• Keine Ergebnisse gefunden

Concentration within the Up-converter

A further positive effect occurs, when the dimensions of the up-converter groove are in the range of the inverse absorption coefficient of the up-converter. This is illustrated in Figure B.4.

It is assumed that light is reaching the up-converter from left and right and is absorbed following the Lambert Beer Law. The intensity within the up-converter groove is then the sum of both illuminations. In the middle of the groove the maximum concentration of 2 is reached, while the magnitude at other distances from the groove surface depends on the absorption coefficient α and the thickness tuc of the groove. In Figure B.4 the concentration (sum of both intensities relative to the illumination only from one side) for different products of α×tuc is shown. The detrimental effect of a high product α×tuc is an enhanced transmission through the up-converter layer. The corresponding transmis-sions are also given in Figure B.4. It should be mentioned that the transmitted light is not necessarily lost, the transmitted photons partly contribute after re-reflection at the adjacent slant. Additionally to this concentration, also light entering directly from the

Figure B.4: Relative intensity within the up-converter groove (width tuc) under illumina-tion from left and right (as drawn schematically on the right). The intensity adds within the up-converter, which leads to a concentration of factor two in the middle of the groove.

The decrease of the concentration aside from the middle depends on the product of the absorption coefficient α and the width tuc. High concentrations have the detrimental effect of high transmission.

front surface of the solar cell (Itop in Figure B.4) contributes as long as the depth of the up-converter groove is in the range of the inverse absorption coefficient. Then also the reflection at the metal covering the rear of the up-converter enhances the concentration.

For BaCl2:Er3+ the exact figure of the absorption coefficient is not reported in literature.

The absorption coefficient of NaYF4:Er3+ amounts to about 3.5 cm−1 at about 1520 nm [20]. A groove of 1 mm width would correspond to a concentration close to the solid line in Figure B.4, but also lead to a transmission of 70%.

Together with the optical confinement when having a slant angle of 20 (geometrical con-finement of 2), this leads to a resulting concentration factor of up to 4 in the up-converter.

Assuming a quadratic dependency of the up-conversion emission intensity on the input power, this would lead to 16 times the efficiency compared to a non-focused light (planar up-converter application), without regarding the shading losses in the planar design. This idea can be extended by applying the up-converter in holes instead of grooves. For this concept the structuring of the surrounding of the holes in cone-shape is necessary, which is very difficult to realize. But beside cone-shape also pyramid-shaped pits are expected to enhance the optical concentration.

α absorption coefficient

Anr non-radiative relaxation rate Arad radiative transition rate Atot overall transition rate

APTE addition de photon par transferts d’energie ARC antireflection coating

BSF back surface field

c0 speed of light in vacuum

cps counts per second

CRW combustable renewables and renewable waste

²0 permittivity in vaccuum

η efficiency

E energy

EDX energy dispersion X-ray

EG band gap energy

EQE external quantum efficiency ESA excited state absorption ETU energy transfer up-conversion

f fraction of photons emitted in a 2 photon process fc fraction of radiative recombination

FF fill factor

FGA forming gas anneal

G generation rate

g(ω) line shape function GSA ground state absorption

h Planck’s constant

¯

h Planck’s constant divided by 2π ISC short circuit current

IQE internal quantum efficiency IRSR infrared spectral response

IRUCG infrared up-conversion powder with mainly green emission IUPAC International Union of Pure and Applied Chemistry

J total angular momentum

123

J current density

J0e emitter saturation current density JSC short circuit current density

k Boltzmann constant

˙N temporal change of the population density

n refractive index

∆nav average excess carrier density

t Judd-Ofelt parameters

RCA wafer cleaning procedure developed by Radio Corporation of America

σ absorption cross section

SHG second harmonic generation

τ lifetime

τeff effective lifetime

T transmission

Tcell temperature of the solar cell TS temperature of the sun

TPA two photon absorption

V voltage

VOC open circuit voltage

wCR probability of cross relaxation wCE probability of cooperative excitation wCooR probability of cooperative relaxation wESA probability of excited state absorption wET probability of energy transfer up-conversion

[1] Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007 - The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC.

[2] Energy Information Administration (EIA), International Energy Outlook 2007.

[3] International Energy Agency (IEA), Renewables in Global Energy Supply: An IEA Fact Sheet, OECD.

[4] Renewable Energy Policy Network for the 21th Century (REN21), Renewables:

Global Status Report 2006 Update.

[5] W. Shockley, H. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys. 32 (3) (1961) 510.

[6] J. Chelikowsky, M. Cohen, Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-blende Semiconductors, Phys. Rev. B 14 (2) (1976) 556.

[7] American Society for Testing and Materials (ASTM), Terrestrial Reference Spectra for Photovoltaic Performance Evaluation.

[8] M. Green, Third Generation Photovoltaics, Springer, 2003.

[9] E. Jackson, Areas for Improvement of the Semiconductor Solar Energy Converter, in: Transactions of the Conference on Use of Solar Energy, Vol. 5, Tuscon, Arizona, 1955, p. 122.

[10] M. Wolf, Limitations and Possibilities for Improvements of Photovoltaic Solar En-ergy Converters, Proc. IRE 48 (1960) 1246.

[11] A. Luque, A. Marti, Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels, Phys. Rev. Lett. 78 (26) (1997) 5014.

[12] S. Deb, H. Saha, Secondary Ionisation and its Possible Bearing on the Performance of a Solar Cell, Solid State Elec. 15 (1972) 1389.

[13] R. Ross, A. Nozik, Efficiency of Hot-Carrier Solar Energy Converters, J. Appl. Phys.

53 (5) (1982) 3813.

125

[14] B. Wedlock, Thermo-Photo-Voltaic Energy Conversion, Proc. IEEE 51 (5) (1963) 694.

[15] D. Dexter, Possibility of Luminescent Quantum Yields Greater than Unity, Phys.

Rev. 108 (3) (1957) 630.

[16] W. van Sark, C. De Mello Donega, C. Harkisoen, R. Kinderman, J. van Roosmalen, R. Schropp, E. Lysen, Improvement of Spectral Response of Solar Cells by De-ployment of Spectral Converters Containing Semiconductor Nanocrystal, in: 19th European Photovoltaic Solar Energy Conference, Paris, 2004.

[17] T. Trupke, M. Green, P. W¨urfel, Improving Solar Cell Efficiencies by Up-Conversion of Sub-Band-Gap Light, J. Appl. Phys. 92 (7) (2002) 4117–4122.

[18] P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion, Jpn. J. Appl.

Phys. 35 (1996) 4401–4402.

[19] A. Shalav, B. Richards, T. Trupke, R. Corkish, K. Kr¨amer, H. G¨udel, M. Green, The Application of Up-Converting Phosphors for Increased Solar Cell Conversion Efficiencies, 3rd Conference on Photovoltaic Energy Conversion.

[20] A. Shalav, Rare-Earth Doped Up-Converting Phosphors for an Enhanced Silicon Solar Cell Response, Phd thesis, University of New South Wales (2006).

[21] N. Bloembergen, Solid State Infrared Quantum Counters, Phys. Rev. Lett. 2 (3) (1959) 84.

[22] F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chem.

Rev. 104 (2004) 139.

[23] T. F¨orster, Energiewanderung und Fluoreszenz, Naturwissenschaften 33 (1946) 166.

[24] D. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21 (5) (1953) 836.

[25] M. Pollnau, D. Gamelin, S. L¨uthi, H. G¨udel, Power Dependence of Upconversion Lu-minescence in Lanthanide and Transition-Metall-Ion Systems, Phys. Rev. B 61 (5) (2000) 3337.

[26] R. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milu-nic, P. Bourdelle, R. Vallejo, Detection of Analytes by Immunoassay Using Up-converting Phosphor Technology, Anal. Biochem. 293 (2001) 22–30.

[27] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A Three-Color Solid State Three-Dimensional Display, Science 273 (1996) 1185.

[28] A. Silversmith, W. Lenth, R. Macfarlane, Green Infrared-Pumped Erbium Upcon-version Laser, Appl. Phys. Lett. 51 (24) (1987) 1977.

[29] J. Ohwaki, Y. Wang, Efficient 1.5µm to Visible Upconversion in Er3+-Doped Halide Phosphors, Jpn. J. Appl. Phys. 33 (2) (1994) L334–337.

[30] K. Kr¨amer, D. Biner, G. Frei, H. G¨udel, M. Hehlen, S. L¨uthi, Hexagonal Sodium Yttrium Fluoride Based Green and Blue Upconversion Phosphors, Chem. Mater.

16 (2004) 1244–1251.

[31] J. Sol´e, L. Baus´a, D. Jaque, An Introduction to the Optical Spectroscopy of Inor-ganic Solids, John Wiley & Sons, Ltd, 2005.

[32] F. Auzel, Materials and Devices Using Double-Pumped Phosphors with Energy Transfer, Proc. IEEE 61 (6) (1973) 758–787.

[33] J. Wright, Up-Conversion and Excited Energy Transfer in Rare-Earth Doped Ma-terials, in: F. Fong (Ed.), Radiationless Processes in Molecules and Condensed Phases, Springer, 1976, pp. 239–295.

[34] F. J. Ostermayer, L. Van Uitert, Cooperative Energy Transfer from Yb3+ to Tb3+

in YF3, Phys. Rev. B 1 (11) (1970) 4208.

[35] E. Nakazawa, S. Shionoya, Cooperative Luminescence in YbPO4, Phys. Rev. Lett.

25 (25) (1970) 1710.

[36] P. Franken, A. Hill, C. Peters, G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7 (4) (1961) 118.

[37] W. Kaiser, G. Garrett, Two-Photon Excitation in CaF2:Eu3+, Phys. Rev. Lett. 7 (6) (1961) 229.

[38] G. Rieder, Photonik, Springer Verlag, Wien, 1997.

[39] P. Xie, S. Rand, Continuous-Wave, Fourfold Upconversion Laser, Appl. Phys. Lett.

63 (23) (1993) 3125–3127.

[40] S. Pollack, D. Chang, I. Shih, R. Tzeng, Upconversion Use for Viewing and Record-ing Infrared Images, Appl. Optics 26 (20) (1987) 4400–4406.

[41] C. Ronda, Phosphors for Lamps and Displays: An Applicational View, J. Alloys and Compounds 225 (1995) 534–538.

[42] M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Marcel Dekker Inc., New York, 2001.

[43] International Union of Pure and Applied Chemistry (IUPAC), Nomenclature of Inorganic Chemistry, Vol. Second Edition, Butterworth, London, 1970.

[44] G. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Publishers, New York, 1968.

[45] O. Wenger, C. Wickleder, K. Kr¨amer, H. G¨udel, Upconversion in a Divalent Rare Earth Ion: Optical Absorption and Luminescence Spectroscopy of Tm2+ Doped SrCl2, J. Lumin. 94-95 (2001) 101–105.

[46] M. Goeppert Mayer, Rare-Earth and Transuranic Elements, Phys. Rev. 60 (1941) 184.

[47] D. Gamelin, H. G¨udel, Upconversion Processes in Transition Metal and Rare Earth Metal Systems, Topics in Current Chemistry 214 (2001) 1–56.

[48] M. Bell, W. Quirino, S. Oliveira, D. de Sousa, L. Nunes, Cooperative Luminescence in Yb3+-Doped Phosphate Glasses, J. Phys.: Condens. Matter. 15 (2003) 4877.

[49] K. Hirao, M. Higuchi, N. Soga, Upconversion Mechanism of Pr3+-Doped Fluoride Fiber Glass, J. Lumin. 60/61 (1994) 115.

[50] S. Hubert, C. Song, M. Genet, F. Auzel, Up Conversion Process in U4+-Doped ThBr4 and ThCl4, J. Solid. State Chem. 61 (1986) 252–259.

[51] P. Dere´n, M. Joubert, J.-C. Krupa, R. Mahiou, M. Yin, New Path of Excitation of Up-conversion Emission in LaCl3:U3+, J. Alloys. Compounds 341 (2002) 134–138.

[52] P. M¨uller, M. Wermuth, H. G¨udel, Mechanisms of Near-Infrared to Visible Upcon-version in CsCdBr3:Ho3+, Chem. Phys. Lett. 290 (1998) 105–111.

[53] R. Page, K. Schaffers, P. Waide, J. Tassano, S. Payne, W. Krupke, Upconversion-Pumped Luminescence Efficiency of Rare-Earth-Doped Hosts Sensitized with Triva-lent Ytterbium, J. Opt. Soc. Am. B 15 (3) (1998) 996.

[54] S. Felix, E. Gouveia, M. de Araujo, A. Sombra, A. Gouveia-Neto, Up-Conversion Pumped Light Amplification with Temperature Tunable Gain in Er3+/Yb3+

Codoped Chalcogenide Glasses, J. Lumin. 87-89 (2000) 1020–1022.

[55] F. Ostermayer, J. van der Ziel, H. Marcos, Frequency Upconversion in YF3:Yb3+, Tm3+, Phys. Rev. B 3 (8) (1971) 2698–2705.

[56] M. Chamarro, R. Cases, Energy Up-conversion in (Yb,Ho) and (Yb, Tm) Doped Fluorohafnate Glasses, J. Lumin. 42 (1988) 267.

[57] W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, P. Solarz, T. Lukasiewicz, Conversion of Infrared Radiation into Red Emission in YVO4:Yb, Ho, Appl. Phys.

Lett. 79 (19) (2001) 3026.

[58] M. V. D. Vermelho, P. V. dos Santos, C. B. d. Araujo, A. S. Gouveia-Neto, F. C. Cas-sanjes, S. J. L. Ribeiro, Y. Messaddeq, Thermally Enhanced Cooperative Energy-Transfer Frequency Upconversion in Terbium and Ytterbium Doped Tellurite Glass, J. Lumin. 102-103 (2003) 762–767.

[59] J. Ohwaki, Y. Wang, 1.3µm to Visible Upconversion in Dy3+- and Er3+ -Codoped BaCl2 Phosphor, Appl. Phys. Lett. 65 (2) (1994) 129.

[60] M. Malinowski, M. Joubert, B. Jacquier, Infrared to Blue Up-conversion in Pr3+

Doped YAG and LiYF4 Crystals, J. Lumin. 60/61 (1994) 179.

[61] M. Malinowski, M. Joubert, B. Jacquier, Dynamics of the IR-to-Blue Wavelength Upconversion in Pr3+-Doped Yttrium Aluminium Garnet and LiYF4 Crystals, Phys.

Rev. B 50 (17) (1994) 12367.

[62] J. van der Ziel, L. G. van Uitert, W. Grodkiewicz, R. M. Mikulyak, 1.5-µm In-frared Excitation of Visible Luminescent in Y1−xErxF3 and Y1−x−yErxTmyF3 Via Resonant-Energy Transfer, J. Appl. Phys. 60 (12) (1986) 4262–4267.

[63] J. Ohwaki, Y. Wang, New Efficient Upconversion Phosphor BaCl2:Er under 1.5µm Excitation, Electronics Letters 29 (4) (1993) 351–352.

[64] S. Pollack, D. Chang, N. Moise, Up-Conversion Pumped Infrared Erbium Laser, J.

Appl. Phys. 60 (12) (1986) 4077–4086.

[65] S. Pollack, D. Chang, Ion-Pair Upconversion Pumped Laser Emission in Er3+ Ions in YAG, YLF, SrF2 and CaF2 Crystals, J. Appl. Phys. 64 (6) (1988) 2885–2893.

[66] J. Ohwaki, Y. Wang, Infrared to Visible Upconversion of Er3+ Doped in a Chloride Matrix, Jpn. J. Appl. Phys. 31 (2) (1992) 1481–1483.

[67] P. Xie, S. Rand, Continuous-Wave, Pair-Pumped Laser, Optics Letters 15 (15) (1990) 848–850.

[68] P. Xie, S. Rand, Continuous-Wave Mode-Locked Visible Upconversion Laser, Optics Letters 17 (16) (1992) 1116–1118.

[69] P. Xie, S. Rand, Astigmatelly Compensated, High Gain Cooperative Upconversion Laser, Appl. Phys. Lett. 60 (25) (1992) 3084–3086.

[70] L. Johnson, H. Guggenheim, T. Rich, F. Ostermayer, Infrared-to-Visible Conversion by Rare-Earth Ions in Crystals, J. Appl. Phys. 43 (3) (1972) 1125–1137.

[71] S. Pollack, D. Chang, R. Macfarlane, H. Jenssen, Infrared (Er)BaY2F8 Laser Pumped Through Di- and Tri-Ionic Upconversion Processes, J. Appl. Phys. 67 (2) (1990) 648–653.

[72] G. Maciel, C. de Araujo, Y. Messaddeq, M. Aegerter, Frequency Upconversion in Er3+-Doped Fluoroindate Glasses Pumped at 1.48µm, Phys. Rev. B 55 (10) (1997) 6335–6342.

[73] C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Mes-saddeq, A. Florez, M. Aegerter, Infrared-to-Visible CW Frequency Upconversion in Er3+-Doped Fluoroindate Glasses, Appl. Phys. Lett. 68 (5) (1996) 602–604.

[74] S. L¨uthi, M. Pollnau, H. G¨udel, Near-Infrared to Visible Upconversion in Er3+

Doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 Excited at 1.54µm, Phys. Rev. B 60 (1) (1999) 162–178.

[75] J. Casta˜neda, M. A. Meneses-Nava, O. Barbosa-Garcia, E. de la Rosa-Cruz, J. F.

Mosi˜no, The Red Emission in Two and Three Steps Up-conversion Process in a Doped Erbium SiO2-TiO2 Sol-gel Powder, J. Lumin. 102-103 (2003) 504–509.

[76] M. V. D. Vermelho, A. S. Gouveia-Neto, H. T. Amorim, F. C. Cassanjes, S. J. L.

Ribeiro, Y. Messaddeq, Temperature Investigation of Infrared-to-Visible Frequency Upconversion in Erbium-Doped Tellurite Glasses Excited at 1540nm, J. Lumin.

102-103 (2003) 755–761.

[77] M. Hehlen, K. Kr¨amer, H. G¨udel, R. McFarlane, R. Schwartz, Upconversion in Er3+-Dimer Systems: Trends within the Series Cs3Er2X9 (X=Cl, Br, I), Phys. Rev.

B 49 (18) (1994) 12475.

[78] D. J. Simkin, J. A. Koningstein, P. Myslinski, S. A. Boothroyd, J. Chrostowski, Upconversion Dynamics of Er3+:YAlO3, J. Appl. Phys. 73 (12) (1993) 8046–8049.

[79] P. Kik, A. Polman, Cooperative Upconversion as the Gain-Limiting Factor in Er Doped Miniature Al2O3 Optical Waveguide Amplifiers, J. Appl. Phys. 93 (9) (2003) 5008.

[80] D. Gamelin, H. G¨udel, Design of Luminescent Inorganic Materials: New Photo-physical Processes Studied by Optical Spectroscopy, Acc. Chem. Res. 33 (2000) 235.

[81] D. Gamelin, H. G¨udel, Two-Photon Spectroscopy of d3 Transition Metals: Near-IR-to-Visible Upconversion Luminescence by Re4+ and Mo3+, J. Am. Chem. Soc.

120 (1998) 12143.

[82] M. Wermuth, H. G¨udel, Upconversion Luminescence in a 5d Transition-Metal Ion System: Cs2ZrCl6:Os4+, Chem. Phys. Lett. 281 (1997) 81–85.

[83] M. Wermuth, H. G¨udel, NIR to VIS Up-Conversion in Os4+-Doped Halide Com-pounds, J. Lumin. 87-89 (2000) 1014–1016.

[84] S. Jacobsen, H. G¨udel, Higher Excited State Luminescence in Ti2+:MgCl2, J. Lumin.

43 (1989) 125.

[85] O. Wenger, H. G¨udel, Chemical Tuning of the Photon Upconversion Properties in Ti2+-Doped Chloride Host Lattices, Inorg. Chem. 40 (2001) 5747–5753.

[86] P. Cresswell, D. Robbins, A. Thomson, Rhenium(IV) as a Sensitizer for Two-Step Blue Converters, J. Lumin. 17 (1978) 311–324.

[87] J. Qiu, Y. Kawamoto, J. Zhang, Highly Efficient Green Up-Conversion Lumi-nescence of Nd3+-Yb3+-Ho3+ Codoped Fluorite-Type Nanocrystals in Transparent Glass Ceramics, J. Appl. Phys. 92 (2) (2002) 5163–5168.

[88] S. Heer, O. Lehmann, M. Haase, H. G¨udel, Blaue, Gr¨une und Rote Up-Conversion Emission von Lanthanoid-Dotierten LuPO4- und YbPO4-Nanokristallen in Trans-parenter Kolloidaler L¨osung, Angew. Chemie 115 (2003) 3288–3291.

[89] S. Heer, M. Wermuth, K. Kr¨amer, D. Ehrentraut, H. G¨udel, Up-conversion Excita-tion of Sharp Cr3+ 2E Emission in YGG and YAG Codoped with Cr3+ and Yb3+, J. Lumin. 94-95 (2001) 337–341.

[90] S. Heer, M. Wermuth, K. Kr¨amer, H. G¨udel, Upconversion Excitation of Cr3+ 2E Emission in Y3Ga5O12 Codoped with Cr3+ and Yb3+, Chem. Phys. Lett. 334 (2001) 293–297.

[91] D. Gamelin, H. G¨udel, Spectroscopy and Dynamics of Re4+ Near-IR-to-Visible Lu-minescence Upconversion, Inorg. Chem. 38 (1999) 5154.

[92] J. Bhawalkar, G. He, P. Prasad, Nonlinear Multiphoton Processes in Organic and Polymeric Materials, Rep. Prog. Phys. 59 (1996) 1041–1070.

[93] D. Parthenopoulos, P. Rentzepis, Three-dimensional Optical Storage Memory, Sci-ence 245 (1989) 843.

[94] P. Qiu, A. Penzkofer, Intense Ultrashort Pulse Generation in a Two-Photon Pumped Generator Amplifier System, Appl. Phys. B 48 (1989) 115.

[95] A. Kwok, A. Serpeng¨uzel, W.-F. Hsieh, R. Chang, J. Gillespie, Two-Photon-Pumped Lasing in Microdroplets, Optics Letters 17 (20) (1992) 1435.

[96] G. He, P. Markowicz, T.-C. Lin, P. Prasad, Observation of Stimulated Emission by Direct Three-Photon Excitation, Nature 415 (2002) 767–770.

[97] S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Up-conversion Fluorescence: Noncoherent Excitation by Sunlight, Phys. Rev. Lett. 97 (2006) 143903.

[98] G. Zhou, D. Wang, S. Yang, X. Xu, Y. Ren, Z. Shao, M. Jiang, Y. Tian, F. Hao, S. Li, P. Shi, Studies on the Two-Photon Pumped Upconverted Fluorescence and Superradiance of a New Organic Dye Material in Solution, Appl. Opt. 41 (30) (2002) 6371.

[99] G. Zhou, D. Wang, S. Yang, Y. Ren, X. Xu, X. Zhao, Z. Shao, M. Jiang, Y. Tian, F. Hao, S. Li, P. Shi, Spectral and Temporal Properties of Two-Photon Pumped Amplified Spontaneous Emission and Cavity Lasing of a New Organic Dye, J. Mod.

Opt. 50 (5) (2003) 847–855.

[100] X. Chen, H. Zhuang, G. Liu, S. Li, R. Niedbala, Confinement on Energy Transfer Between Luminescent Centers in Nanocrystals, J. Appl. Phys. 94 (9) (2003) 5559.

[101] A. Patra, C. Friend, R. Kapoor, P. Prasad, Upconversion in Er3+:ZrO2 Nanocrys-tals, J. Phys. Chem. B 106 (2002) 1909–1912.

[102] A. Patra, C. Friend, R. Kapoor, P. Prasad, Effect of Crystal Nature on Upconversion Luminescence in Er3+:ZrO2 Nanocrystals, Appl. Phys. Lett. 83 (2) (2003) 284–286.

[103] J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, M. Bettinelli, Optical Spec-troscopy and Upconversion Studies of Ho3+ Doped Bulk and Nanocrystalline Y2O3, Chem. Mater. 14 (2002) 2915–2921.

[104] S. Heer, K. K¨ompe, H. G¨udel, M. Haase, Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals, Adv.

Mater. 16 (23-24) (2004) 2102.

[105] R. Meltzer, S. Feofilov, B. Tissue, H. Yuan, Dependence of Fluorescence Lifetimes of Y2O3:Eu3+ Nanoparticles on the Surrounding Medium, Phys. Rev. B 60 (20) (1999) R14012.

[106] R. Bhargava, D. Gallagher, T. Welker, Doped Nanocrystals of Semiconductors - a New Class of Luminescent Materials, J. Lumin. 60/61 (1994) 275.

[107] T. Schmidt, G. M¨uller, L. Spanhel, K. Kerkel, A. Forchel, Activation of 1.54µm Er3+

Fluorescence in Concentrated II-VI Semiconductor Cluster Environments, Chem.

Mater. 10 (1998) 65–71.

[108] J. Diener, Y. Shen, Light from Porous Silicon by Multiphonton Vibronic Excitation, Phys. Rev. B 52 (12) (1995) R8617.

[109] P. Landsberg, P. Baruch, The Thermodynamics of the Conversion of Radiation Energy for Photovoltaics, J. Phys. A: Math. Gen. 22 (1989) 1911.

[110] K. Laidler, A Glossary of Terms Used in Chemical Kinetics, Including Reaction Dynamics, Pure and Applied Chemistry 68 (1996) 149.

[111] T. Trupke, E. Daub, P. W¨urfel, Absorptivity of Silicon Solar Cells Obtained from Luminescence, Solar Energy Mater. & Solar Cells 53 (1998) 103.

[112] R. Swanson, Approaching the 29% Limit Efficiency of Silicon Solar Cells, in: 31th Photovoltaic Specialist Conference, Orlando, Florida, 2005.

[113] T. Trupke, A. Shalav, B. Richards, P. W¨urfel, M. Green, Efficiency Enhancement of Solar Cells by Luminescent Up-conversion of Sun-light, Solar Energy Mater. &

Solar Cells 90 (2006) 3327.

[114] S. Kershaw, M. Harrison, M. Burt, Putting Nanocrystals to Work: From Solutions to Devices, Phil. Trans. R. Soc. Lond. A 361 (2003) 331–343.

[115] P. L¨oper, J. Goldschmidt, M. Peters, D. Biner, K. Kr¨amer, O. Schultz, S. Glunz, J. Luther, Efficient Upconversion Systems for Silicon Solar Cells, in: 22nd European Photovoltaic Solar Energy Conference, Milano, 2007.

[116] A. Crook, The Reflection and Transmission of Light by Any System of Parallel Isotropic Films, J. Opt. Soc. Am. 38 (11) (1948) 954.

[117] J. D’Ans, E. Lax, Taschenbuch f¨ur Chemiker und Physiker, Springer, Berlin, 1998.

[118] Testbourne LTD, Opto Physical Properties of SuperVac Materials.

[119] C. del Ca˜nizo, A. Moehlecke, I. Zanesco, I. Tobias, A. Luque, Analysis of a Tech-nology for Cz Bifacial Solar Cells, IEEE Transactions on Electron Devices 48 (10) (2001) 2337.

[120] B. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev. 127 (3) (1962) 750.

[121] G. Ofelt, Intensities of Crystal Spectra of Rare-Earth Ions, J. Chem. Phys. 37 (3) (1962) 511.

[122] W. Carnall, P. Fields, K. Rajnak, Spectral Intensities of the Lanthanides and Ac-tinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Chem.

Phys. 49 (10) (1968) 4412.

[123] W. Carnall, P. Fields, K. Rajnak, Electronic Energy Levels in the Trivalent Lan-thanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J.

Chem. Phys. 49 (10) (1968) 4424.

[124] W. Fonger, C. Struck, Temperature Dependence of Cr3+ Radiative and Non-radiative Transitions in Ruby and Emerald, Phys. Rev. B 11 (1975) 3251.

[125] L. Riseberg, M. Weber, Relaxation Phenomena in Rare-Earth Luminescence, in:

E. Wolf (Ed.), Progress in Optics, Vol. XIV, North-Holland, 1976.

[126] J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Kr¨amer, H. G¨udel, Upconversion Spectroscopy and Properties of NaYF4 Doped with Er3+, Tm3+ and/or Yb3+, J.

Lumin. 117 (2006) 1.

[127] R. Srivastava, H. Lauer, L. Chase, W. Bron, Raman Frequencies of Fluorite Crystals, Phys. Lett. 36A (4) (1971) 333.

[128] T. Miyakawa, D. Dexter, Phonon Sidebands, Multiphonon Relaxation of Excited States and Phonon-assisted Energy Transfer between Ions in Solids, Phys. Rev. B 1 (7) (1970) 2961.

[129] A. Cuevas, The Early History of Bifacial Solar Cells, in: 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005, p. 801.

[130] A. Luque, A. Cuevas, J. Ruiz, Double-sided n+-p-n+Solar Cell for Bifacial Concen-tration, Solar Cells 2 (1980) 151–165.

[131] R. Hezel, Novel Applications of Bifacial Solar Cells, Progress in Photovoltaics: Re-search and Applications 11 (2003) 549.

[132] A. Moehlecke, I. Zanesco, A. Luque, Practical High Efficiency Bifacial Solar Cells, in: IEEE 1st World Conference Photovoltaic Energy Conversion, Hawaii, 1994, p.

1663.

[133] C. del Ca˜nizo, A. Moehlecke, I. Zanesco, A. Luque, Adaption of a FZ High Effi-ciency Bifacial Cell Process to Cz Material, in: 2nd IEEE World Conference on Photovoltaic Energy Conversion, Vienna, Austria, 1998, p. 1844.

[134] S. Glunz, J. Knobloch, D. Biro, W. Wettling, Optimized High-Efficinecy Silicon Solar Cells with JSC=42 mA/cm2 and η=23.3 %, in: 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, p. 392.

[135] H. Ohtsuka, M. Sakamoto, M. Koyama, K. Tsutsui, T. Uematsu, Y. Yazawa, High-Efficiency Bifacial Silicon Solar Cells, in: 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgou, UK, 2000.

[136] H. Ohtsuka, M. Sakamoto, M. Koyama, S. Muramatsu, Y. Yazawa, T. Warabisako, T. Abe, T. Saitoh, Effect of Light Degradation on Bifacial Si Solar Cells, Solar Energy Mater. & Solar Cells 66 (2001) 51.

[137] I. Chambouleyron, Y. Chevalier, Silicon Double Solar Cell, in: 1st European Com-mission Conference on Photovoltaic Solar Energy, Luxembourg, 1978, p. 269.

[138] A. H¨ubner, A. G. Aberle, R. Hezel, 20% Efficient Bifacial Silicon Solar Cells, in:

14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, p. 92.

[139] W. Kern, D. Puotinen, Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology, RCA Review (1970) 187.

[140] J. Libal, Multikristallines n-Typ Silizium: Materialcharakterisierung und Solarzel-lenprozessierung, Phd thesis, University of Konstanz (2006).

[141] A. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Anal-ysis, Centre for Photovoltaic Engineering, UNSW, Sydney, 1999.

[142] R. K¨uhn, Herstellung, Charakterisierung und Simulation semitransparenter, bifa-cialer kristalliner Siliziumsolarzellen, Phd thesis, Universit¨at Konstanz (2000).

[143] R. Brendel, Sunrays: A Versatile Tracing Program for the Photovoltaic Community, in: 12th European Photovoltaic Solar Energy Conference, Amsterdam, 1994, p.

1339.

[144] R. Sinton, A. Cuevas, Contactless Determination of Current-Voltage Character-istics and Minority-Carrier Lifetimes in Semiconductors from Quasi-Steady-State Photoconductance Data, Appl. Phys. Lett. 69 (17) (1996) 2510.

[145] M. Kerr, Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells, Phd thesis, The Australian National Univer-sity (2002).

[146] W. Eades, R. Swanson, Calculation of Surface Generation and Recombination Ve-locities at the Si-SiO2 Interface , J. Appl. Phys. 58 (11) (1985) 4267.

[147] M. Wickleder, P. Egger, T. Riedener, N. Furer, H. G¨udel, J. Hulliger, Synthesis and Crystal Structure of the New Ternary Halide Series Ba2MCl7 (M=Gd-Yb,Y)

[147] M. Wickleder, P. Egger, T. Riedener, N. Furer, H. G¨udel, J. Hulliger, Synthesis and Crystal Structure of the New Ternary Halide Series Ba2MCl7 (M=Gd-Yb,Y)