• Keine Ergebnisse gefunden

In the present PhD thesis the intrahippocampal kainate mouse model was successfully used to evaluate the tolerability of seven drug combinations and to subsequently screen four of the drug combinations (one was repeated with reduced doses) for disease-modifying or antiepileptogenic efficacy. The drug combinations levetiracetam + gabapentin + topiramate, levetiracetam + deferoxamine + gabapentin + fingolimod, and levetiracetam + atorvastatin +

General Discussion

antiepileptogenic effects in this model. The drug combination levetiracetam + atorvastatin + ceftriaxone was not effective at higher doses and the drug combination levetiracetam + α-tocopherol did not exert a strong disease-modifying effect. Due to smaller group sizes than originally anticipated, the studies with the most effective drug combinations should be repeated to achieve a higher power for the performed experiments and to confirm the reproducibility of the experiments.

Unfortunately, none of the drug combinations in the present PhD thesis were able to completely prevent the development of epilepsy in the intrahippocampal kainate mouse model. This finding is similar to the majority of the outcomes in preclinical studies on potential antiepileptogenic or disease-modifying treatments, where reduced behavioral or neurodegenerative alterations, or reduced frequency of spontaneous seizures were achieved by drug treatment, but not the prevention of the development of epilepsy (Löscher and Brandt 2010). One explanation might be that the brain insult in this model was too severe to allow for the prevention of epilepsy by treating the animals after the initial insult (White and Löscher 2014). Due to the injection of excitotoxic kainate and the subsequent surgical implantation of the EEG electrode into the hippocampus, the intrahippocampal kainate model can be considered a hit insult model (Brackhan et al. 2018). In previous studies, this double-hit insult resulted in marked BBB disruption, neuroinflammation, and neurodegeneration in the ipsilateral hippocampus and associated areas (Riban et al. 2002; Pernot et al. 2011; Zattoni et al. 2011; Bitsika et al. 2016; Brackhan et al. 2018). The severity of the brain insult might be why epilepsy is difficult to prevent or modify in the intrahippocampal kainate model (Shima et al. 2015; Twele et al. 2016a; Schidlitzki et al. 2017). Furthermore, the latent period in epilepsy models is very short (or nonexistent), so that the time window for a prophylactic treatment might not be long enough (Sloviter 2008; Sloviter and Bumanglag 2013). An important goal for the future is therefore the modification of available animal models to reduce the severity of the brain insult and thereby increasing the duration of the latent period (White and Löscher 2014). A further aim is the reduction of the percentage of animals that develop epilepsy in animal models to identify possible biomarkers responsible for animals developing or not developing spontaneous recurrent seizures after the brain insult (White and Löscher 2014). Only 50% of the animals after TBI develop epilepsy over several months after TBI (Pitkänen et al. 2007), which makes TBI models more laborious and time-consuming than the intrahippocampal kainate model. However, TBI models are important for identifying

General Discussion

identify the presence and severity of tissue capable of generating spontaneous seizures, measure progression after the condition is established, and determine pharmacoresistance (Engel et al. 2013a). In addition, biomarkers could be used to create high-throughput screening models for potential antiepileptogenic compounds and could serve as surrogate endpoints for clinical trials (Pitkänen and Engel 2014).

Based on the algorithm we used for drug testing, the most promising drug combinations in the intrahippocampal kainate mouse model will next be tested for antiepileptogenic efficacy in a different epilepsy model in rats (e.g. a TBI model, Phase IIc). Sufficient preclinical evidence and the feasibility of clinical antiepileptogenesis trials remain the two most important challenges for testing new disease-modifying or antiepileptogenic drugs or drug combinations (Schmidt et al. 2014). As it is not known whether antiepileptogenic or disease-modifying effects of drug combinations identified in a post-SE model will translate to a TBI model or even to patients with TBI (Pitkänen and Lukasiuk 2011b), efficacy of a treatment should be demonstrated in at least two different models and species (White and Löscher 2014). This recommendation is further supported by the observation that many factors (e.g. sex, strain, anesthesia, definition of electrographic seizures) can influence the outcome of a preclinical trial in an animal model (Twele et al. 2016a; Twele et al. 2016b). It is therefore important to study effective drug combinations in other mouse and rat models of acquired epilepsy to see if the efficacy translates to other models. A positive outcome in a different epilepsy model would strengthen the evidence to progress from preclinical to clinical trials (Galanopoulou et al. 2012).

To investigate the disease-modifying and partially antiepileptogenic effects of the drug combinations in the present studies, further efficacy studies should be performed with single administration of the drugs in the future. This would elucidate whether the effects were caused by individual drugs or truly generated by the combination of the drugs. This approach was also recently applied to confirm the efficacy of the drug combination levetiracetam + topiramate in the intrahippocampal kainate mouse model (Schidlitzki et al., submitted).

Furthermore, the mechanisms of action of effective drug combinations could be investigated by performing gene-regulatory network analysis of hippocampal tissue to identify genes with potential disease-modifying or antiepileptogenic activity (Johnson et al. 2015).

General Discussion

model. By using an algorithm based on the different phases of clinical trials, we were able to identify several disease-modifying and partially antiepileptogenic drug combinations, which should be further investigated in different models of acquired epilepsy in the future. The conducted studies provide first preclinical evidence for translating these effective drug combinations to later clinical trials and are an important step in the development of drug combinations for multitargeted intervention in epileptogenesis.

References

8 References

Aguiar, A. S., Jr., T. Tuon, F. S. Soares, L. G. da Rocha, P. C. Silveira, & R. A. Pinho.

(2008). The effect of n-acetylcysteine and deferoxamine on exercise-induced oxidative damage in striatum and hippocampus of mice. Neurochemical Research, 33, 729-736.

Ainsworth, C. (2011). Networking for new drugs. Nature Medicine, 17, 1166-1168.

Albertson, T. E., S. L. Peterson, L. G. Stark, M. L. Lakin, & W. D. Winters. (1981). The anticonvulsant properties of melatonin on kindled seizures in rats. Neuropharmacology, 20, 61-66.

Alomar, M. J. (2014). Factors affecting the development of adverse drug reactions (Review article). Saudi Pharmaceutical Journal, 22, 83-94.

Ambrogini, P., M. C. Albertini, M. Betti, C. Galati, D. Lattanzi, D. Savelli, M. Di Palma, S.

Saccomanno, D. Bartolini, P. Torquato, G. Ruffolo, F. Olivieri, F. Galli, E. Palma, A.

Minelli, & R. Cuppini. (2018). Neurobiological Correlates of Alpha-Tocopherol Antiepileptogenic Effects and MicroRNA Expression Modulation in a Rat Model of Kainate-Induced Seizures. Molecular Neurobiology, 55, 7822-7838.

Ambrogini, P., A. Minelli, C. Galati, M. Betti, D. Lattanzi, S. Ciffolilli, M. Piroddi, F. Galli,

& R. Cuppini. (2014). Post-seizure alpha-tocopherol treatment decreases

neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Molecular Neurobiology, 50, 246-256.

Andresen, L., D. Hampton, A. Taylor-Weiner, L. Morel, Y. Yang, J. Maguire, & C. G. Dulla.

(2014). Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiology of Disease, 71, 305-316.

Aronson, J. K. & D. G. Grahame-Smith. (1981). Clinical pharmacology. Adverse drug interactions. British Medical Journal (Clinical Research Edition), 282, 288-291.

Balatoni, B., M. K. Storch, E. M. Swoboda, V. Schönborn, A. Koziel, G. N. Lambrou, P. C.

Hiestand, R. Weissert, & C. A. Foster. (2007). FTY720 sustains and restores neuronal

References

Banach, M., S. J. Czuczwar, & K. K. Borowicz. (2014). Statins - are they anticonvulsant?

Pharmacological Reports, 66, 521-528.

Banerjee, P. N., D. Filippi, & W. Allen Hauser. (2009). The descriptive epidemiology of epilepsy-a review. Epilepsy Research, 85, 31-45.

Barker-Haliski, M. (2019). How do we choose the appropriate animal model for antiseizure therapy development? Expert Opinion on Drug Discovery, 1-5.

Barnard, G. A. (1947). Significance tests for 2 X 2 tables. Biometrika, 34, 123-138.

Barone, E., G. Cenini, F. Di Domenico, S. Martin, R. Sultana, C. Mancuso, M. P. Murphy, E.

Head, & D. A. Butterfield. (2011). Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacological Research, 63, 172-180.

Baxter, M. G., K. L. Murphy, P. M. Taylor, & S. E. Wolfensohn. (2009). Chloral hydrate is not acceptable for anesthesia or euthanasia of small animals. Anesthesiology, 111, 209;

author reply 209-210.

Bedner, P., A. Dupper, K. Hüttmann, J. Müller, M. K. Herde, P. Dublin, T. Deshpande, J.

Schramm, U. Häussler, C. A. Haas, C. Henneberger, M. Theis, & C. Steinhäuser.

(2015). Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 138, 1208-1222.

Beghi, E., A. Carpio, L. Forsgren, D. C. Hesdorffer, K. Malmgren, J. W. Sander, T. Tomson,

& W. A. Hauser. (2010). Recommendation for a definition of acute symptomatic seizure. Epilepsia, 51, 671-675.

Ben-Ari, Y. & J. Lagowska. (1978). [Epileptogenic action of intra-amygdaloid injection of kainic acid]. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences. Serie D: Sciences Naturelles, 287, 813-816.

Ben-Ari, Y., J. Lagowska, E. Tremblay, & G. Le Gal La Salle. (1979). A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive

secondarily generalized convulsive seizures. Brain Research, 163, 176-179.

References

Berendt, M., R. G. Farquhar, P. J. Mandigers, A. Pakozdy, S. F. Bhatti, L. De Risio, A.

Fischer, S. Long, K. Matiasek, K. Munana, E. E. Patterson, J. Penderis, S. Platt, M.

Podell, H. Potschka, M. B. Pumarola, C. Rusbridge, V. M. Stein, A. Tipold, & H. A.

Volk. (2015). International veterinary epilepsy task force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Veterinary Research, 11, 182.

Berg, A. T., S. F. Berkovic, M. J. Brodie, J. Buchhalter, J. H. Cross, W. van Emde Boas, J.

Engel, J. French, T. A. Glauser, G. W. Mathern, S. L. Moshé, D. Nordli, P. Plouin, & I.

E. Scheffer. (2010). Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 51, 676-685.

Bertram, E. H. (2009). Temporal lobe epilepsy: where do the seizures really begin? Epilepsy

& Behavior, 14 Suppl 1, 32-37.

Bertram, E. H. (2014). Extratemporal lobe circuits in temporal lobe epilepsy. Epilepsy &

Behavior, 38, 13-18.

Betti, M., A. Minelli, P. Ambrogini, S. Ciuffoli, V. Viola, F. Galli, B. Canonico, D. Lattanzi, E. Colombo, P. Sestili, & R. Cuppini. (2011). Dietary supplementation with alpha-tocopherol reduces neuroinflammation and neuronal degeneration in the rat brain after kainic acid-induced status epilepticus. Free Radical Research, 45, 1136-1142.

Bialer, M. & H. S. White. (2010). Key factors in the discovery and development of new antiepileptic drugs. Nature Reviews Drug Discovery, 9, 68-82.

Bitsika, V., V. Duveau, J. Simon-Areces, W. Mullen, C. Roucard, M. Makridakis, G.

Mermelekas, P. Savvopoulos, A. Depaulis, & A. Vlahou. (2016). High-Throughput LC-MS/MS Proteomic Analysis of a Mouse Model of Mesiotemporal Lobe Epilepsy Predicts Microglial Activation Underlying Disease Development. Journal of Proteome Research, 15, 1546-1562.

Bloss, E. B. & R. G. Hunter. (2010). Hippocampal kainate receptors. Vitamins and Hormones, 82, 167-184.

References

Blümcke, I., M. Thom, E. Aronica, D. D. Armstrong, F. Bartolomei, A. Bernasconi, N.

Bernasconi, C. G. Bien, F. Cendes, R. Coras, J. H. Cross, T. S. Jacques, P. Kahane, G.

W. Mathern, H. Miyata, S. L. Moshé, B. Oz, Ç. Özkara, E. Perucca, S. Sisodiya, S.

Wiebe, & R. Spreafico. (2013). International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia, 54, 1315-1329.

Bock, J. M., S. G. Menon, L. L. Sinclair, N. S. Bedford, P. C. Goswami, F. E. Domann, & D.

K. Trask. (2007). Celecoxib toxicity is cell cycle phase specific. Cancer Research, 67, 3801-3808.

Bösel, J., F. Gandor, C. Harms, M. Synowitz, U. Harms, P. C. Djoufack, D. Megow, U.

Dirnagl, H. Hörtnagl, K. B. Fink, & M. Endres. (2005). Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones.

Journal of Neurochemistry, 92, 1386-1398.

Bouilleret, V., V. Ridoux, A. Depaulis, C. Marescaux, A. Nehlig, & G. Le Gal La Salle.

(1999). Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience, 89, 717-729.

Brackhan, M., P. Bascuñana, T. L. Ross, F. M. Bengel, J. P. Bankstahl, & M. Bankstahl.

(2018). [(18) F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Epilepsia, 59, 617-626.

Bragin, A., J. Engel, Jr., C. L. Wilson, E. Vizentin, & G. W. Mathern. (1999).

Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia, 40, 1210-1221.

Brandt, C., A. M. Gastens, M. Sun, M. Hausknecht, & W. Löscher. (2006a). Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 51, 789-804.

References

Brandt, C., M. Glien, A. M. Gastens, M. Fedrowitz, K. Bethmann, H. A. Volk, H. Potschka,

& W. Löscher. (2007). Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology, 53, 207-221.

Brandt, C., A. Heile, H. Potschka, T. Stoehr, & W. Löscher. (2006b). Effects of the novel antiepileptic drug lacosamide on the development of amygdala kindling in rats.

Epilepsia, 47, 1803-1809.

Brandt, C., M. Nozadze, N. Heuchert, M. Rattka, & W. Löscher. (2010). Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. Journal of Neuroscience, 30, 8602-8612.

Brandt, C., H. Potschka, W. Löscher, & U. Ebert. (2003). N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience, 118, 727-740.

Brinkmann, V., M. D. Davis, C. E. Heise, R. Albert, S. Cottens, R. Hof, C. Bruns, E. Prieschl, T. Baumruker, P. Hiestand, C. A. Foster, M. Zollinger, & K. R. Lynch. (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry, 277, 21453-21457.

Bröer, S., C. Käufer, V. Haist, L. Li, I. Gerhauser, M. Anjum, M. Bankstahl, W. Baumgärtner,

& W. Löscher. (2016). Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Experimental Neurology, 279, 57-74.

Brown, M. S. & J. L. Goldstein. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232, 34-47.

Brunkhorst, R., R. Vutukuri, & W. Pfeilschifter. (2014). Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Frontiers in Cellular Neuroscience, 8, 283.

Burton, G. W. & M. G. Traber. (1990). Vitamin E: antioxidant activity, biokinetics, and

References

Butcher, E. C., E. L. Berg, & E. J. Kunkel. (2004). Systems biology in drug discovery. Nature Biotechnology, 22, 1253-1259.

Cameron, A., A. Bansal, T. Dua, S. R. Hill, S. L. Moshe, A. K. Mantel-Teeuwisse, & S.

Saxena. (2012). Mapping the availability, price, and affordability of antiepileptic drugs in 46 countries. Epilepsia, 53, 962-969.

Carriero, G., S. Arcieri, A. Cattalini, L. Corsi, V. Gnatkovsky, & M. de Curtis. (2012). A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia, 53, 1917-1927.

Carunchio, I., M. Pieri, M. T. Ciotti, F. Albo, & C. Zona. (2007). Modulation of AMPA receptors in cultured cortical neurons induced by the antiepileptic drug levetiracetam.

Epilepsia, 48, 654-662.

Casas, A. I., A. A. Hassan, S. J. Larsen, V. Gomez-Rangel, M. Elbatreek, P. W. M. Kleikers, E. Guney, J. Egea, M. G. López, J. Baumbach, & H. Schmidt. (2019). From single drug targets to synergistic network pharmacology in ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 116, 7129-7136.

Chae, S. S., R. L. Proia, & T. Hla. (2004). Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins & Other Lipid Mediators, 73, 141-150.

Chang, B. S. & D. H. Lowenstein. (2003). Epilepsy. New England Journal of Medicine, 349, 1257-1266.

Chang, W. P. & T. C. Südhof. (2009). SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. Journal of Neuroscience, 29, 883-897.

Chau, I. & D. Cunningham. (2002). Cyclooxygenase inhibition in cancer--a blind alley or a new therapeutic reality? New England Journal of Medicine, 346, 1085-1087.

Chen, J., E. Marks, B. Lai, Z. Zhang, J. A. Duce, L. Q. Lam, I. Volitakis, A. I. Bush, S.

Hersch, & J. H. Fox. (2013). Iron accumulates in Huntington's disease neurons:

protection by deferoxamine. PLoS One, 8, e77023.

References

Chen, J., Q. Y. Quan, F. Yang, Y. Wang, J. C. Wang, G. Zhao, & W. Jiang. (2010). Effects of lamotrigine and topiramate on hippocampal neurogenesis in experimental temporal-lobe epilepsy. Brain Research, 1313, 270-282.

Chia, R., F. Achilli, M. F. Festing, & E. M. Fisher. (2005). The origins and uses of mouse outbred stocks. Nature Genetics, 37, 1181-1186.

Christopherson, K. S., E. M. Ullian, C. C. Stokes, C. E. Mullowney, J. W. Hell, A. Agah, J.

Lawler, D. F. Mosher, P. Bornstein, & B. A. Barres. (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 120, 421-433.

Chung, S. Y. & S. H. Han. (2003). Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. Journal of Pineal Research, 34, 95-102.

Clarke, R. M., A. Lyons, F. O'Connell, B. F. Deighan, C. E. Barry, N. G. Anyakoha, A.

Nicolaou, & M. A. Lynch. (2008). A pivotal role for interleukin-4 in atorvastatin-associated neuroprotection in rat brain. Journal of Biological Chemistry, 283, 1808-1817.

Cohen, A. (1990). Current status of iron chelation therapy with deferoxamine. Seminars in Hematology, 27, 86-90.

Cohen, J. A. & J. Chun. (2011). Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Annals of Neurology, 69, 759-777.

Coughenour, L. L., J. R. McLean, & R. B. Parker. (1977). A new device for the rapid measurement of impaired motor function in mice. Pharmacology, Biochemistry, and Behavior, 6, 351-353.

Covolan, L. & L. E. Mello. (2000). Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Research, 39, 133-152.

Cramer, C. L., M. L. Stagnitto, M. A. Knowles, & G. C. Palmer. (1994). Kainic acid and 4-aminopyridine seizure models in mice: evaluation of efficacy of anti-epileptic agents

References

Cui, C., Y. Cui, J. Gao, L. Sun, Y. Wang, K. Wang, R. Li, Y. Tian, S. Song, & J. Cui. (2014).

Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury.

Neurological Sciences, 35, 695-700.

Cui, H. J., H. Y. He, A. L. Yang, H. J. Zhou, C. Wang, J. K. Luo, Y. Lin, & T. Tang. (2015).

Efficacy of deferoxamine in animal models of intracerebral hemorrhage: a systematic review and stratified meta-analysis. PLoS One, 10, e0127256.

Custer, K. L., N. S. Austin, J. M. Sullivan, & S. M. Bajjalieh. (2006). Synaptic vesicle protein 2 enhances release probability at quiescent synapses. Journal of Neuroscience, 26, 1303-1313.

Dal-Pizzol, F., F. Klamt, M. M. Vianna, N. Schröder, J. Quevedo, M. S. Benfato, J. C.

Moreira, & R. Walz. (2000). Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neuroscience Letters, 291, 179-182.

Dannhardt, G. & W. Kiefer. (2007). [New antiepileptics in development]. Pharmazie in unserer Zeit, 36, 306-310.

de Oliveira, G. N., A. Kummer, J. V. Salgado, E. J. Portela, S. R. Sousa-Pereira, A. S. David,

& A. L. Teixeira. (2010). Psychiatric disorders in temporal lobe epilepsy: an overview from a tertiary service in Brazil. Seizure, 19, 479-484.

De Smedt, T., R. Raedt, K. Vonck, & P. Boon. (2007). Levetiracetam: the profile of a novel anticonvulsant drug-part I: preclinical data. CNS Drug Reviews, 13, 43-56.

de Tisi, J., G. S. Bell, J. L. Peacock, A. W. McEvoy, W. F. Harkness, J. W. Sander, & J. S.

Duncan. (2011). The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet, 378, 1388-1395.

DeLorenzo, R. J., A. Morris, R. E. Blair, M. Wallace, & B. Razvi. (2002). Topiramate is both neuroprotective and antiepileptogenic in the pilocarpine model of status epilepticus.

Epilepsia, 43, 15.

References

Deogracias, R., M. Yazdani, M. P. Dekkers, J. Guy, M. C. Ionescu, K. E. Vogt, & Y. A.

Barde. (2012). Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 109, 14230-14235.

Devinsky, O., A. Vezzani, T. J. O'Brien, N. Jette, I. E. Scheffer, M. de Curtis, & P. Perucca.

(2018). Epilepsy. Nature Reviews Disease Primers, 4, 18024.

Dhir, A., P. S. Naidu, & S. K. Kulkarni. (2006). Effect of cyclooxygenase-2 (COX-2) inhibitors in various animal models (bicuculline, picrotoxin, maximal electroshock-induced convulsions) of epilepsy with possible mechanism of action. Indian Journal of Experimental Biology, 44, 286-291.

Dichter, M. A. (2009). Emerging concepts in the pathogenesis of epilepsy and epileptogenesis. Archives of Neurology, 66, 443-447.

Dinc, C., A. C. Iplikcioglu, C. Atabey, A. Eroglu, K. Topuz, O. Ipcioglu, & D. Demirel.

(2013). Comparison of deferoxamine and methylprednisolone: protective effect of pharmacological agents on lipid peroxidation in spinal cord injury in rats. Spine, 38, E1649-1655.

Dunham, N. W. & T. S. Miya. (1957). A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association, 46, 208-209.

Dunn, S. E., S. Youssef, M. J. Goldstein, T. Prod'homme, M. S. Weber, S. S. Zamvil, & L.

Steinman. (2006). Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. Journal of Experimental Medicine, 203, 401-412.

Ebert, U., S. Cramer, & W. Löscher. (1997). Phenytoin's effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Archives of Pharmacology, 356, 341-347.

References

Eder, J., R. Sedrani, & C. Wiesmann. (2014). The discovery of first-in-class drugs: origins and evolution. Nature Reviews Drug Discovery, 13, 577-587.

Editorial. (2009). Troublesome variability in mouse studies. Nature Neuroscience, 12, 1075.

Engel, J., Jr. (2001). Mesial temporal lobe epilepsy: what have we learned? Neuroscientist, 7, 340-352.

Engel, J., Jr., A. Pitkänen, J. A. Loeb, F. E. Dudek, E. H. Bertram, 3rd, A. J. Cole, S. L.

Moshé, S. Wiebe, F. E. Jensen, I. Mody, A. Nehlig, & A. Vezzani. (2013a). Epilepsy biomarkers. Epilepsia, 54 Suppl 4, 61-69.

Engel, J., Jr., P. M. Thompson, J. M. Stern, R. J. Staba, A. Bragin, & I. Mody. (2013b).

Connectomics and epilepsy. Current Opinion in Neurology, 26, 186-194.

Eraković, V., G. Zupan, J. Varljen, & A. Simonić. (2003). Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione

peroxidase activity. Neurochemistry International, 42, 173-178.

Erlich, S., A. Alexandrovich, E. Shohami, & R. Pinkas-Kramarski. (2007). Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiology of Disease, 26, 86-93.

Eroglu, C., N. J. Allen, M. W. Susman, N. A. O'Rourke, C. Y. Park, E. Ozkan, C.

Chakraborty, S. B. Mulinyawe, D. S. Annis, A. D. Huberman, E. M. Green, J. Lawler, R. Dolmetsch, K. C. Garcia, S. J. Smith, Z. D. Luo, A. Rosenthal, D. F. Mosher, & B.

A. Barres. (2009). Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 139, 380-392.

Estrada-Bernal, A., K. Palanichamy, A. Ray Chaudhury, & J. R. Van Brocklyn. (2012).

Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro-Oncology, 14, 405-415.

Etminan, M., A. Samii, & J. M. Brophy. (2010). Statin use and risk of epilepsy: a nested case-control study. Neurology, 75, 1496-1500.

References

Fentener van Vlissingen, J. M., M. Borrens, A. Girod, P. Lelovas, F. Morrison, & Y. S.

Torres. (2015). The reporting of clinical signs in laboratory animals: FELASA Working Group Report. Laboratory Animals, 49, 267-283.

Ferguson, P. L., G. M. Smith, B. B. Wannamaker, D. J. Thurman, E. E. Pickelsimer, & A. W.

Selassie. (2010). A population-based study of risk of epilepsy after hospitalization for traumatic brain injury. Epilepsia, 51, 891-898.

Fiest, K. M., K. M. Sauro, S. Wiebe, S. B. Patten, C. S. Kwon, J. Dykeman, T. Pringsheim, D.

L. Lorenzetti, & N. Jetté. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 88, 296-303.

Filitz, J., H. Ihmsen, W. Günther, A. Tröster, H. Schwilden, J. Schüttler, & W. Koppert.

(2008). Supra-additive effects of tramadol and acetaminophen in a human pain model.

Pain, 136, 262-270.

Fisher, R., V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I. Osorio, J.

Nazzaro, D. Labar, M. Kaplitt, M. Sperling, E. Sandok, J. Neal, A. Handforth, J. Stern, A. DeSalles, S. Chung, A. Shetter, D. Bergen, R. Bakay, J. Henderson, J. French, G.

Baltuch, W. Rosenfeld, A. Youkilis, W. Marks, P. Garcia, N. Barbaro, N. Fountain, C.

Bazil, R. Goodman, G. McKhann, K. Babu Krishnamurthy, S. Papavassiliou, C.

Epstein, J. Pollard, L. Tonder, J. Grebin, R. Coffey, N. Graves, & S. S. Group. (2010).

Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia, 51, 899-908.

Fisher, R. S., C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger, J. Engel, Jr., L. Forsgren, J. A. French, M. Glynn, D. C. Hesdorffer, B. I. Lee, G. W. Mathern, S. L.

Moshé, E. Perucca, I. E. Scheffer, T. Tomson, M. Watanabe, & S. Wiebe. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 55, 475-482.

Fisher, R. S., J. H. Cross, J. A. French, N. Higurashi, E. Hirsch, F. E. Jansen, L. Lagae, S. L.

Moshé, J. Peltola, E. Roulet Perez, I. E. Scheffer, & S. M. Zuberi. (2017). Operational

Moshé, J. Peltola, E. Roulet Perez, I. E. Scheffer, & S. M. Zuberi. (2017). Operational