

39(9): p. 3296-302.

45. Leon-Sicairos, N., et al., Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin Med Res, 2006. 4(2): p. 106-13.

46. Nuzzo, I., et al., Apoptosis of human keratinocytes after bacterial invasion. FEMS Immunol Med Microbiol, 2000. 27(3): p. 235-40.

47. Tamoutounour, S., et al., Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. Proceedings of the National Academy of Sciences, 2019.

116(47): p. 23643.

48. Castoldi, A., et al., They Must Hold Tight: Junction Proteins, Microbiota And Immunity In Intestinal Mucosa. Curr Protein Pept Sci, 2015. 16(7): p. 655-71.

49. Kraehenbuhl, J.P. and M.R. Neutra, Epithelial M cells: differentiation and function.

Annu Rev Cell Dev Biol, 2000. 16(1): p. 301-32.

50. Chaplin, D.D., Overview of the immune response. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S3-23.

51. Van Belleghem, J.D. and P.L. Bollyky, Macrophages and innate immune memory against Staphylococcus skin infections. Proc Natl Acad Sci U S A, 2018. 115(47): p.

11865-11867.

52. Hole, C.R., et al., Induction of memory-like dendritic cell responses in vivo. Nat Commun, 2019. 10(1): p. 2955.

53. Sun, J.C. and L.L. Lanier, Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? NK Cell Memory and Immunization Strategies against Infectious Diseases and Cancer. Cold Spring Harb Perspect Biol, 2018. 10(10): p.

a029538.

54. Mulder, W.J.M., et al., Therapeutic targeting of trained immunity. Nat Rev Drug Discov, 2019. 18(7): p. 553-566.

55. Gourbal, B., et al., Innate immune memory: An evolutionary perspective. Immunol Rev, 2018. 283(1): p. 21-40.

56. Netea, M.G., et al., Trained immunity: A program of innate immune memory in health and disease. Science, 2016. 352(6284): p. aaf1098.

57. Novakovic, B. and H.G. Stunnenberg, I Remember You: Epigenetic Priming in Epithelial Stem Cells. Immunity, 2017. 47(6): p. 1019-1021.

58. Heath, W.R., et al., Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol, 2019. 58: p. 44-52.

59. Gaudino, S.J. and P. Kumar, Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol, 2019. 10(360): p. 360.

60. Harmsen, M.M. and H.J. De Haard, Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol, 2007. 77(1): p. 13-22.

61. Cheong, W.S., et al., Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. Int J Biol Macromol, 2020. 147: p. 369-375.

62. Pioli, P.D., Plasma Cells, the Next Generation: Beyond Antibody Secretion. Front Immunol, 2019. 10(2768): p. 2768.

63. Henkart, P.A. and M. Catalfamo, CD8+ Effector Cells, in Advances in Immunology.

2004, Academic Press. p. 233-252.

64. Ratajczak, W., et al., Immunological memory cells. Cent Eur J Immunol, 2018. 43(2):

p. 194-203.

65. Hong, S., et al., B Cells Are the Dominant Antigen-Presenting Cells that Activate Naive CD4(+) T Cells upon Immunization with a Virus-Derived Nanoparticle Antigen.

Immunity, 2018. 49(4): p. 695-708 e4.

66. Brandes, M., K. Willimann, and B. Moser, Professional antigen-presentation function by human gammadelta T Cells. Science, 2005. 309(5732): p. 264-8.

67. Smith, M.J., et al., Detection and Enrichment of Rare Antigen-specific B Cells for Analysis of Phenotype and Function. J Vis Exp, 2017(120): p. 55382.

68. Cerny, J. and I. Striz, Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond), 2019. 133(14): p. 1549-1565.

69. Zhai, Y., C. Wang, and Z. Jiang, Cross-talk between bacterial PAMPs and host PRRs.

National Science Review, 2018. 5(6): p. 791-792.

70. Roh, J.S. and D.H. Sohn, Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw, 2018. 18(4): p. e27.

71. Kumagai, Y. and S. Akira, Identification and functions of pattern-recognition receptors.

J Allergy Clin Immunol, 2010. 125(5): p. 985-92.

72. Kim, Y.K., J.S. Shin, and M.H. Nahm, NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J, 2016. 57(1): p. 5-14.

73. Kumari, P., et al., AIM2 in health and disease: Inflammasome and beyond. Immunol Rev, 2020. 297(1): p. 83-95.

74. Rehwinkel, J. and M.U. Gack, RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol, 2020. 20(9): p. 537-551.

75. Vasta, G.R., Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol, 2012. 946: p. 21-36.

76. Ostrop, J. and R. Lang, Contact, Collaboration, and Conflict: Signal Integration of Syk-Coupled C-Type Lectin Receptors. J Immunol, 2017. 198(4): p. 1403-1414.

77. Mayer, S., M.K. Raulf, and B. Lepenies, C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol, 2017. 147(2): p. 223-237.

78. Lester, S.N. and K. Li, Toll-like receptors in antiviral innate immunity. J Mol Biol, 2014. 426(6): p. 1246-64.

79. Casals, C., B. Garcia-Fojeda, and C.M. Minutti, Soluble defense collagens: Sweeping up immune threats. Mol Immunol, 2019. 112: p. 291-304.

80. Henrick, B.M., et al., Insights into Soluble Toll-Like Receptor 2 as a Downregulator of Virally Induced Inflammation. Front Immunol, 2016. 7: p. 291.

81. Dalpke, A., et al., Activation of toll-like receptor 9 by DNA from different bacterial species. Infect Immun, 2006. 74(2): p. 940-6.

82. Lee, S.M., et al., Recognition of Double-Stranded RNA and Regulation of Interferon Pathway by Toll-Like Receptor 10. Front Immunol, 2018. 9(516): p. 516.

83. Nakaya, Y., et al., AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. mBio, 2017. 8(4): p. e00944-17.

84. Luo, L., et al., Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci, 2019. 133(5): p. jcs239194.

85. Reily, C., et al., Glycosylation in health and disease. Nat Rev Nephrol, 2019. 15(6): p.

346-366.

86. Tan, F.Y., C.M. Tang, and R.M. Exley, Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem Sci, 2015. 40(7): p. 342-50.

87. Dell, A., et al., Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol, 2010. 2010: p. 148178.

88. Duma, J., et al., Influence of Protein Glycosylation on Campylobacter fetus Physiology.

Front Microbiol, 2020. 11: p. 1191.

89. Medzihradszky, K.F., K. Kaasik, and R.J. Chalkley, Tissue-Specific Glycosylation at the Glycopeptide Level. Mol Cell Proteomics, 2015. 14(8): p. 2103-10.

90. Taylor, M.E. and K. Drickamer, Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J, 2019. 286(10): p. 1800-1814.

91. Uchimura, K. and S.D. Rosen, Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends Immunol, 2006. 27(12): p. 559-65.

92. Kawashima, H., Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull, 2006. 29(12): p. 2343-9.

93. McEver, R.P., Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res, 2015. 107(3): p. 331-9.

94. Wolfert, M.A. and G.J. Boons, Adaptive immune activation: glycosylation does matter.

Nat Chem Biol, 2013. 9(12): p. 776-84.

95. Giovannone, N., et al., Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun, 2018. 9(1): p. 3287.

96. Thiemann, S. and L.G. Baum, Galectins and Immune Responses-Just How Do They Do Those Things They Do? Annu Rev Immunol, 2016. 34(1): p. 243-64.

97. Braulke, T. and J.S. Bonifacino, Sorting of lysosomal proteins. Biochim Biophys Acta, 2009. 1793(4): p. 605-14.

98. Biermann, M.H., et al., Sweet but dangerous - the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus, 2016. 25(8): p. 934-42.

99. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications.

Cell Res, 2011. 21(3): p. 381-95.

100. Dehennaut, V., D. Leprince, and T. Lefebvre, O-GlcNAcylation, an Epigenetic Mark.

Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne), 2014. 5: p. 155.

101. Yang, X. and K. Qian, Protein O-GlcNAcylation: emerging mechanisms and functions.

Nat Rev Mol Cell Biol, 2017. 18(7): p. 452-465.

102. Shan, M., et al., Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 2013. 342(6157): p. 447-53.

103. Corfield, A.P., Mucins: a biologically relevant glycan barrier in mucosal protection.

Biochim Biophys Acta, 2015. 1850(1): p. 236-52.

104. Taylor, S.L., et al., Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility. Trends Microbiol, 2018. 26(2): p. 92-101.

105. Brown, G.D., J.A. Willment, and L. Whitehead, C-type lectins in immunity and homeostasis. Nat Rev Immunol, 2018. 18(6): p. 374-389.

106. Johannes, L., R. Jacob, and H. Leffler, Galectins at a glance. J Cell Sci, 2018. 131(9).

107. Sagulenko, V., et al., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ, 2013. 20(9): p. 1149-60.

108. Tukhvatulin, A.I., et al., NOD1/2 and the C-Type Lectin Receptors Dectin-1 and Mincle Synergistically Enhance Proinflammatory Reactions Both In Vitro and In Vivo. J Inflamm Res, 2020. 13: p. 357-368.

109. Poeck, H., et al., Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol, 2010. 11(1):

p. 63-9.

110. Gay, N.J., et al., Assembly and localization of Toll-like receptor signalling complexes.

Nat Rev Immunol, 2014. 14(8): p. 546-58.

111. Redelinghuys, P. and G.D. Brown, Inhibitory C-type lectin receptors in myeloid cells.

Immunol Lett, 2011. 136(1): p. 1-12.

112. Pinheiro da Silva, F., et al., Inhibitory ITAMs: a matter of life and death. Trends Immunol, 2008. 29(8): p. 366-73.

113. Barrow, A.D. and J. Trowsdale, You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol, 2006. 36(7): p. 1646-53.

114. Del Fresno, C., et al., Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol, 2018. 9: p. 804.

115. Howard, M., C.A. Farrar, and S.H. Sacks, Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin Immunopathol, 2018.

40(1): p. 75-85.

116. Tan, R.S., et al., TLR cross-talk confers specificity to innate immunity. Int Rev Immunol, 2014. 33(6): p. 443-53.

117. Rad, R., et al., Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology, 2009. 136(7): p. 2247-57.

118. Underhill, D.M., Collaboration between the innate immune receptors dectin-1, TLRs, and Nods. Immunol Rev, 2007. 219: p. 75-87.

119. Kieser, K.J. and J.C. Kagan, Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol, 2017. 17(6): p. 376-390.

120. Lee, M.S. and Y.J. Kim, Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem, 2007. 76: p. 447-80.

121. Man, S.M., R. Karki, and T.D. Kanneganti, AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol, 2016. 46(2): p. 269-80.

122. Zhou, P., et al., Association between dectin-1 gene single nucleotide polymorphisms and fungal infection: a systemic review and meta-analysis. Biosci Rep, 2019. 39(11).

123. Shaw, P.J., M.F. McDermott, and T.D. Kanneganti, Inflammasomes and autoimmunity.

Trends Mol Med, 2011. 17(2): p. 57-64.

124. Celias, D.P., C.C. Motran, and L. Cervi, Helminths Turning on the NLRP3 Inflammasome: Pros and Cons. Trends Parasitol, 2020. 36(2): p. 87-90.

125. Guasconi, L., L.S. Chiapello, and D.T. Masih, Fasciola hepatica excretory-secretory products induce CD4+T cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way. Immunobiology, 2015. 220(7): p. 934-9.

126. Rojas, M., et al., Molecular mimicry and autoimmunity. J Autoimmun, 2018. 95: p. 100-123.

127. Kalia, N., et al., Impact of SNPs interplay across the locus of MBL2, between MBL and Dectin-1 gene, on women's risk of developing recurrent vulvovaginal infections. Cell Biosci, 2019. 9(1): p. 35.

128. Pan, L., et al., Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr, 2020. 16(1): p. 19-30.

129. Guzman-Martinez, L., et al., Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Frontiers in Pharmacology, 2019. 10: p. 1008.

130. N'Diaye, M., et al., C-type lectin receptors Mcl and Mincle control development of multiple sclerosis-like neuroinflammation. J Clin Invest, 2020. 130(2): p. 838-852.

131. Frasca, L. and R. Lande, Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin Exp Immunol, 2020. 201(1): p. 14-24.

132. Chiffoleau, E., C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol, 2018. 9: p. 227.

133. Li, T.H., et al., C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf), 2019. 7(5): p. 312-321.

134. Bermejo-Jambrina, M., et al., C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Front Immunol, 2018. 9: p. 590.

135. Leger, P., et al., Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis. Traffic, 2016. 17(6): p. 639-56.

136. Hadebe, S., F. Brombacher, and G.D. Brown, C-Type Lectin Receptors in Asthma. Front Immunol, 2018. 9(733): p. 733.

137. Hsu, S.C., et al., Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J Biol Chem, 2010. 285(11): p. 7903-10.

138. Ding, D., et al., C-type lectins facilitate tumor metastasis. Oncol Lett, 2017. 13(1): p.

13-21.

139. Lemoine, F., et al., NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res, 2019. 47(W1): p. W260-W265.

140. Drickamer, K. and M.E. Taylor, Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol, 2015. 34: p. 26-34.

141. Zelensky, A.N. and J.E. Gready, The C-type lectin-like domain superfamily. FEBS J, 2005. 272(24): p. 6179-217.

142. Lindenwald, D.L. and B. Lepenies, C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci, 2020. 21(14).

143. Ouyang, Z., et al., Trimeric structure of the mouse Kupffer cell C-type lectin receptor Clec4f. FEBS Lett, 2020. 594(1): p. 189-198.

144. Kawata, K., et al., Mincle and human B cell function. J Autoimmun, 2012. 39(4): p.

315-22.

145. Wells, J.M., et al., Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1(Suppl 1): p. 4607-14.

146. Tang, J., et al., Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity.

Front Immunol, 2018. 9: p. 123.

147. Monteiro, J.T. and B. Lepenies, Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses, 2017. 9(3): p. 59.

148. Yan, H., et al., Targeting C-Type Lectin Receptors for Cancer Immunity. Front Immunol, 2015. 6: p. 408.

149. Mejer, H. and A. Roepstorff, Oesophagostomum dentatum and Trichuris suis infections in pigs born and raised on contaminated paddocks. Parasitology, 2006. 133(Pt 3): p.

295-304.

150. Kumar, S., et al., Association of Bovine CLEC7A gene polymorphism with host susceptibility to paratuberculosis disease in Indian cattle. Research in Veterinary Science, 2019. 123: p. 216-222.

151. Shinkai, H., et al., Polymorphisms of the immune-modulating receptor dectin-1 in pigs:

their functional influence and distribution in pig populations. Immunogenetics, 2016.

68(4): p. 275-284.

152. Baker, L.A., et al., Genome-wide association analysis in dogs implicates 99 loci as risk variants for anterior cruciate ligament rupture. PLoS One, 2017. 12(4): p. e0173810.

153. Lindenwald, D.L., et al., Ovine C-type lectin receptor hFc-fusion protein library - A novel platform to screen for host-pathogen interactions. Vet Immunol Immunopathol, 2020. 224: p. 110047.

154. Maglinao, M., et al., A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J Control Release, 2014. 175: p. 36-42.

155. Tian, R., et al., Divergent Selection of Pattern Recognition Receptors in Mammals with Different Ecological Characteristics. J Mol Evol, 2018. 86(2): p. 138-149.

156. Robinson, N.B., et al., The current state of animal models in research: A review. Int J Surg, 2019. 72: p. 9-13.

157. Andreasen, A., et al., Comparison of innate and Th1-type host immune responses in Oesophagostomum dentatum and Trichuris suis infections in pigs. Parasite Immunol, 2016. 38(1): p. 53-63.

158. Aragon-Aranda, B., et al., Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Vet Res, 2020. 51(1):

p. 92.

159. Comerlato, J., et al., Identification of a murine cell line that distinguishes virulent from attenuated isolates of the morbillivirus Peste des Petits Ruminants, a promising tool for virulence studies. Virus Res, 2020. 286: p. 198035.

160. Liu, G., et al., Adherent/invasive capacities of bovine-associated Aerococcus viridans contribute to pathogenesis of acute mastitis in a murine model. Vet Microbiol, 2019.

230: p. 202-211.

161. Camacho, C., et al., BLAST+: architecture and applications. BMC Bioinformatics, 2009. 10: p. 421.

162. Mittal, R., et al., Role of innate immunity in the pathogenesis of otitis media. Int J Infect Dis, 2014. 29: p. 259-67.

163. Gao, C., et al., Glycan Microarrays as Chemical Tools for Identifying Glycan Recognition by Immune Proteins. Frontiers in Chemistry, 2019. 7: p. 833.

164. Geissner, A., et al., Microbe-focused glycan array screening platform. Proc Natl Acad Sci U S A, 2019. 116(6): p. 1958-1967.

165. Prost, L.R., et al., Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. ACS Chem Biol, 2012. 7(9): p. 1603-8.

166. Hanske, J., et al., Bacterial Polysaccharide Specificity of the Pattern Recognition

168. Mayer, S., et al., C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol, 2018. 9: p. 213.

169. Imai, T., et al., Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection. Proc Natl Acad Sci U S A, 2018.

115(45): p. E10662-E10671.

170. Raulf, M.K., et al., The C-type Lectin Receptor CLEC12A Recognizes Plasmodial Hemozoin and Contributes to Cerebral Malaria Development. Cell Rep, 2019. 28(1):

p. 30-38 e5.

171. Kottom, T.J., et al., Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol, 2019. 68(11): p. 1649-1654.

172. Kottom, T.J., et al., The Interaction of Pneumocystis with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. J Immunol, 2017.

198(9): p. 3515-3525.

173. Ostrop, J., et al., Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. J Immunol, 2015. 195(5): p. 2417-28.

174. Schoenen, H., et al., Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol, 2010. 184(6): p. 2756-60.

175. Schick, J., et al., Cutting Edge: TNF Is Essential for Mycobacteria-Induced MINCLE Expression, Macrophage Activation, and Th17 Adjuvanticity. J Immunol, 2020. 205(2):

p. 323-328.

176. Hansen, M., et al., Macrophage Phosphoproteome Analysis Reveals MINCLE-dependent and -inMINCLE-dependent Mycobacterial Cord Factor Signaling. Mol Cell Proteomics, 2019. 18(4): p. 669-685.

177. Huber, A., et al., Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-gamma towards Enhanced Inflammation yet Impaired Antigen Presentation and

177. Huber, A., et al., Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-gamma towards Enhanced Inflammation yet Impaired Antigen Presentation and