• Keine Ergebnisse gefunden

differ among virus and mouse strains and substrains

4. Presentation and discussion of the study in article form: A

6.2. Concluding remarks

The innate immune response represents an evolutionarily old defense mechanism directed against various invading pathogens found in all multicellular organisms (Buchmann, 2014). Since the discovery of type I IFNs in 1957, a plethora of studies have been performed to define the components of the type I IFN signaling pathway and its ability to block virus replication (Isaacs and Lindenmann, 1957). However, due to the abundance of ISGs and their impact on multiple cellular processes their specific functions in the innate immune response especially in the CNS are still far from being fully understood. The results of the present study indicated that the classical ISGs ISG15, PKR, and OAS1 are involved in the resistance of C57BL/6 mice to the demyelination processes induced by TMEV. Nevertheless, the higher expression of these ISGs in C57BL/6 compared to SJL/J mice might also be related to their sensitivity to develop seizures and epilepsy. Consequently, the type I IFN signaling pathway seems to have an impact on the development of the characteristic lesions induced by TMEV, which encourages further studies to identify the exact role of ISGs in the CNS at the cellular level. Moreover, the understanding of the type I IFN signaling pathway in physiological and pathological states of the CNS might be the basis for the development of targeted strategies to treat common debilitating CNS disorders such as MS and epilepsy.

References 45

Chapter 7

References

46 References

Achiron, A., Y. Barak, and Z. Rotstein (2003): Longitudinal disability curves for predicting the course of relapsing-remitting multiple sclerosis. Multiple Sclerosis 9, 486–491.

Aebi, M., J. Fäh, N. Hurt, C.E. Samuel, D. Thomis, L. Bazzigher, J. Pavlovic, O. Haller, and P.

Staeheli (1989): cDNA structures and regulation of two interferon-induced human Mx proteins.

Molecular and Cellular Biology 9, 5062–5072.

Andrejeva, J., K.S. Childs, D.F. Young, T.S. Carlos, N. Stock, S. Goodbourn, and R.E. Randall (2004): The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proceedings of the National Academy of Sciences of the United States of America 101, 17264–17269.

Ank, N., M.B. Iversen, C. Bartholdy, P. Staeheli, R. Hartmann, U.B. Jensen, F. Dagnaes-Hansen, A.R. Thomsen, Z. Chen, H. Haugen, K. Klucher, and S.R. Paludan (2008): An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. Journal of Immunology 180, 2474–2485.

Ank, N., H. West, C. Bartholdy, K. Eriksson, A.R. Thomsen, and S.R. Paludan (2006a): Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. Journal of Virology 80, 4501–4509.

Ank, N., H. West, and S.R. Paludan (2006b): IFN-lambda: novel antiviral cytokines. Journal of Interferon & Cytokine Research 26, 373–379.

Annibali, V., R. Mechelli, S. Romano, M.C. Buscarinu, A. Fornasiero, R. Umeton, V.A.G.

Ricigliano, F. Orzi, E.M. Coccia, M. Salvetti, and G. Ristori (2015): IFN-β and multiple sclerosis: from etiology to therapy and back. Cytokine and Growth Factor Reviews 26, 221–228.

Awomoyi, A.A., P. Rallabhandi, T.I. Pollin, E. Lorenz, M.B. Sztein, M.S. Boukhvalova, V.G.

Hemming, J.C.G. Blanco, and S.N. Vogel (2007): Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. Journal of Immunology 179, 3171–3177.

Bach, E.A., M. Aguet, and R.D. Schreiber (1997): The IFN-gamma receptor: a paradigm for cytokine receptor signaling. Annual Review of Immunology 15, 563–591.

Bachmann, M.F., and M. Kopf (2001): On the role of the innate immunity in autoimmune disease.

Journal of Experimental Medicine 193, F47–50.

Barnes, B.J., J. Richards, M. Mancl, S. Hanash, L. Beretta, and P.M. Pitha (2004): Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. Journal of Biological Chemistry 279, 45194–45207.

References 47

Barnett, M.H., and J.W. Prineas (2004): Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Annals of Neurology 55, 458–468.

Bar-Or, A., E.M. Oliveira, D.E. Anderson, and D.A. Hafler (1999): Molecular pathogenesis of multiple sclerosis. Journal of Neuroimmunology 100, 252–259.

Baumgärtner, W. (2015): Combatting the myth of neuropathology. Veterinary Pathology 52, 994–997.

Boehm, U., T. Klamp, M. Groot, and J.C. Howard (1997): Cellular responses to interferon-gamma.

Annual Review of Immunology 15, 749–95.

Bonjardim, C.A., P.C.P. Ferreira, and E.G. Kroon (2009): Interferons: signaling, antiviral and viral evasion. Immunology Letters 122, 1–11.

Boo, K.-H., and J.-S. Yang (2010): Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei Medical Journal 51, 9–17.

Brück, W., N. Sommermeier, M. Bergmann, U. Zettl, H.H. Goebel, H.A. Kretzschmar, and H.

Lassmann (1996): Macrophages in multiple sclerosis. Immunobiology 195, 588–600.

Buchmann, K. (2014): Evolution of innate immunity: clues from invertebrates via fish to mammals.

Frontiers in Immunology 5, 1–8.

Busse, A., J. Rapion, A. Fusi, S. Suciu, A. Nonnenmacher, M. Santinami, W.H.J. Kruit, A. Testori, C.J.A. Punt, A.G. Dalgleish, A. Spatz, A.M.M. Eggermont, and U. Keilholz (2013): Analysis of surrogate gene expression markers in peripheral blood of melanoma patients to predict treatment outcome of adjuvant pegylated interferon alpha 2b (EORTC 18991 side study). Cancer Immunology, Immunotherapy 62, 1223–1233.

Carpentier, P.A., B.R. Williams, and S.D. Miller (2007): Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 55, 239–252.

Choi, U.Y., J.-S. Kang, Y.S. Hwang, and Y.-J. Kim (2015): Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Experimental & Molecular Medicine 47, e144.

Cusick, M.F., J.E. Libbey, D.J. Doty, and R.S. Fujinami (2014): DA virus mutant H101 has altered CNS pathogenesis and causes immunosuppression. Journal of Neuroimmunology 277, 118–126.

Cusick, M.F., J.E. Libbey, D.C. Patel, D.J. Doty, and R.S. Fujinami (2013): Infiltrating macrophages are key to the development of seizures following virus infection. Journal of Virology 87, 1849–

1860.

48 References

Dal Canto, M.C., B.S. Kim, S.D. Miller, and R.W. Melvold (1996): Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination: a model for human multiple sclerosis. Methods 10, 453–

461.

Daniels, J.B., A.M. Pappenheimer, and S. Richardson (1952): Observations of encephalomyelitis of mice (DA strain). Journal of Experimental Medicine 96, 514–530.

Delhaye, S., V. van Pesch, and T. Michiels (2004): The leader protein of Theiler’s virus interferes with nucleocytoplasmic trafficking of cellular proteins. Journal of Virology 78, 4357–4362.

Der, S.D., A. Zhou, B.R. Williams, and R.H. Silverman (1998): Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 95, 15623–15628.

Diamond, M.S., and M. Farzan (2013): The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature reviews. Immunology 13, 46–57.

Dianzani, F., G. Antonelli, and M.R. Capobianchi (1990): Biological activity of gamma interferon.

Annali Dell’Istituto Superiore Di Sanità 26, 255–261.

Fan, J., K.-N. Son, S.Y. Arslan, Z. Liang, and H.L. Lipton (2009): Theiler’s murine encephalomyelitis virus leader protein is the only nonstructural protein tested that induces apoptosis when transfected into mammalian cells. Journal of Virology 83, 6546–6553.

Feng, X., J. Huang, Y. Liu, L. Xiao, D. Wang, B. Hua, B.P. Tsao, and L. Sun (2015): Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clinical Rheumatology 34, 71–79.

Fisher, R.S. (2015): Redefining epilepsy. Current Opinion in Neurology 28, 130–135.

Fisher, R.S., W.E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel (2005): Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46, 470–472.

Gerhauser, I., R. Ulrich, S. Alldinger, and W. Baumgärtner (2007): Induction of activator protein-1 and nuclear factor-κB as a prerequisite for disease development in susceptible SJL/J mice after theiler’s murine encephalomyelitis. Journal of Neuropathology and Experimental Neurology 66, 809–818.

Ghadge, G.D., L. Ma, S. Sato, J. Kim, and R.P. Roos (1998): A protein critical for a Theiler’s virus-induced immune system-mediated demyelinating disease has a cell type-specific antiapoptotic effect and a key role in virus persistence. Journal of Virology 72, 8605–8612.

References 49

Gilli, F., A. Bertolotto, A. Sala, F. Hoffmann, M. Capobianco, S. Malucchi, T. Glass, L. Kappos, R.L.P. Lindberg, and D. Leppert (2004): Neutralizing antibodies against IFN-β in multiple sclerosis: antagonization of IFN-β mediated suppression of MMPs. Brain 127, 259–268.

Hall, J.C., and A. Rosen (2010): Type I interferons: crucial participants in disease amplification in autoimmunity. Nature Reviews. Rheumatology 6, 40–49.

Haller, O., P. Staeheli, and G. Kochs (2007): Interferon-induced Mx proteins in antiviral host defense.

Biochimie 89, 812–818.

Haller, O., P. Staeheli, M. Schwemmle, and G. Kochs (2015): Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology 23, 154–163.

Harty, R.N., P.M. Pitha, and A. Okumura (2009): Antiviral activity of innate immune protein ISG15.

Journal of Innate Immunity 1, 397–404.

Hashioka, S., A. Klegeris, C. Schwab, S. Yu, and P.L. McGeer (2010): Differential expression of interferon-γ receptor on human glial cells in vivo and in vitro. Journal of Neuroimmunology 225, 91–99.

Hayashi, Y., K. Onomoto, R. Narita, M. Yoneyama, H. Kato, T. Nakagawa, J. Ito, A. Taura, and T.

Fujita (2013): Virus-induced expression of retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 in the cochlear sensory epithelium. Microbes and Infection 15, 592–598.

Hedström, A.K., T. Olsson, and L. Alfredsson (2015): The role of environment and lifestyle in determining the risk of multiple sclerosis. Current Topics in Behavioral Neurosciences 26, 87–

104.

Heine, M., I. van de Port, M.B. Rietberg, E.E. van Wegen, and G. Kwakkel (2015): Exercise therapy for fatigue in multiple sclerosis. The Cochrane Database of Systematic Reviews 9, CD009956.

Hermant, P., and T. Michiels (2014): Interferon-λ in the context of viral infections: production, response and therapeutic implications. Journal of Innate Immunity 6, 563–574.

Hesse, D., F. Sellebjerg, and P.S. Sorensen (2009): Absence of MxA induction by interferon-β in patients with MS reflects complete loss of bioactivity. Neurology 73, 372–377.

Hidmark, A., A. von Saint Paul, and A.H. Dalpke (2012): Cutting edge: TLR13 is a receptor for bacterial RNA. Journal of Immunology 189, 2717–2721.

50 References

Holzinger, D., C. Jorns, S. Stertz, S. Boisson-Dupuis, R. Thimme, M. Weidmann, J.-L. Casanova, O. Haller, and G. Kochs (2007): Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. Journal of Virology 81, 7776–7785.

Honda, K., H. Yanai, A. Takaoka, and T. Taniguchi (2005): Regulation of the type I IFN induction: a current view. International Immunology 17, 1367–1378.

Horisberger, M.A., M. Wathelet, J. Szpirer, C. Szpirer, Q. Islam, G. Levan, G. Huez, and J.

Content (1988): cDNA cloning and assignment to chromosome 21 of IFI-78K gene, the human equivalent of murine Mx gene. Somatic Cell and Molecular Genetics 14, 123–131.

Hovanessian, A.G., and J. Galabru (1987): The double-stranded RNA-dependent protein kinase is also activated by heparin. European Journal of Biochemistry / FEBS 167, 467–473.

Ireland, D.D.C., S.A. Stohlman, D.R. Hinton, P. Kapil, R.H. Silverman, R.A. Atkinson, and C.C.

Bergmann (2009): RNase L mediated protection from virus induced demyelination. PLoS Pathogens 5, e1000602.

Isaacs, A., and J. Lindenmann (1957): Virus interference : I. the interferon. Proceedings of the Royal Society of London Series B-Biological Sciences 147, 258–567.

Jin, Y.H., W. Hou, S.J. Kim, A.C. Fuller, B. Kang, G. Goings, S.D. Miller, and B.S. Kim (2010):

Type I interferon signals control Theiler’s virus infection site, cellular infiltration and T cell stimulation in the CNS. Journal of Neuroimmunology 226, 27–37.

Jin, Y.-H., S.J. Kim, E.Y. So, L. Meng, M. Colonna, and B.S. Kim (2012): Melanoma differentiation-associated gene 5 is critical for protection against Theiler’s virus-induced demyelinating disease.

Journal of Virology 86, 1531–43.

Joy, J.E., and R.B. Johnston (2001): multiple sclerosis: current status and strategies for the future.

National Institute of Medicine, Washington, D.C.

Kato, H., O. Takeuchi, E. Mikamo-Satoh, R. Hirai, T. Kawai, K. Matsushita, A. Hiiragi, T.S.

Dermody, T. Fujita, and S. Akira (2008): Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. Journal of Experimental Medicine 205, 1601–1610.

Kay, M., Z. Hojati, and F. Dehghanian (2013): The molecular study of IFNβ pleiotropic roles in MS treatment. Iranian Journal of Neurology 12, 149–156.

Keirstead, H.S., and W.F. Blakemore (1999): The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Advances in Experimental Medicine and Biology 468, 183–

197.

References 51

Ketscher, L., and K.-P. Knobeloch (2015): ISG15 uncut: dissecting enzymatic and non-enzymatic functions of USP18 in vivo. Cytokine 76, 10–12.

Kimball, S.R. (1999): Eukaryotic initiation factor eIF2. The International Journal of Biochemistry & Cell Biology 31, 25–29.

Kirkman, N.J., J.E. Libbey, K.S. Wilcox, H.S. White, and R.S. Fujinami (2010): Innate but not adaptive immune responses contribute to behavioral seizures following viral infection. Epilepsia 51, 454–464.

Knight, E., and B. Cordova (1991): IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. Journal of Immunology 146, 2280–2284.

Kochs, G., and O. Haller (1999): Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proceedings of the National Academy of Sciences of the United States of America 96, 2082–2086.

Kong, W.P., and R.P. Roos (1991): Alternative translation initiation site in the DA strain of Theiler’s murine encephalomyelitis virus. Journal of Virology 65, 3395–3399.

Kotenko, S. V., G. Gallagher, V. V. Baurin, A. Lewis-Antes, M. Shen, N.K. Shah, J.A. Langer, F.

Sheikh, H. Dickensheets, and R.P. Donnelly (2003): IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology 4, 69–77.

Kraus, J., A.K. Ling, S. Hamm, K. Voigt, P. Oschmann, and B. Engelhardt (2004): Interferon-β stabilizes barrier characteristics of brain endothelial cells in vitro. Annals of Neurology 56, 192–

205.

Kristiansen, H., H.H. Gad, S. Eskildsen-Larsen, P. Despres, and R. Hartmann (2011): The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities.

Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 31, 41–47.

Kristiansen, H., C.A. Scherer, M. McVean, S.P. Iadonato, S. Vends, K. Thavachelvam, T.B.

Steffensen, K.A. Horan, T. Kuri, F. Weber, S.R. Paludan, and R. Hartmann (2010):

Extracellular 2’-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. Journal of Virology 84, 11898–11904.

Kummerfeld, M., F. Seehusen, S. Klein, R. Ulrich, R. Kreutzer, I. Gerhauser, V. Herder, W.

Baumgärtner, and A. Beineke (2012): Periventricular demyelination and axonal pathology is associated with subependymal virus spread in a murine model for multiple sclerosis. Intervirology 55, 401–416.

52 References

Lampron, A., A. Elali, and S. Rivest (2013): Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron 78, 214–232.

Lassmann, H., W. Brück, and C. Lucchinetti (2001): Heterogeneity of multiple sclerosis

pathogenesis: implications for diagnosis and therapy. Trends in Molecular Medicine 7, 115–121.

Lassmann, H., W. Brück, and C.F. Lucchinetti (2007): The immunopathology of multiple sclerosis:

an overview. Brain Pathology 17, 210–218.

Lee, M.S., B. Kim, G.T. Oh, and Y.-J. Kim (2013): OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nature Immunology 14, 346–355.

Libbey, J.E., and R.S. Fujinami (2011): Neurotropic viral infections leading to epilepsy: focus on Theiler’s murine encephalomyelitis virus. Future Virology 6, 1339–1350.

Libbey, J.E., N.J. Kennett, K.S. Wilcox, H.S. White, and R.S. Fujinami (2011a): Lack of correlation of central nervous system inflammation and neuropathology with the development of seizures following acute virus infection. Journal of Virology 85, 8149–57.

Libbey, J.E., N.J. Kennett, K.S. Wilcox, H.S. White, and R.S. Fujinami (2011b): Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. Journal of Virology 85, 6913–6922.

Libbey, J.E., N.J. Kirkman, M.C.P. Smith, T. Tanaka, K.S. Wilcox, H.S. White, and R.S. Fujinami (2008): Seizures following picornavirus infection. Epilepsia 49, 1066–1074.

Lipton, H.L. (1975): Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infection and Immunity 11, 1147–1155.

Lipton, H.L., and R. Melvold (1984): Genetic analysis of susceptibility to Theiler’s virus-induced demyelinating disease in mice. Journal of Immunology 132, 1821–1825.

Loeb, K.R., and A.L. Haas (1992): The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. Journal of Biological Chemistry 267, 7806–7813.

Lorch, Y., A. Friedmann, H.L. Lipton, and M. Kotler (1981): Theiler’s murine encephalomyelitis virus group includes two distinct genetic subgroups that differ pathologically and biologically. Journal of Virology 40, 560–567.

Love, S. (2006): Demyelinating diseases. Journal of Clinical Pathology 59, 1151–1159.

Lu, G., J.T. Reinert, I. Pitha-Rowe, A. Okumura, M. Kellum, K.P. Knobeloch, B. Hassel, and P.M.

Pitha (2006): ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation.

Cellular and Molecular Biology 52, 29–41.

References 53

Lublin, F.D., S.C. Reingold, J.A. Cohen, G.R. Cutter, P.S. Sørensen, A.J. Thompson, J.S.

Wolinsky, L.J. Balcer, B. Banwell, F. Barkhof, B. Bebo, P.A. Calabresi, M. Clanet, G. Comi, R.J. Fox, M.S. Freedman, A.D. Goodman, M. Inglese, L. Kappos, B.C. Kieseier, J.A. Lincoln, C. Lubetzki, A.E. Miller, X. Montalban, P.W. O’Connor, J. Petkau, C. Pozzilli, R.A. Rudick, M.P. Sormani, O. Stüve, E. Waubant, and C.H. Polman (2014): Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286.

Malakhova, O.A., K. Il Kim, J.-K. Luo, W. Zou, K.G.S. Kumar, S.Y. Fuchs, K. Shuai, and D.-E.

Zhang (2006): UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. European Molecular Biology Organization 25, 2358–2367.

Marié, I., J.E. Durbin, and D.E. Levy (1998): Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. European Molecular Biology Organization 17, 6660–6669.

Martinat, C., N. Jarousse, M.C. Prévost, and M. Brahic (1999): The GDVII strain of Theiler’s virus spreads via axonal transport. Journal of Virology 73, 6093–6098.

Mecha, M., F.J. Carrillo-Salinas, L. Mestre, A. Feliú, and C. Guaza (2013): Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Progress in Neurobiology 101-102, 46–64.

Michiels, T., N. Jarousse, and M. Brahic (1995): Analysis of the leader and capsid coding regions of persistent and neurovirulent strains of Theiler’s virus. Virology 214, 550–558.

Misra, U.K., C.T. Tan, and J. Kalita (2008): Viral encephalitis and epilepsy. Epilepsia 49, 13–18.

Monick, M.M., T.O. Yarovinsky, L.S. Powers, N.S. Butler, A.B. Carter, G. Gudmundsson, and G.W. Hunninghake (2003): Respiratory syncytial virus up-regulates TLR4 and sensitizes airwayepithelial cells to endotoxin. Journal of Biological Chemistry 278, 53035–53044.

Monroe, K.M., S.M. McWhirter, and R.E. Vance (2010): Induction of type I interferons by bacteria.

Drug Discovery Today 12, 881–890.

Montero, H., and V. Trujillo-Alonso (2011): Stress granules in the viral replication cycle. Viruses 3, 2328–2338.

Moore, T.C., F.M. Al-Salleeh, D.M. Brown, and T.M. Petro (2011): IRF3 polymorphisms induce different innate anti-Theiler’s virus immune responses in RAW264.7 macrophages. Virology 418, 40–48.

54 References

Moore, T.C., L. Cody, P.M. Kumm, D.M. Brown, and T.M. Petro (2013): IRF3 helps control acute TMEV infection through IL-6 expression but contributes to acute hippocampus damage following TMEV infection. Virus Research 178, 226–233.

Nallagatla, S.R., J. Hwang, R. Toroney, X. Zheng, C.E. Cameron, and P.C. Bevilacqua (2007): 5’-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318, 1455–

1458.

Navarrete-Talloni, M.J., A. Kalkuhl, U. Deschl, R. Ulrich, M. Kummerfeld, K. Rohn, W.

Baumgärtner, and A. Beineke (2010): Transient peripheral immune response and central nervous system leaky compartmentalization in a viral model for multiple sclerosis. Brain Pathology 20, 890–901.

Njenga, M.K., P.D. Murray, D. McGavern, X. Lin, K.M. Drescher, and M. Rodriguez (1999):

Absence of spontaneous central nervous system remyelination in class II-deficient mice infected with Theiler’s virus. Journal of Neuropathology and Experimental Neurology 58, 78–91.

Obuchi, M., T. Odagiri, K. Asakura, and Y. Ohara (2001): Association of L* protein of Theiler’s murine encephalomyelitis virus with microtubules in infected cells. Virology 289, 95–102.

Obuchi, M., and Y. Ohara (1999): Theiler’s murine encephalomyelitis virus (TMEV): the role of a small out-of-frame protein in viral persistence and demyelination. Japanese Journal of Infectious Diseases 52, 228–233.

Obuchi, M., J. Yamamoto, T. Odagiri, M.N. Uddin, H. Iizuka, and O. Yoshiro (2000): L* Protein of Theiler’s murine encephalomyelitis virus is required for virus growth in a murine macrophage-like cell line. Journal of Virology 74, 4898–4901.

Okumura, F., A.J. Okumura, K. Uematsu, S. Hatakeyama, D.E. Zhang, and T. Kamura (2013):

Activation of double-stranded RNA-activated protein kinase (PKR) by interferon-stimulated gene 15 (ISG15) modification down-regulates protein translation. Journal of Biological Chemistry 288, 2839–2847.

Oleszak, E.L., J.R. Chang, H. Friedman, C.D. Katsetos, and C.D. Platsoucas (2004): Theiler’s virus infection: a model for multiple sclerosis. Clinical Microbilology Reviews 17, 174–207.

Olson, J.K., and S.D. Miller (2009): The innate immune response affects the development of the autoimmune response in Theiler’s virus-induced demyelinating disease. Journal of Immunology 182, 5712–5722.

Ottum, P.A., G. Arellano, L.I. Reyes, M. Iruretagoyena, and R. Naves (2015): Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation.

Frontiers in Immunology 6, 1–8.

References 55

Palma, J.P., and B.S. Kim (2004): The scope and activation mechanisms of chemokine gene expression in primary astrocytes following infection with Theiler’s virus. Journal of Neuroimmunology 149, 121–129.

Palma, J.P., D. Kwon, N.A. Clipstone, S. Kim, and B.S. Kim (2003): Infection with Theiler ’ s murine encephalomyelitis virus directly induces proinflammatory cytokines in primary astrocytes via NF- κ B activation : potential role for the initiation of demyelinating disease infection with Theiler ’ s murine encephalomyeli. Journal of Virology 77, 6322–6331.

Park, B.S., and J.-O. Lee (2013): Recognition of lipopolysaccharide pattern by TLR4 complexes.

Experimental & Molecular Medicine 45, e66.

Parkin, J., and B. Cohen (2001): An overview of the immune system. Immunology 357, 1777–1789.

Pestka, S., C.D. Krause, and M.R. Walter (2004): Interferons, interferon-like cytokines, and their receptors. Immunological Reviews 202, 8–32.

Pevear, D.C., J. Borkowski, M. Calenoff, C.K. Oh, B. Ostrowski, and H.L. Lipton (1988): Insights into Theiler’s virus neurovirulence based on a genomic comparison of the neurovirulent GDVII and less virulent BeAn strains. Virology 165, 1–12.

Pevear, D.C., M. Calenoff, E. Rozhon, and H.L. Lipton (1987): Analysis of the complete nucleotide sequence of the picornavirus Theiler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. Journal of Virology 61, 1507–1516.

Pfefferkorn, C., C. Kallfass, S. Lienenklaus, J. Spanier, U. Kalinke, M. Rieder, K.-K. Conzelmann, T. Michiels, and P. Staeheli (2015): Abortively infected astrocytes appear to represent the main source of interferon-β in the virus-infected brain. Journal of Virology 90, 2031–8.

Pichlmair, A., O. Schulz, C.P. Tan, T.I. Näslund, P. Liljeström, F. Weber, and C. Reis e Sousa (2006): RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates.

Science 314, 997–1001.

Pindel, A., and A. Sadler (2011): The role of protein kinase R in the interferon response. Journal of Interferon & Cytokine Research 31, 59–70.

Pine, R. (1992): Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection. Journal of Virology 66, 4470–4478.

Platanias, L.C. (2005): Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Reviews. Immunology 5, 375–386.

56 References

Prinz, M., H. Schmidt, A. Mildner, K.P. Knobeloch, U.K. Hanisch, J. Raasch, D. Merkler, C. Detje, I. Gutcher, J. Mages, R. Lang, R. Martin, R. Gold, B. Becher, W. Brück, and U. Kalinke (2008): Distinct and nonredundant In vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686.

Ricour, C., F. Borghese, F. Sorgeloos, S. V Hato, F.J.M. van Kuppeveld, and T. Michiels (2009a):

Random mutagenesis defines a domain of Theiler’s virus leader protein that is essential for antagonism of nucleocytoplasmic trafficking and cytokine gene expression. Journal of Virology 83, 11223–11232.

Ricour, C., S. Delhaye, S. V Hato, T.D. Olenyik, B. Michel, F.J.M. van Kuppeveld, K.E. Gustin, and T. Michiels (2009b): Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler’s virus leader protein. The Journal of General Virology 90, 177–186.

Rodriguez, M., J.L. Leibowitz, and P.W. Lampert (1983): Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Annals of Neurology 13, 426–433.

Rossi, J.L., T. Todd, Z. Daniels, N.G. Bazan, and L. Belayev (2015): Interferon-stimulated gene 15 upregulation precedes the development of blood-brain barrier disruption and cerebral edema after traumatic brain injury in young mice. Journal of Neurotrauma 32, 1101–1108.

Sadler, A.J., and B.R.G. Williams (2008): Interferon-inducible antiviral effectors. Nature Reviews.

Immunology 8, 559–568.

Saelens, X., M. Kalai, and P. Vandenabeele (2001): Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-α phosphorylation. Journal of Biological Chemistry 276, 41620–41628.

Sato, M., N. Hata, M. Asagiri, T. Nakaya, T. Taniguchi, and N. Tanaka (1998): Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Letters 441, 106–110.

Schafer, S.L., R. Lin, P.A. Moore, J. Hiscott, and P.M. Pitha (1998): Regulation of type I interferon gene expression by interferon regulatory factor-3. Journal of Biological Chemistry 273, 2714–

2720.

Schlitt, B.P., M. Felrice, M. Lou Jelachich, and H.L. Lipton (2003): Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions.

Schlitt, B.P., M. Felrice, M. Lou Jelachich, and H.L. Lipton (2003): Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions.