• Keine Ergebnisse gefunden

3. Results

4.4 Concluding remarks and perspectives

References

AJIAD, A. M., OGANIN,T. GJÖSEATER, H. 2011. Polar cod. In: T. JAKOPSEN, V. K. O. (ed.) The Barents Sea. Ecosystem, Resources, Management. Half a Century of Russian-Norwegian Cooperation.

Trondheim: Tapir Academic Press.

ALDERDICE, D. 1988. 3 Osmotic and Ionic Regulation in Teleost Eggs and Larvae. Fish physiology.

Elsevier.

ANGILLETTA, M. J. J. 2009. Thermal adaptation: a theoretical and empirical synthesis, Oxford University Press.

BARTON, A., WALDBUSSER, G. G., FEELY, R. A., WEISBERG, S. B., NEWTON, J. A., HALES, B., CUDD, S., EUDELINE, B., LANGDON, C. J. & JEFFERDS, I. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response.

Oceanography, 28, 146-159.

BAUMANN, H. 2019. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Canadian Journal of Zoology, 97, 399-408.

BAUMANN, H., TALMAGE, S. C. & GOBLER, C. J. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change, 2, 38-41.

BERGE, J., HEGGLAND, K., LØNNE, O. J., COTTIER, F., HOP, H., GABRIELSEN, G. W., NØTTESTAD, L. &

MISUND, O. A. 2015. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extensions of its distribution. Arctic, 54-61.

BERGH, S. & ARKING, R. 1984. Developmental profile of the heat shock response in early embryos of Drosophila. Journal of Experimental Zoology, 231, 379-391.

BINDOFF, N. L., STOTT, P. A., ACHUTARAO, K. M., ALLEN, M. R., GILLETT, N., GUTZLER, D., HANSINGO, K., HEGERL, G., HU, Y. & JAIN, S. 2013. Detection and attribution of climate change: from global to regional.

BLAXTER, J. 1988. 1 Pattern and Variety in Development. Fish physiology. Elsevier.

BOCK, C., WERMTER, F. C., SCHALKHAUSSER, B., BLICHER, M. E., PÖRTNER, H.-O., LANNIG, G. & SEJR, M. K. 2019. In vivo 31P-MRS of muscle bioenergetics in marine invertebrates: Future ocean limits scallops' performance. Magnetic resonance imaging.

BRADFORD, M. M. 1976. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.

BRANDER, K. 2005. Spawning and life history information for North Atlantic cod stocks. ICES cooperative research report.

BRANDER, K. M. 2007. Global fish production and climate change. Proceedings of the National Academy of Sciences, 104, 19709-19714.

BRAUNER, C. & BAKER, D. 2009. Patterns of acid–base regulation during exposure to hypercarbia in fishes. Cardio-respiratory control in vertebrates. Springer.

BRAUNER, C. J. & ROMBOUGH, P. J. 2012. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish. Respiratory physiology & neurobiology, 184, 293-300.

BRETT, J. 1956. Some principles in the thermal requirements of fishes. The Quarterly Review of Biology, 31, 75-87.

BROWN, J. H., GILLOOLY, J. F., ALLEN, A. P., SAVAGE, V. M. & WEST, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.

BUDDINGTON, R. K., HAZEL, J. R., DOROSHOV, S. I. & VAN EENENNAAM, J. 1993. Ontogeny of the capacity for homeoviscous adaptation in white sturgeon (Acipenser transmontanus). Journal of Experimental Zoology, 265, 18-28.

BYRNE, M. & PRZESLAWSKI, R. 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integrative comparative biology, 53, 582-596.

CALDEIRA, K. & WICKETT, M. E. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature, 425, 365.

CATTANO, C., CLAUDET, J., DOMENICI, P. & MILAZZO, M. J. E. M. 2018. Living in a high CO2 world: A global meta‐analysis shows multiple trait‐mediated fish responses to ocean acidification.

Ecological Monographs, 88, 320-335.

CHABOT, D. & CLAIREAUX, G. J. A. C. A. B. E. 2019. Ecophysiology. 27-86.

CHENG, J. C., MILLER, A. L. & WEBB, S. E. 2004. Organization and function of microfilaments during late epiboly in zebrafish embryos. Developmental dynamics, 231, 313-323.

CHEUNG, W. W., SARMIENTO, J. L., DUNNE, J., FRÖLICHER, T. L., LAM, V. W., PALOMARES, M. D., WATSON, R. & PAULY, D. 2013. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3, 254.

CHEUNG, W. W. L., LAM, V. W. Y., SARMIENTO, J. L., KEARNEY, K., WATSON, R. & PAULY, D. 2009.

Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10, 235-251.

CHRISTIANSEN, J. S. 2017. No future for Euro-Arctic ocean fishes? Marine Ecology Progress Series, 575, 217-227.

CHRISTIANSEN, J. S., MECKLENBURG, C. W. & KARAMUSHKO, O. V. 2014. Arctic marine fishes and their fisheries in light of global change. Global change biology, 20, 352-359.

CIANNELLI, L., BAILEY, K. & OLSEN, E. M. 2015. Evolutionary and ecological constraints of fish spawning habitats. Ices Journal of Marine Science, 72, 285-296.

CLARKE, A. 2003. Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution, 18, 573-581.

CLARKE, A. & JOHNSTON, N. M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of animal ecology, 68, 893-905.

COMTE, L. & OLDEN, J. D. 2017. Climatic vulnerability of the world’s freshwater and marine fishes.

Nature Climate Change, 7, nclimate3382.

DANNEVIG, H. 1895. The influence of temperature on the development of the eggs of fishes. Annula Reports of the Fishery Board of Scotland, 13, 147-152.

DE SOUZA, K. B., JUTFELT, F., KLING, P., FÖRLIN, L. & STURVE, J. 2014. Effects of increased CO2 on fish gill and plasma proteome. PloS one, 9, e102901.

DEGITZ, S. J., KOSIAN, P. A., MAKYNEN, E. A., JENSEN, K. M. & ANKLEY, G. T. 2000. Stage- and species-specific developmental toxicity of all-trans retinoic acid in four native North American ranids and Xenopus laevis. Toxicological Sciences, 57, 264-274.

DEIGWEIHER, K., KOSCHNICK, N., PORTNER, H. O. & LUCASSEN, M. 2008. Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 295, R1660-R1670.

DELL, A. I., PAWAR, S. & SAVAGE, V. M. 2011. Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, 108, 10591-10596.

DICKSON, A. G., SABINE, C. L. & CHRISTIAN, J. R. 2007. Guide to best practices for ocean CO2

measurements.

DRINKWATER, K. F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change.

ICES Journal of Marine Science, 62, 1327-1337.

ESBAUGH, A. J. 2017. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. Journal of Comparative Physiology B, 1-13.

ESBAUGH, A. J. 2018. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 188, 1-13.

EVANS, D. H., PIERMARINI, P. M. & CHOE, K. P. 2005. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.

Physiological Reviews, 85, 97-177.

FIELD, C. B., BARROS, V. R., MASTRANDREA, M. D., MACH, K. J., ABDRABO, M.-K., ADGER, N., ANOKHIN, Y. A., ANISIMOV, O. A., ARENT, D. J. & BARNETT, J. 2014. Summary for

policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global

and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

FINN, R. N., FYHN, H. J. & EVJEN, M. S. 1995. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua) .1. Respiration and nitrogen metabolism.

Marine Biology, 124, 355-369.

FLYNN, E. E., BJELDE, B. E., MILLER, N. A. & TODGHAM, A. E. 2015. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conservation physiology, 3.

FOSSHEIM, M., PRIMICERIO, R., JOHANNESEN, E., INGVALDSEN, R. B., ASCHAN, M. M. & DOLGOV, A.

V. 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic.

Nature Climate Change, 5, 673.

FRAINER, A., PRIMICERIO, R., KORTSCH, S., AUNE, M., DOLGOV, A. V., FOSSHEIM, M. & ASCHAN, M.

M. 2017. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences, 114, 12202-12207.

FROESE, R. & PAULY, D. 2018. FishBase 2018, version January, 2018.

GASTON, K. J., CHOWN, S. L., CALOSI, P., BERNARDO, J., BILTON, D. T., CLARKE, A., CLUSELLA-TRULLAS, S., GHALAMBOR, C. K., KONARZEWSKI, M. & PECK, L. S. 2009. Macrophysiology: a conceptual reunification. The American Naturalist, 174, 595-612.

GATTUSO, J.-P., MAGNAN, A., BILLÉ, R., CHEUNG, W. W., HOWES, E. L., JOOS, F., ALLEMAND, D., BOPP, L., COOLEY, S. R. & EAKIN, C. M. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349, aac4722.

GEFFEN, A., FOX, C. & NASH, R. 2006. Temperature‐dependent development rates of cod Gadus morhua eggs. Journal of Fish Biology, 69, 1060-1080.

GILLOOLY, J. F., BROWN, J. H., WEST, G. B., SAVAGE, V. M. & CHARNOV, E. L. 2001. Effects of size and temperature on metabolic rate. Science, 293, 2248-2251.

GOBLER, C. J., MERLO, L. R., MORRELL, B. K. & GRIFFITH, A. W. 2018. Temperature, acidification, and food supply interact to negatively affect the growth and survival of the forage fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Frontiers in Marine Science, 5, 86.

HALL, T. E., SMITH, P. & JOHNSTON, I. A. 2004. Stages of embryonic development in the Atlantic cod Gadus morhua. Journal of morphology, 259, 255-270.

HAMDOUN, A. & EPEL, D. 2007. Embryo stability and vulnerability in an always changing world.

Proceedings of the National Academy of Sciences, 104, 1745-1750.

HARI, P., PUMPANEN, J., HUOTARI, J., KOLARI, P., GRACE, J., VESALA, T. & OJALA, A. 2008. High‐

frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnology and Oceanography: Methods, 6, 347-354.

HAUG, T., BOGSTAD, B., CHIERICI, M., GJØSÆTER, H., HALLFREDSSON, E. H., HØINES, Å. S., HOEL, A.

H., INGVALDSEN, R. B., JØRGENSEN, L. L. & KNUTSEN, T. 2017. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38-57.

HEUER, R. M. & GROSELL, M. 2016. Elevated CO2 increases energetic cost and ion movement in the marine fish intestine. Scientific reports, 6.

HOCHACHKA, P. W. & SOMERO, G. N. 2002. Biochemical adaptation: mechanism and process in physiological evolution, Oxford University Press.

HOEGH-GULDBERG, O., JACOB, D., TAYLOR, M., GUILLEN BOLANOS, T., BINDI, M., BROWN, S., CAMILLONI, I., DIEDHIOU, A., DJALANTE, R. & EBI, K. 2019a. The human imperative of stabilizing global climate change at 1.5° C. Science.

HOEGH-GULDBERG, O., NORTHROP, E. & LUBCHENCO, J. 2019b. The ocean is key to achieving climate and societal goals. Science Advances, 365, 1372-1374.

HOP, H. & GJØSÆTER, H. 2013. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Marine Biology Research, 9, 878-894.

HOUDE, E. & HOYT, R. 1987. Fish early life dynamics and recruitment variability. Trans. Am. Fish. Soc.

HOUDE, E. D. 2008. Emerging from Hjort’s shadow. Journal of Northwest Atlantic Fishery Science, 41, 53-70.

HOWALD, S., COMINASSI, L., LE BAYON, N., CLAIREAUX, G. & MARK, F. C. 2019. Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification does not. bioRxiv, 568428.

HUNT VON HERBING, I., BOUTILIER, R., MIYAKE, T. & HALL, B. 1996. Effects of temperature on morphological landmarks critical to growth and survival in larval Atlantic cod (Gadus morhua). Marine Biology, 124, 593-606.

IPCC 2018. Global warming of 1.5 C An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In: MASSON-DELMOTTE, V., P. ZHAI, H.-O.

PÖRTNER, D. ROBERTS, J. SKEA, P.R. SHUKLA, A. PIRANI, W. MOUFOUMA-OKIA, C. PÉAN, R. PIDCOCK, S. CONNORS, J.B.R. MATTHEWS, Y. CHEN, X. ZHOU, M.I. GOMIS, E. LONNOY, T.

MAYCOCK, M. TIGNOR & WATERFIELD, T. (eds.).

IPCC 2019. Summary for Policymakers. In: H.-O. PÖRTNER, D. C. ROBERTS, V. MASSON-DELMOTTE, P.

ZHAI, M. TIGNOR, E. POLOCZANSKA, K. MINTENBECK, M. NICOLAI, A. OKEM, J. PETZOLD, B.

RAMA & WEYER, N. (eds.) PCC Special Report on the Ocean and Cryosphere in a Changing Climate.

ISHIMATSU, A., HAYASHI, M. & KIKKAWA, T. 2008. Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series, 373, 295-302.

JANZEN, D. H. 1967. Why mountain passes are higher in the tropics. The American Naturalist, 101, 233-249.

JESUTHASAN, S. & STRÄHLE, U. 1997. Dynamic microtubules and specification of the zebrafish embryonic axis. Current Biology, 7, 31-42.

KENT, D., DROST, H., FISHER, J., OYAMA, T. & FARRELL, A. 2016. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood. Journal of fish biology, 88, 1241-1248.

KEY, R. M., OLSEN, A., VAN HEUVEN, S., LAUVSET, S. K., VELO, A., LIN, X., SCHIRNICK, C., KOZYR, A., TANHUA, T. & HOPPEMA, M. 2015. Global Ocean Data Analysis Project, Version 2

(GLODAPv2). Carbon Dioxide Information Analysis Center, Oak Ridge Nat Lab.

KIMMEL, C. B., BALLARD, W. W., KIMMEL, S. R., ULLMANN, B. & SCHILLING, T. F. 1995. Stages of embryonic development of the zebrafish. Developmental dynamics, 203, 253-310.

KJESBU, O. 1989. The spawning activity of cod, Gadus morhua L. Journal of Fish Biology, 34, 195-206.

KJESBU, O. S., BOGSTAD, B., DEVINE, J. A., GJØSÆTER, H., HOWELL, D., INGVALDSEN, R. B., NASH, R.

D. & SKJÆRAASEN, J. E. 2014. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences, 111, 3478-3483.

KOENIGSTEIN, S., MARK, F. C., GÖßLING‐REISEMANN, S., REUTER, H. & PÖRTNER, H. O. 2016.

Modelling climate change impacts on marine fish populations: process‐based integration of ocean warming, acidification and other environmental drivers. Fish and Fisheries, 17, 972-1004.

KREISS, C. M., MICHAEL, K., BOCK, C., LUCASSEN, M. & PORTNER, H. O. 2015a. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology a-Molecular &

Integrative Physiology, 182, 102-112.

KREISS, C. M., MICHAEL, K., LUCASSEN, M., JUTFELT, F., MOTYKA, R., DUPONT, S. & PORTNER, H. O.

2015b. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 185, 767-781.

KUNZ, K. L., FRICKENHAUS, S., HARDENBERG, S., JOHANSEN, T., LEO, E., PORTNER, H. O., SCHMIDT, M., WINDISCH, H. S., KNUST, R. & MARK, F. C. 2016. New encounters in Arctic waters: a comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biology, 39, 1137-1153.

KURLANSKY, M. 1997. Cod. A biography of the fish that change the world., London, UK, Jonathan Cape.

LAEMMLI, U. K. 1970. Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4.

Nature, 227, 680.

LANNIG, G., EILERS, S., PÖRTNER, H. O., SOKOLOVA, I. M. & BOCK, C. 2010. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Marine drugs, 8, 2318-2339.

LAUREL, B. J., COPEMAN, L. A., SPENCER, M. & ISERI, P. 2018. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES Journal of Marine Science, 75, 2403-2412.

LEFEVRE, S. 2016. Are global warming and ocean acidification conspiring against marine ectotherms?

A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conservation physiology, 4, cow009.

LEO, E., KUNZ, K. L., SCHMIDT, M., STORCH, D., PÖRTNER, H.-O. & MARK, F. C. 2017. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua). Frontiers in zoology, 14, 21.

LEWIS, E., WALLACE, D. & ALLISON, L. J. 1998. Program developed for CO2 system calculations.

Brookhaven National Lab., Dept. of Applied Science, Upton, NY (United States); Oak Ridge National Lab., Carbon Dioxide Information Analysis Center, TN (United States).

LOCARNINI, R. A., A. V. MISHONOV, J. I. ANTONOV, T. P. BOYER, H. E. GARCIA, O. K. BARANOVA, M.

M. ZWENG, C. R. PAVER, J. R. REAGAN, D. R. JOHNSON, M. HAMILTON, AND D. SEIDOV 2013.

World Ocean Atlas 2013, NOAA.

LÜTHI, D., LE FLOCH, M., BEREITER, B., BLUNIER, T., BARNOLA, J.-M., SIEGENTHALER, U., RAYNAUD, D., JOUZEL, J., FISCHER, H. & KAWAMURA, K. 2008. High-resolution carbon dioxide

concentration record 650,000–800,000 years before present. Nature, 453, 379.

LUTTERSCHMIDT, W. I. & HUTCHISON, V. H. 1997. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology, 75, 1553-1560.

MAGNAN, A. K., COLOMBIER, M., BILLÉ, R., JOOS, F., HOEGH-GULDBERG, O., PÖRTNER, H.-O., WAISMAN, H., SPENCER, T. & GATTUSO, J.-P. 2016. Implications of the Paris agreement for the ocean. Nature climate change, 6, 732-735.

MANRÍQUEZ, P. H., GONZÁLEZ, C. P., BROKORDT, K., PEREIRA, L., TORRES, R., LATTUCA, M. E., FERNÁNDEZ, D. A., PECK, M. A., CUCCO, A. & ANTOGNARELLI, F. 2019. Ocean warming and acidification pose synergistic limits to the thermal niche of an economically important echinoderm. Science of The Total Environment.

MAUS, B., BOCK, C. & PÖRTNER, H.-O. 2018. Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. Journal of Comparative Physiology B, 188, 749-764.

MELZNER, F., GOBEL, S., LANGENBUCH, M., GUTOWSKA, M. A., PORTNER, H. O. & LUCASSEN, M.

2009a. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4-12 months) acclimation to elevated seawater PCO2. Aquatic Toxicology, 92, 30-37.

MELZNER, F., GUTOWSKA, M. A., LANGENBUCH, M., DUPONT, S., LUCASSEN, M., THORNDYKE, M. C., BLEICH, M. & PORTNER, H. O. 2009b. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences, 6, 2313-2331.

METIKALA, S., NEUHAUS, H. & HOLLEMANN, T. 2018. A multichannel computer-driven system to raise aquatic embryos under selectable hypoxic conditions. Hypoxia, 6, 1.

MICHAEL, K., KOSCHNICK, N., PORTNER, H. O. & LUCASSEN, M. 2016a. Response of branchial Na+/K+

ATPase to changes in ambient temperature in Atlantic cod (Gadus morhua) and whiting (Merlangius merlangus). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 186, 461-470.

MICHAEL, K., KREISS, C. M., HU, M. Y., KOSCHNICK, N., BICKMEYER, U., DUPONT, S., PORTNER, H. O. &

LUCASSEN, M. 2016b. Adjustments of molecular key components of branchial ion and pH

regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming.

Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 193, 33-46.

MILLER, G. M., KROON, F. J., METCALFE, S. & MUNDAY, P. 2015. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications, 25, 603-620.

MOYANO, M., CANDEBAT, C., RUHBAUM, Y., ÁLVAREZ-FERNÁNDEZ, S., CLAIREAUX, G., ZAMBONINO-INFANTE, J.-L. & PECK, M. A. 2017. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PloS one, 12, e0179928.

MUNDAY, P. L., CRAWLEY, N. E. & NILSSON, G. E. 2009a. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series, 388, 235-242.

MUNDAY, P. L., DIXSON, D. L., MCCORMICK, M. I., MEEKAN, M., FERRARI, M. C. & CHIVERS, D. P.

2010. Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences, 107, 12930-12934.

MUNDAY, P. L., DONELSON, J. M., DIXSON, D. L. & ENDO, G. G. 2009b. Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B:

Biological Sciences, 276, 3275-3283.

MURRAY, C. S., FUIMAN, L. A., BAUMANN, H. & BROWMAN, H. E. H. 2016. Consequences of elevated CO2 exposure across multiple life stages in a coastal forage fish. ICES Journal of Marine Science, 74, 1051-1061.

NAHRGANG, J., VARPE, Ø., KORSHUNOVA, E., MURZINA, S., HALLANGER, I. G., VIEWEG, I. & BERGE, J.

2014. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS one, 9, e98452.

NASA. 2019. GISS Surface Temperature Analysis [Online]. Goddard Space Flight Center. Sciences and Exploration Directorate, Earth Sciences Division. Available:

https://data.giss.nasa.gov/gistemp/graphs_v4/ [Accessed 2019].

NILSSON, G. E., DIXSON, D. L., DOMENICI, P., MCCORMICK, M. I., SØRENSEN, C., WATSON, S.-A. &

MUNDAY, P. L. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change, 2, 201.

NOAA. 2019. Global monthly mean CO2 [Online]. National Oceanic and Atmospheric Administration, . Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html [Accessed 06.10.2019 2019].

O'BRIEN, C. M., FOX, C. J., PLANQUE, B. & CASEY, J. 2000. Fisheries: climate variability and North Sea cod. Nature, 404, 142.

PACIFICI, M., FODEN, W. B., VISCONTI, P., WATSON, J. E., BUTCHART, S. H., KOVACS, K. M., SCHEFFERS, B. R., HOLE, D. G., MARTIN, T. G. & AKÇAKAYA, H. R. 2015. Assessing species vulnerability to climate change. Nature Climate Change, 5, 215-224.

PANKHURST, N. 1997. Temperature effects on the reproductive performance of fish. In: C.M. WOOD, D. G. M. (ed.) Global warming: implications for freshwater marine fish.

PANKHURST, N. W. & MUNDAY, P. L. 2011. Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research, 62, 1015-1026.

PARKER, L. M., SCANES, E., O'CONNOR, W. A., COLEMAN, R. A., BYRNE, M., PÖRTNER, H.-O. & ROSS, P. M. 2017. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata. Marine pollution bulletin, 122, 263-271.

PECK, M. A., HUEBERT, K. B. & LLOPIZ, J. K. 2012. Intrinsic and extrinsic factors driving match–

mismatch dynamics during the early life history of marine fishes. Advances in Ecological Research. Elsevier.

PERRY, A. L., LOW, P. J., ELLIS, J. R. & REYNOLDS, J. D. 2005. Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915.

PINSKY, M. L., EIKESET, A. M., MCCAULEY, D. J., PAYNE, J. L. & SUNDAY, J. M. 2019. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 1.

PINSKY, M. L., REYGONDEAU, G., CADDELL, R., PALACIOS-ABRANTES, J., SPIJKERS, J. & CHEUNG, W.

W. L. 2018. Preparing ocean governance for species on the move. Science, 360, 1189-1191.

PLANQUE, B. & FRÉDOU, T. 1999. Temperature and the recruitment of Atlantic cod (Gadus morhua).

Canadian Journal of Fisheries, 56, 2069-2077.

POLOCZANSKA, E. S., BROWN, C. J., SYDEMAN, W. J., KIESSLING, W., SCHOEMAN, D. S., MOORE, P. J., BRANDER, K., BRUNO, J. F., BUCKLEY, L. B. & BURROWS, M. T. 2013. Global imprint of climate change on marine life. Nature Climate Change, 3, 919-925.

PÖRTNER, H.-O. 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137-146.

PÖRTNER, H.-O. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 132, 739-761.

PÖRTNER, H.-O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series, 373, 203-217.

PÖRTNER, H.-O. 2010. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213, 881-893.

PÖRTNER, H.-O. & FARRELL, A. P. 2008a. ECOLOGY Physiology and Climate Change. Science, 322, 690-692.

PÖRTNER, H.-O., KARL, D. M., BOYD, P. W., CHEUNG, W., LLUCH-COTA, S. E., NOJIRI, Y., SCHMIDT, D.

N., ZAVIALOV, P. O., ALHEIT, J. & ARISTEGUI, J. 2014. Ocean systems. Climate change 2014:

impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

PÖRTNER, H.-O., LUCASSEN, M. & STORCH, D. 2005. Metabolic biochemistry: its role in thermal tolerance and in the capacities of physiological and ecological function. J Fish physiology, 22, 79-154.

PÖRTNER, H.-O. & PECK, M. A. 2010. Climate change effects on fishes and fisheries: towards a cause‐

and‐effect understanding. Journal of fish biology, 77, 1745-1779.

PÖRTNER, H.-O., VAN DIJK, P., HARDEWIG, I. & SOMMER, A. 2000. Levels of metabolic cold

adaptation: tradeoffs in eurythermal and stenothermal ectotherms. In: Antarctic Ecosystems:

models for wider ecological understanding. eds W. Davison, C. Howard Williams, Caxton Press, Christchurch New Zealand.

PÖRTNER, H. O., BENNETT, A. F., BOZINOVIC, F., CLARKE, A., LARDIES, M. A., LUCASSEN, M., PELSTER, B., SCHIEMER, F. & STILLMAN, J. H. 2006. Trade-offs in thermal adaptation: The need for a molecular to ecological integration. Physiological and Biochemical Zoology, 79, 295-313.

PÖRTNER, H. O., BOCK, C. & MARK, F. C. 2017. Oxygen- and capacity-limited thermal tolerance:

bridging ecology and physiology. Journal of Experimental Biology, 220, 2685-2696.

PÖRTNER, H. O. & KNUST, R. 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-7.

PRZESLAWSKI, R., BYRNE, M. & MELLIN, C. 2015. A review and meta‐analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global change biology, 21, 2122-2140.

RAFTERY, A. E., ZIMMER, A., FRIERSON, D. M., STARTZ, R. & LIU, P. 2017. Less than 2° C warming by 2100 unlikely. Nature Climate Change, 7, nclimate3352.

RAZGOUR, O., FORESTER, B., TAGGART, J. B., BEKAERT, M., JUSTE, J., IBÁÑEZ, C., PUECHMAILLE, S. J., NOVELLA-FERNANDEZ, R., ALBERDI, A. & MANEL, S. 2019. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections.

Proceedings of the National Academy of Sciences, 116, 10418-10423.

RIGHTON, D. A., ANDERSEN, K. H., NEAT, F., THORSTEINSSON, V., STEINGRUND, P., SVEDANG, H., MICHALSEN, K., HINRICHSEN, H. H., BENDALL, V., NEUENFELDT, S., WRIGHT, P., JONSSON, P., HUSE, G., VAN DER KOOIJ, J., MOSEGAARD, H., HUSSY, K. & METCALFE, J. 2010. Thermal

niche of Atlantic cod Gadus morhua: limits, tolerance and optima. Marine Ecology Progress Series, 420, 1-U344.

ROGELJ, J., DEN ELZEN, M., HOHNE, N., FRANSEN, T., FEKETE, H., WINKLER, H., CHAEFFER, R. S., HA, F., RIAHI, K. & MEINSHAUSEN, M. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 degrees C. Nature, 534, 631-639.

ROMBOUGH, P. 2011. The energetics of embryonic growth. Respiratory Physiology & Neurobiology, 178, 22-29.

ROMBOUGH, P. J. 1988. 2 Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. Fish physiology. Elsevier.

ROMBOUGH, P. J. The effects of temperature on embryonic and larval development. Seminar Series-Society For Experimental Biology, 1997. Cambridge University Press, 177-224.

ROSE, G. A. 2019. Atlantic Cod: A Bio-Ecology, John Wiley & Sons.

SAKURAI, Y., ISHII, K., NAKATANI, T., YAMAGUCHI, H., ANMA, G. & JIN, M. 1998. 15. Reproductive characteristics and effects of temperature and salinity on the development and survival of eggs and larvae of arctic cod (Boreogadus saida). Memoirs of the Faculty of Fisheries Hokkaido University, 45, 77-89.

SCHALKHAUSSER, B., BOCK, C., STEMMER, K., BREY, T., PÖRTNER, H.-O. & LANNIG, G. 2013. Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from

Norway. Marine Biology, 160, 1995-2006.

SCHIER, A. F. 2007. The maternal-zygotic transition: Death and birth of RNAs. Science, 316, 406-407.

SCHULTE, P. M. 2015. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218, 1856-1866.

SCOTT, J. D., ALEXANDER, M. A., MURRAY, D. R., SWALES, D. & EISCHEID, J. 2016. The climate change web portal: A system to access and display climate and Earth system model output from the CMIP5 archive. Bulletin of the American Meteorological Society, 97, 523-530.

SINCLAIR, B. J., MARSHALL, K. E., SEWELL, M. A., LEVESQUE, D. L., WILLETT, C. S., SLOTSBO, S., DONG, Y., HARLEY, C. D., MARSHALL, D. J. & HELMUTH, B. S. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

Ecology Letters, 19, 1372-1385.

SOMERO, G. N. 1995. Proteins and temperature. Annual review of physiology, 57, 43-68.

SPIJKERS, J. & BOONSTRA, W. J. 2017. Environmental change and social conflict: the northeast Atlantic mackerel dispute. Regional Environmental Change, 17, 1835-1851.

SSWAT, M., STIASNY, M. H., TAUCHER, J., ALGUERÓ-MUÑIZ, M., BACH, L. T., JUTFELT, F., RIEBESELL, U., CLEMMESEN, C. J. N. E. & EVOLUTION 2018. Food web changes under ocean acidification promote herring larvae survival. 2, 836.

STAR, B., BOESSENKOOL, S., GONDEK, A. T., NIKULINA, E. A., HUFTHAMMER, A. K., PAMPOULIE, C., KNUTSEN, H., ANDRÉ, C., NISTELBERGER, H. M. & DIERKING, J. 2017. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proceedings of the National

Academy of Sciences, 114, 9152-9157.

STEINACHER, M. & JOOS, F. J. B. 2016. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble. 13, 1071-1103.

STIASNY, M. H., SSWAT, M., MITTERMAYER, F. H., FALK‐PETERSEN, I. B., SCHNELL, N. K., PUVANENDRAN, V., MORTENSEN, A., REUSCH, T. B. & CLEMMESEN, C. 2019. Divergent responses of Atlantic cod to ocean acidification and food limitation. Global change biology, 25, 839-849.

STOCKER, T. F., QIN, D., PLATTNER, G.-K., TIGNOR, M., ALLEN, S. K., BOSCHUNG, J., NAUELS, A., XIA, Y., BEX, V. & MIDGLEY, P. M. 2013. Climate change 2013: The physical science basis.

Cambridge University Press Cambridge.

SUNDAY, J., BENNETT, J. M., CALOSI, P., CLUSELLA-TRULLAS, S., GRAVEL, S., HARGREAVES, A. L., LEIVA, F. P., VERBERK, W. C., OLALLA-TÁRRAGA, M. Á. & MORALES-CASTILLA, I. 2019.