• Keine Ergebnisse gefunden

Chapter 3.2 Signal enhancement in LA-ICP-MS analysis by guard electrode and the addition of

3.2.4 Concluding remarks

In this study, we investigated the signal enhancement effects by the addition of N2 and H2 in combination with the guard electrode on 54 elements from 7Li to 238U, as well as oxide yields and doubly charged ion yields in LA-ICP-MS. The spatial profiles of ICP ion distribution are collected in the presence or absence of N2 and H2 in combination with the guard electrode.

The analytical accuracy and precision at different modes based on six glass reference materials are evaluated. Several conclusions are made as follows,

1. Signal intensity of 54 investigated elements is enhanced up to 6 times by using guard electrode compared to without using guard electrode, which is related to the increase of ion density that is induced by the shrinkage of the whole plasma due to guard electrode.

2. Guard electrode shifts the ionization zone backward to sample cone that needs a larger carrier gas flow to compensate.

3. Small amounts of H2 decrease the signal sensitivity without using the guard electrode, while slightly enhance the sensitivity with the guard electrode.

4. Small amounts of N2 shift the ionization zone backward to the sample cone with and without the guard electrode.

5. Those six modes including GE-off, GE-off-N2, GE-off-H2, GE-on, GE-on-N2, GE-on-H2) produce very similar analytical data.

6. The GE-on-N2 (2 ml min-1) is the best instrument conditions for routine multiple trace element analysis.

135

References

Appelblad PK, Rodushkin I, Baxter DC (2000) The use of Pt guard electrode in inductively coupled plasma sector field mass spectrometry: advantages and limitations. J. Anal. At.

Spectrom. 15(4): 359-364

Becker JS, Dietze H-J (1999) Application of double-focusing sector field ICP mass spectrometry with shielded torch using different nebulizers for ultratrace and precise isotope analysis of long-lived radionuclides. J. Anal. At. Spectrom. 14(9): 1493-1500

Chen T, Hu Z, Liu S, Liu Y, Gao S, Li M, Zong K, Chen H, Hu S (2015) Improved performance of a shielded torch using ethanol in inductively coupled plasma–sector field mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy. 106: 36-44

Cruz‐Uribe AM, Mertz‐Kraus R, Zack T, Feineman MD, Woods G, Jacob DE (2016) A New LA‐ICP‐MS Method for Ti in Quartz: Implications and Application to High Pressure Rutile‐

Quartz Veins from the Czech Erzgebirge. Geostand. Geoanal. Res. 41(1): 29-40

Durrant SF (1993) Alternatives to all-argon plasmas in inductively coupled plasma mass spectrometry (ICP-MS): an overview. Fresenius' Journal of Analytical Chemistry. 347(10):

389-392

Durrant SF (1994) Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma. Fresenius' Journal of Analytical Chemistry. 349(10): 768-771

Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl. Surf.

Sci. 127–129: 278-286

136

Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem. Geol.

182(2–4): 237-247

Fu J, Hu Z, Zhang W, Yang L, Liu Y, Li M, Zong K, Gao S, Hu S (2016) In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS. Anal. Chim.

Acta. 911: 14-26

Günther D, Heinrich CA (1999) Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J. Anal. At. Spectrom. 14(9):

1369-1374

Gagnon JE, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J. Anal. At.

Spectrom. 23(11): 1529-1537

Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L, Hu SH (2002) Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newsletter. 26(2):

181-196

Garbe-Schönberg D, Müller S (2014) Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 29 (6): 990-1000

Guillong M, Heinrich CA (2007) Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas. J. Anal. At. Spectrom. 22(12): 1488-1494

Guillong M, Sliwinski JT, Schmitt A, Forni F, Bachmann O (2016) U‐Th Zircon Dating by

137

Laser Ablation Single Collector Inductively Coupled Plasma‐Mass Spectrometry (LA‐ICP‐

MS). Geostand. Geoanal. Res. 40(3): 377-387

Holliday AE, Beauchemin D (2004) Spatial profiling of analyte signal intensities in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy. 59(3): 291-311

Hu Z, Liu Y, Li M, Gao S, Zhao L (2009) Results for Rarely Determined Elements in MPI‐

DING, USGS and NIST SRM Glasses Using Laser Ablation ICP‐MS. Geostand. Geoanal.

Res. 33(3): 319-335

Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HL (2008) Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom.

23(8): 1093-1101

J. G. Mank A, R. D. Mason P (1999) A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J. Anal. At. Spectrom. 14(8):

1143-1153

Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology.

Chem. Geol. 211(1): 47-69

Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW, Becker S, Besmehn A, Bessette D, Dietze HJ, Dulski P (2000) The Preparation and Preliminary Characterisation of Eight Geological MPI‐DING Reference Glasses for In‐Situ Microanalysis. Geostandards Newsletter. 24(1): 87-133

Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new

138

geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res.

29(3): 333-338

Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog C-J, Dalpé C, Danyushevsky L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios.

Geochemistry, Geophysics, Geosystems. 7(2): 1-44

Jochum KP, Weis U, Stoll B, Kuzmin D, Yang QC, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res. 35(4): 397-429

Kaiyun C, Honglin Y, Zhian B, Chunlei Z, Mengning D (2014) Precise and Accurate In Situ Determination of Lead Isotope Ratios in NIST, USGS, MPI-DING and CGSG Glass Reference Materials using Femtosecond Laser Ablation MC-ICP-MS. Geostand. Geoanal.

Res. 38(1): 5-21

Kimura J-I, Chang Q, Kawabata H (2013) Standardless determination of Nd isotope ratios in glasses and minerals using laser-ablation multiple-collector inductively coupled plasma mass spectrometry with a low-oxide molecular yield interface setup. J. Anal. At. Spectrom. 28(9):

1522-1529

Koch J, Günther D (2011) Review of the State-of-the-Art of Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Appl. Spectrosc. 65(5): 155A-162A

139

Kosler J, Jackson S, Yang Z, Wirth R (2014) Effect of oxygen in sample carrier gas on laser-induced elemental fractionation in U-Th-Pb zircon dating by laser ablation ICP-MS. J.

Anal. At. Spectrom. 29: 832-840

Latkoczy C, Günther D (2002) Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS). J. Anal.

At. Spectrom. 17(10): 1264-1270

Liu S, Hu Z, Gunther D, Ye Y, Liu Y, Gao S, Hu S (2014) Signal enhancement in laser ablation inductively coupled plasma-mass spectrometry using water and/or ethanol vapor in combination with a shielded torch. J. Anal. At. Spectrom. 29(3): 536-544

Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257(1-2): 34-43

Liu YS, Hu ZC, Li M, Gao S (2013) Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin. 58(32): 3863-3878

Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell.

J. Anal. At. Spectrom. 24(2): 209-214

Macholdt DS, Jochum KP, Pöhlker C, Stoll B, Weis U, Weber B, Müller M, Kappl M, Buhre S, Kilcoyne ALD, Weigand M, Scholz D, Al-Amri AM, Andreae MO (2015) Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale. Chem. Geol. 411: 57-68

Nonose NS, Matsuda N, Fudagawa N, Kubota M (1994) Some characteristics of polyatomic

140

ion spectra in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B:

Atomic Spectroscopy. 49(10): 955-974

Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter. 21(1): 115-144

Petrelli M, Laeger K, Perugini D (2016) High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: implications for glass analysis in volcanic products. Geosciences Journal. 20(6): 851-863

Raimondo T, Payne J, Wade B, Lanari P, Clark C, Hand M (2017) Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet. Contributions to Mineralogy and Petrology. 172(4): DOI 10.1007/s00410-00017-01339-z

Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J (2013) Laser Ablation in Analytical Chemistry. Analytical Chemistry. 85(13): 6162-6177

Sakata Ki, Kawabata K (1994) Reduction of fundamental polyatomic ions in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy.

49(10): 1027-1038

Segura M, Madrid Y, Camara C (2003) Elimination of calcium and argon interferences in iron determination by ICP-MS using desferrioxamine chelating agent immobilized in sol-gel and cold plasma conditions. J. Anal. At. Spectrom. 18(9): 1103-1108

Spandler C, Hammerli J, Sha P, Hilbert-Wolf H, Hu Y, Roberts E, Schmitz M (2016) MKED1:

A new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology.

Chem. Geol. 425: 110-126

141

Stoll B, Jochum KP, Herwig K, Amini M, Flanz M, Kreuzburg B, Kuzmin D, Willbold M, Enzweiler J (2008) An automated iridium-strip heater for LA-ICP-MS bulk analysis of geological samples. Geostand. Geoanal. Res. 32(1): 5-26

Tomlinson EL, Thordarson T, Müller W, Thirlwall M, Menzies MA (2010) Microanalysis of tephra by LA-ICP-MS - Strategies, advantages and limitations assessed using the Thorsmörk ignimbrite (Southern Iceland). Chem. Geol. 279(3): 73-89

Tong X, Liu Y, Hu Z, Chen H, Zhou L, Hu Q, Xu R, Deng L, Chen C, Yang L, Gao S (2015) Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS. Geostand. Geoanal. Res. 40(1): 85-99

Ubide T, McKenna CA, Chew DM, Kamber BS (2015) High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem. Geol. 409:

157-168

Wu S, Wang Y, Xu C, Yuan J (2016) Elemental Fractionation Studies of 193 nm ArF Excimer Laser Ablation System at High Spatial Resolution Mode. Chinese Journal of Analytical Chemistry. 44(7): 1035-1041

Xu L, Hu Z, Zhang W, Yang L, Liu Y, Gao S, Luo T, Hu SH (2015) In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. J. Anal. At. Spectrom. 30(1):

232-244

Yuan HL, Gao S, Liu XM, Li HM, Gunther D, Wu FY (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass

142 spectrometry. Geostand. Geoanal. Res. 28(3): 353-370

Zack T, Hogmalm KJ (2016) Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell. Chem. Geol. 437: 120-133

Zack T, Stockli DF, Luvizotto GL, Barth MG, Belousova E, Wolfe MR, Hinton RW (2011) In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology. 162(3): 515-530

143