• Keine Ergebnisse gefunden

2. Materials and methods

4.10 Concluding remarks

In conclusion, both physiological alterations, the increased mDA progenitor differentiation and reduced ontogenic cell death in the developing SNpc of FGF-2 deficient mice, could explain the phenotype with increased mDA neuron number, proving the regulatory role of FGF-2 in SNpc development. The regulatory participation of FGF-2 during SNpc development underlines the importance of this neurotrophic factor in maintenance and regulation of the mature nigrostriatal system. A recent gene analysis in PD patients and controls showed association of single nucleotide polymorphism in the FGF-2 gene with sporadic PD cases (Mizuta et al., 2008), emphasizing the previously suspected involvement of FGF-2 in PD, after a reduced FGF-ir of mDA neurons has been detected in postmortem tissue of PD patients (Tooyama et al., 1993, Tooyama et al., 1994). Detailed understanding of the developmental processes in VM, including the role of trophic factors like FGF-2, can enlighten the progredient pathophysiology of PD and might lead to improved treatment options for PD patients, such as cell replacement therapy. Exemplary, this study revealed a novel INFS / Nurr1 interactive mechanism for gene activation during neuronal development. This regulatory mechanism may offer a new therapeutic target for increasing production of mDA neurons in neurodevelopmental (schizophrenia) and neurodegenerative (Parkinson’s) disorders. Future studies on mDA neuron development in isoform specific FGF-2 mouse mutants may clarify the specific involvement of different FGF-2 isoforms in distinct physiological events during SNpc development.

5. References

ABE, Y., NAMBA, H., ZHENG, Y. & NAWA, H. 2009. In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain:

implication of ErbB receptors for dopaminergic neurons. Neuroscience, 161, 95-110.

ABELIOVICH, A. & HAMMOND, R. 2007. Midbrain dopamine neuron differentiation:

factors and fates. Dev Biol, 304, 447-54.

ABERCROMBIE, M. & JOHNSON, M. L. 1946. Quantitative histology of Wallerian degeneration: I. Nuclear population in rabbit sciatic nerve. J Anat, 80, 37-50.

AKAI, J. & STOREY, K. 2003. Brain or brawn: how FGF signaling gives us both. Cell, 115, 510-2.

ALBERI, L., SGADO, P. & SIMON, H. H. 2004. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons.

Development, 131, 3229-36.

AMALRIC, F., BALDIN, V., BOSC-BIERNE, I., BUGLER, B., COUDERC, B., GUYADER, M., PATRY, V., PRATS, H., ROMAN, A. M. & BOUCHE, G. 1991. Nuclear translocation of basic fibroblast growth factor. Ann N Y Acad Sci, 638, 127-38.

ANDERSSON, E., TRYGGVASON, U., DENG, Q., FRILING, S., ALEKSEENKO, Z., ROBERT, B., PERLMANN, T. & ERICSON, J. 2006. Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393-405.

ANTOINE, M., REIMERS, K., DICKSON, C. & KIEFER, P. 1997. Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal. J Biol Chem, 272, 29475-81.

ARENAS, E. 2010. Towards stem cell replacement therapies for Parkinson's disease.

Biochem Biophys Res Commun, 396, 152-6.

BACKMAN, C., PERLMANN, T., WALLEN, A., HOFFER, B. J. & MORALES, M. 1999. A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain.

Brain Res, 851, 125-32.

BAQUET, Z. C., BICKFORD, P. C. & JONES, K. R. 2005. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci, 25, 6251-9.

BARYSHNIKOVA, L. M., VON BOHLEN UND HALBACH, O., KAPLAN, S. & VON BARTHELD, C. S. 2006. Two distinct events, section compression and loss of particles ("lost caps"), contribute to z-axis distortion and bias in optical disector counting. Microsc Res Tech, 69, 738-56.

BEAN, A. J., ELDE, R., CAO, Y. H., OELLIG, C., TAMMINGA, C., GOLDSTEIN, M., PETTERSSON, R. F. & HOKFELT, T. 1991. Expression of acidic and basic fibroblast growth factors in the substantia nigra of rat, monkey, and human. Proc Natl Acad Sci U S A, 88, 10237-41.

BEAN, A. J., OELLIG, C., PETTERSSON, R. F. & HOKFELT, T. 1992. Differential expression of acidic and basic FGF in the rat substantia nigra during development. Neuroreport, 3, 993-6.

BJERKEN, S., BOGER, H. A., NELSON, M., HOFFER, B. J., GRANHOLM, A. C. &

STROMBERG, I. 2007. Effects of glial cell line-derived neurotrophic factor deletion on ventral mesencephalic organotypic tissue cultures. Brain Res, 1133, 10-9.

BJORKLUND, A., STENEVI, U., SCHMIDT, R. H., DUNNETT, S. B. & GAGE, F. H.

1983. Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol Scand Suppl, 522, 1-7.

BJORKLUND, T., CEDERFJALL, E. A. & KIRIK, D. 2010. Gene therapy for dopamine replacement. Prog Brain Res, 184, 221-35.

BJORKLUND, T. & KORDOWER, J. H. 2010. Gene therapy for Parkinson's disease.

Mov Disord, 25 Suppl 1, S161-73.

BLAKELY, B. D., BYE, C. R., FERNANDO, C. V., HORNE, M. K., MACHEDA, M. L., STACKER, S. A., ARENAS, E. & PARISH, C. L. 2011. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One, 6, e18373.

BORGAL, L., HONG, M., SADI, D. & MENDEZ, I. 2007. Differential effects of glial cell line-derived neurotrophic factor on A9 and A10 dopamine neuron survival in vitro.

Neuroscience, 147, 712-9.

BORTA, A. & HOGLINGER, G. U. 2007. Dopamine and adult neurogenesis. J Neurochem, 100, 587-95.

BOUVIER, M. M. & MYTILINEOU, C. 1995. Basic fibroblast growth factor increases division and delays differentiation of dopamine precursors in vitro. J Neurosci, 15, 7141-9.

BRECHT, S., GELDERBLOM, M., SRINIVASAN, A., MIELKE, K., DITYATEVA, G. &

HERDEGEN, T. 2001. Caspase-3 activation and DNA fragmentation in primary hippocampal neurons following glutamate excitotoxicity. Brain Res Mol Brain Res, 94, 25-34.

BUGLER, B., AMALRIC, F. & PRATS, H. 1991. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor.

Mol Cell Biol, 11, 573-7.

BURKE, R. E. 2003. Postnatal developmental programmed cell death in dopamine neurons. Ann N Y Acad Sci, 991, 69-79.

BURKE, R. E. 2004. Ontogenic cell death in the nigrostriatal system. Cell Tissue Res, 318, 63-72.

BURKE, R. E. 2006. GDNF as a candidate striatal target-derived neurotrophic factor for the development of substantia nigra dopamine neurons. J Neural Transm Suppl, 41-5.

CALO, L., SPILLANTINI, M., NICOLETTI, F. & ALLEN, N. D. 2005. Nurr1 co-localizes with EphB1 receptors in the developing ventral midbrain, and its expression is enhanced by the EphB1 ligand, ephrinB2. J Neurochem, 92, 235-45.

CASTELO-BRANCO, G., WAGNER, J., RODRIGUEZ, F. J., KELE, J., SOUSA, K., RAWAL, N., PASOLLI, H. A., FUCHS, E., KITAJEWSKI, J. & ARENAS, E. 2003.

Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A, 100, 12747-52.

CHADI, G., MOLLER, A., ROSEN, L., JANSON, A. M., AGNATI, L. A., GOLDSTEIN, M., OGREN, S. O., PETTERSSON, R. F. & FUXE, K. 1993. Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp Brain Res, 97, 145-58.

CHEN, H., TUNG, Y. C., LI, B., IQBAL, K. & GRUNDKE-IQBAL, I. 2007. Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging, 28, 1148-62.

CHUNG, C. Y., SEO, H., SONNTAG, K. C., BROOKS, A., LIN, L. & ISACSON, O. 2005.

Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet, 14, 1709-25.

CHUNG, S., LEUNG, A., HAN, B. S., CHANG, M. Y., MOON, J. I., KIM, C. H., HONG, S., PRUSZAK, J., ISACSON, O. & KIM, K. S. 2009. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell, 5, 646-58.

CINTRA, A., CAO, Y., OELLIG, C., TINNER, B., BORTOLOTTI, F., GOLDSTEIN, M., PETTERSSON, R. F. & FUXE, K. 1991. Basic FGF is present in dopaminergic neurons of the ventral midbrain of the rat. Neuroreport, 2:597-600.

CLAUS, P., BRUNS, A. F. & GROTHE, C. 2004a. Fibroblast growth factor-2(23) binds directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem J, 384, 559-65.

CLAUS, P., WERNER, S., TIMMER, M. & GROTHE, C. 2004b. Expression of the fibroblast growth factor-2 isoforms and the FGF receptor 1-4 transcripts in the rat model system of Parkinson's disease. Neurosci Lett, 360, 117-20.

DAI, Z. & PENG, H. B. 1995. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J Neurosci, 15, 5466-75.

DAILEY, L., AMBROSETTI, D., MANSUKHANI, A. & BASILICO, C. 2005. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev, 16, 233-47.

DOE, C. Q. 2008. Neural stem cells: balancing self-renewal with differentiation.

Development, 135, 1575-87.

DONO, R. 2003. Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol, 284, R867-81.

DONO, R., TEXIDO, G., DUSSEL, R., EHMKE, H. & ZELLER, R. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J, 17, 4213-25.

DORPH-PETERSEN, K. A., NYENGAARD, J. R. & GUNDERSEN, H. J. 2001. Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc, 204, 232-46.

DUNHAM-EMS, S. M., LEE, Y. W., STACHOWIAK, E. K., PUDAVAR, H., CLAUS, P., PRASAD, P. N. & STACHOWIAK, M. K. 2009. Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Mol Biol Cell, 20, 2401-12.

DUNHAM-EMS, S. M., PUDAVAR, H. E., MYERS, J. M., MAHER, P. A., PRASAD, P. N.

& STACHOWIAK, M. K. 2006. Factors controlling fibroblast growth factor receptor-1's cytoplasmic trafficking and its regulation as revealed by FRAP analysis. Mol Biol Cell, 17, 2223-35.

EBERT, A. D., LAUSSMANN, M., WEGEHINGEL, S., KADERALI, L., ERFLE, H., REICHERT, J., LECHNER, J., BEER, H. D., PEPPERKOK, R. & NICKEL, W.

2010. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic, 11, 813-26.

EISELLEOVA, L., MATULKA, K., KRIZ, V., KUNOVA, M., SCHMIDTOVA, Z., NERADIL, J., TICHY, B., DVORAKOVA, D., POSPISILOVA, S., HAMPL, A. & DVORAK, P.

2009. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells, 27, 1847-57.

ESWARAKUMAR, V. P., LAX, I. & SCHLESSINGER, J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev, 16, 139-49.

FANG, X., STACHOWIAK, E. K., DUNHAM-EMS, S. M., KLEJBOR, I. & STACHOWIAK, M. K. 2005. Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: a novel mechanism of gene regulation. J Biol Chem, 280, 28451-62.

FARKAS, L. M., DUNKER, N., ROUSSA, E., UNSICKER, K. & KRIEGLSTEIN, K. 2003.

Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci, 23, 5178-86.

FAWCETT, J. W., BARKER, R. A. & DUNNETT, S. B. 1995. Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Experimental Brain Research, 106, 275-282.

FERGUSON, I. A. & JOHNSON, E. M. 1991. Fibroblast growth factor receptor-bearing neurons in the CNS: Identification by receptor-mediated retrograde transport. J.

Comp. Neurol., 313, 693-706.

FERRARI, G., MINOZZI, M. C., TOFFANO, G., LEON, A. & SKAPER, S. D. 1989. Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev Biol, 133, 140-7.

FERRI, A. L., LIN, W., MAVROMATAKIS, Y. E., WANG, J. C., SASAKI, H., WHITSETT, J. A. & ANG, S. L. 2007. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner.

Development, 134, 2761-9.

FISCHER, T., FAUS-KESSLER, T., WELZL, G., SIMEONE, A., WURST, W. &

PRAKASH, N. 2011. Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Dev Biol, 350, 496-510.

FLORKIEWICZ, R. Z., BAIRD, A. & GONZALEZ, A. M. 1991. Multiple forms of bFGF:

differential nuclear and cell surface localization. Growth Factors, 4, 265-75.

FORD-PERRISS, M., ABUD, H. & MURPHY, M. 2001. Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol, 28, 493-503.

FORGET, C., STEWART, J. & TRUDEAU, L. E. 2006. Impact of basic FGF expression in astrocytes on dopamine neuron synaptic function and development. Eur J Neurosci, 23, 608-16.

FRODIN, M. & GAMMELTOFT, S. 1999. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol, 151, 65-77.

GALE, E. & LI, M. 2008. Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Mol Brain, 1, 8.

GALLEGUILLOS, D., VECCHIOLA, A., FUENTEALBA, J. A., OJEDA, V., ALVAREZ, K., GOMEZ, A. & ANDRES, M. E. 2004. PIASgamma represses the transcriptional activation induced by the nuclear receptor Nurr1. J Biol Chem, 279, 2005-11.

GERMAN, D. C., MANAYE, K. F., SONSALLA, P. K. & BROOKS, B. A. 1992. Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism:

sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci, 648, 42-62.

GIMENO, L. & MARTINEZ, S. 2007. Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh. Dev Dyn, 236, 2285-97.

GIORDANO, S., SHERMAN, L., LYMAN, W. & MORRISON, R. 1992. Multiple molecular weight forms of basic fibroblast growth factor are developmentally regulated in the central nervous system. Developmental Biology, 152, 293-303.

GONZALEZ, A. M., BERRY, M., MAHER, P. A., LOGAN, A. & BAIRD, A. 1995. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain.

Brain Res, 701, 201-26.

GONZALEZ, A. M., BUSCAGLIA, M., ONG, M. & BAIRD, A. 1990. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol, 110, 753-65.

GROTHE, C., SCHULZE, A., SEMKOVA, I., MULLER-OSTERMEYER, F., REGE, A. &

WEWETZER, K. 2000. The high molecular weight fibroblast growth factor-2 isoforms (21,000 mol. wt and 23,000 mol. wt) mediate neurotrophic activity on rat embryonic mesencephalic dopaminergic neurons in vitro. Neuroscience, 100, 73-86.

GROTHE, C. & TIMMER, M. 2007. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res Rev, 54, 80-91.

GROTHE, C., TIMMER, M., SCHOLZ, T., WINKLER, C., NIKKHAH, G., CLAUS, P., ITOH, N. & ARENAS, E. 2004. Fibroblast growth factor-20 promotes the

differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons. Neurobiol Dis, 17, 163-70.

GROTHE, C. & WEWETZER, K. 1996. Fibroblast growth factor and its implications for developing and regenerating neurons. Int J Dev Biol, 40, 403-10.

GROTHE, C., ZACHMANN, K. & UNSICKER, K. 1991. Basic FGF-like immunoreactivity in the developing and adult rat brainstem. J Comp Neurol, 305, 328-36.

GUILLERY, R. W. 2002. On counting and counting errors. J Comp Neurol, 447, 1-7.

GUILLERY, R. W. & HERRUP, K. 1997. Quantification without pontification: choosing a method for counting objects in sectioned tissues. J Comp Neurol, 386, 2-7.

GUNDERSEN, H. J., BAGGER, P., BENDTSEN, T. F., EVANS, S. M., KORBO, L., MARCUSSEN, N., MOLLER, A., NIELSEN, K., NYENGAARD, J. R., PAKKENBERG, B. & ET AL. 1988. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS, 96, 857-81.

GUO, Q., LI, K., SUNMONU, N. A. & LI, J. Y. 2010. Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum. Dev Biol, 338, 183-92.

HARDY, J. 2010. Genetic analysis of pathways to Parkinson disease. Neuron, 68, 201-6.

HEDREEN, J. C. 1998. What was wrong with the Abercrombie and empirical cell counting methods? A review. Anat Rec, 250, 373-80.

HERMANSON, E., BORGIUS, L., BERGSLAND, M., JOODMARDI, E. & PERLMANN, T. 2006. Neuropilin1 is a direct downstream target of Nurr1 in the developing brain stem. J Neurochem, 97, 1403-11.

HERNANDEZ-MONTIEL, H. L., TAMARIZ, E., SANDOVAL-MINERO, M. T. & VARELA-ECHAVARRIA, A. 2008. Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding. J Comp Neurol, 506, 387-97.

HU, Y., FANG, X., DUNHAM, S. M., PRADA, C., STACHOWIAK, E. K. &

STACHOWIAK, M. K. 2004. 90-kDa ribosomal S6 kinase is a direct target for the nuclear fibroblast growth factor receptor 1 (FGFR1): role in FGFR1 signaling. J Biol Chem, 279, 29325-35.

HYNES, M., PORTER, J. A., CHIANG, C., CHANG, D., TESSIER-LAVIGNE, M., BEACHY, P. A. & ROSENTHAL, A. 1995. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron, 15, 35-44.

ISRASENA, N., HU, M., FU, W., KAN, L. & KESSLER, J. A. 2004. The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol, 268, 220-31.

ITOH, N. 2007. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull, 30, 1819-25.

ITOH, N. & ORNITZ, D. M. 2008. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn, 237, 18-27.

ITOH, N. & ORNITZ, D. M. 2011. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem, 149, 121-30.

IWAWAKI, T., KOHNO, K. & KOBAYASHI, K. 2000. Identification of a potential nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun, 274, 590-5.

JACKSON-LEWIS, V., VILA, M., DJALDETTI, R., GUEGAN, C., LIBERATORE, G., LIU, J., O'MALLEY, K. L., BURKE, R. E. & PRZEDBORSKI, S. 2000. Developmental cell death in dopaminergic neurons of the substantia nigra of mice. J Comp Neurol, 424, 476-88.

JACOBS, F. M., SMITS, S. M., NOORLANDER, C. W., VON OERTHEL, L., VAN DER LINDEN, A. J., BURBACH, J. P. & SMIDT, M. P. 2007. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency.

Development, 134, 2673-84.

JACOBS, F. M., VAN DER LINDEN, A. J., WANG, Y., VON OERTHEL, L., SUL, H. S., BURBACH, J. P. & SMIDT, M. P. 2009a. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development, 136, 2363-73.

JACOBS, F. M., VAN ERP, S., VAN DER LINDEN, A. J., VON OERTHEL, L., BURBACH, J. P. & SMIDT, M. P. 2009b. Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression.

Development, 136, 531-40.

JENSEN, P., PEDERSEN, E. G., ZIMMER, J., WIDMER, H. R. & MEYER, M. 2008.

Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson's disease. Brain Res, 1218, 13-20.

JEON, B. S., KHOLODILOV, N. G., OO, T. F., KIM, S. Y., TOMASELLI, K. J., SRINIVASAN, A., STEFANIS, L. & BURKE, R. E. 1999. Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J Neurochem, 73, 322-33.

JOHANSSON, S. & STROMBERG, I. 2003. Fetal lateral ganglionic eminence attracts one of two morphologically different types of tyrosine hydroxylase-positive nerve fibers formed by cultured ventral mesencephalon. Cell Transplant, 12, 243-55.

JOSEPH, B., WALLEN-MACKENZIE, A., BENOIT, G., MURATA, T., JOODMARDI, E., OKRET, S. & PERLMANN, T. 2003. p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci U S A, 100, 15619-24.

JUNGNICKEL, J., GRANSALKE, K., TIMMER, M. & GROTHE, C. 2004. Fibroblast growth factor receptor 3 signaling regulates injury-related effects in the peripheral nervous system. Mol Cell Neurosci, 25, 21-9.

JUNGNICKEL, J., KLUTZNY, A., GUHR, S., MEYER, K. & GROTHE, C. 2005.

Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury: evidence from mouse mutants. Neuroscience, 134, 1343-50.

KADKHODAEI, B., ITO, T., JOODMARDI, E., MATTSSON, B., ROUILLARD, C., CARTA, M., MURAMATSU, S., SUMI-ICHINOSE, C., NOMURA, T., METZGER,

D., CHAMBON, P., LINDQVIST, E., LARSSON, N. G., OLSON, L., BJORKLUND, A., ICHINOSE, H. & PERLMANN, T. 2009. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci, 29, 15923-32.

KANG, W., WONG, L. C., SHI, S. H. & HEBERT, J. M. 2009. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J Neurosci, 29, 14571-80.

KATOH, M. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther, 5, 1059-64. hippocampal CA1 and CA3 regions of tree shrews. Brain Res Brain Res Protoc, 7, 211-21.

KHOLODILOV, N., YARYGINA, O., OO, T. F., ZHANG, H., SULZER, D., DAUER, W. &

BURKE, R. E. 2004. Regulation of the development of mesencephalic dopaminergic systems by the selective expression of glial cell line-derived neurotrophic factor in their targets. J Neurosci, 24, 3136-46.

KIM, B. G., SHIN, D. H., JEON, G. S., SEO, J. H., KIM, Y. W., JEON, B. S. & CHO, S. S.

2000. Relative sparing of calretinin containing neurons in the substantia nigra of 6-OHDA treated rat Parkinsonian model. Brain Res, 855, 162-5.

KIM, K. S., KIM, C. H., HWANG, D. Y., SEO, H., CHUNG, S., HONG, S. J., LIM, J. K., ANDERSON, T. & ISACSON, O. 2003. Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem, 85, 622-34.

KIRIK, D., GEORGIEVSKA, B., ROSENBLAD, C. & BJORKLUND, A. 2001. Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease. Eur J Neurosci, 13, 1589-99.

KLAGSBRUN, M. & BAIRD, A. 1991. A dual receptor system is required for basic fibroblast growth factor activity. Cell, 67, 229-31.

KLEINER-FISMAN, G., HERZOG, J., FISMAN, D. N., TAMMA, F., LYONS, K. E., PAHWA, R., LANG, A. E. & DEUSCHL, G. 2006. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord, 21 Suppl 14, S290-304.

KLEJBOR, I., MYERS, J. M., HAUSKNECHT, K., CORSO, T. D., GAMBINO, A. S., MORYS, J., MAHER, P. A., HARD, R., RICHARDS, J., STACHOWIAK, E. K. &

STACHOWIAK, M. K. 2006. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem, 97, 1243-58.

KOLK, S. M., GUNPUT, R. A., TRAN, T. S., VAN DEN HEUVEL, D. M., PRASAD, A. A., HELLEMONS, A. J., ADOLFS, Y., GINTY, D. D., KOLODKIN, A. L., BURBACH,

J. P., SMIDT, M. P. & PASTERKAMP, R. J. 2009. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci, 29, 12542-57.

KOSODO, Y., ROPER, K., HAUBENSAK, W., MARZESCO, A. M., CORBEIL, D. &

HUTTNER, W. B. 2004. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J, 23, 2314-24.

KREITZER, A. C. & MALENKA, R. C. 2008. Striatal plasticity and basal ganglia circuit function. Neuron, 60, 543-54.

KRIEGLSTEIN, K. 2004. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res, 318, 73-80.

LAEMMLI, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-5.

LAHTI, L., SAARIMAKI-VIRE, J., RITA, H. & PARTANEN, J. 2011. FGF signaling gradient maintains symmetrical proliferative divisions of midbrain neuronal progenitors. Dev Biol, 349, 270-82.

LAW, S. W., CONNEELY, O. M., DEMAYO, F. J. & O'MALLEY, B. W. 1992.

Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol, 6, 2129-2135.

LEE, J. H. & KIM, K. T. 2004. Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem, 91, 634-47.

LENHARD, T., SCHOBER, A., SUTER-CRAZZOLARA, C. & UNSICKER, K. 2002.

Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons.

Mol Cell Neurosci, 20, 181-97.

LI, A. J., SUZUKI, S., SUZUKI, M., MIZUKOSHI, E. & IMAMURA, T. 2002. Fibroblast growth factor-2 increases functional excitatory synapses on hippocampal neurons. Eur J Neurosci, 16, 1313-24.

LIN, W., METZAKOPIAN, E., MAVROMATAKIS, Y. E., GAO, N., BALASKAS, N., SASAKI, H., BRISCOE, J., WHITSETT, J. A., GOULDING, M., KAESTNER, K. H.

& ANG, S. L. 2009. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol, 333, 386-96.

LINDVALL, O. & KOKAIA, Z. 2009. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease. Trends Pharmacol Sci, 30, 260-7.

LIU, A. & JOYNER, A. L. 2001. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci, 24, 869-96.

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-8.

MA, X., DANG, X., CLAUS, P., HIRST, C., FANDRICH, R. R., JIN, Y., GROTHE, C., KIRSHENBAUM, L. A., CATTINI, P. A. & KARDAMI, E. 2007. Chromatin compaction and cell death by high molecular weight FGF-2 depend on its nuclear localization, intracrine ERK activation, and engagement of mitochondria. J Cell Physiol, 213, 690-8.

MACDONALD, B. T., TAMAI, K. & HE, X. 2009. Wnt/beta-catenin signaling:

components, mechanisms, and diseases. Dev Cell, 17, 9-26.

MAHER, P. A. 1996. Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol, 134, 529-36.

MALMERSJO, S., LISTE, I., DYACHOK, O., TENGHOLM, A., ARENAS, E. & UHLEN, P. 2010. Ca2+ and cAMP signaling in human embryonic stem cell-derived dopamine neurons. Stem Cells Dev, 19, 1355-64.

MARIC, D., FIORIO PLA, A., CHANG, Y. H. & BARKER, J. L. 2007. Self-Renewing and Differentiating Properties of Cortical Neural Stem Cells Are Selectively Regulated by Basic Fibroblast Growth Factor (FGF) Signaling via Specific FGF Receptors. J.

Neurosci., 27, 1836-1852.

MARTINEZ-MORALES, J. R., DEL BENE, F., NICA, G., HAMMERSCHMIDT, M., BOVOLENTA, P. & WITTBRODT, J. 2005. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell, 8, 565-74.

MASON, I. 2007. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci, 8, 583-96.

MAYER, E., FAWCETT, J. W. & DUNNETT, S. B. 1993. Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons--II. Effects on nigral transplants in vivo. Neuroscience, 56, 389-98.

MCFARLANE, S., MCNEILL, L. & HOLT, C. E. 1995. FGF signaling and target

MCFARLANE, S., MCNEILL, L. & HOLT, C. E. 1995. FGF signaling and target