• Keine Ergebnisse gefunden

Comparison of Eigenvalues for the Global Hybrid Functional

In this section a direct comparison of KS eigenvalues between all-electron and pseudopotential calculations is provided for the CO and N2molecule computed with the PBEh global hybrid. The all-electron results were obtained inDARSEC, while the pseudopotential eigenvalues were attained withPARSECusing both PBE and EXX pseudopotentials. The PBE pseudopotential cutoff radii were chosen asrc(s) =1.49 a.u.,rc(p) =1.53 a.u. for C,rc(s) =1.50 a.u.,rc(p) =1.50 a.u. for N, andrc(s) =1.45 a.u.,rc(p) =1.45 a.u. for O, while the specifications for the EXX pseudopotential arerc(s) =1.20 a.u.,rc(p) =1.20 a.u. for C,rc(s) =1.19 a.u.,rc(p) =1.19 a.u. for N, andrc(s) = 0.99 a.u.,rc(p) =0.94 a.u. for O.

The corresponding valence-state eigenvalues of PBEh for various values of the parameteraare listed in Table A.4 for a comparison based on a PBE pseudopotential and in Table A.5 for an EXX pseudopotential. Additionally, the latter table provides the results of a full EXX calculation.

In summary, both tables show eigenvalue differences for the valence states that are typically in the range of≈0.05−0.1 eV. Thus, the global hybrid PBEh can be evaluated on top of either a PBE or an EXX pseudopotential with satisfying accuracy in the KS eigenvalues.

Table A.4:Eigenvalue comparison of all-electron and PBE pseudopotential results (denoted PP PBE) for the CO and N2molecule using PBEh(a). The quantityεidenotes the eigenvalue difference for the corresponding state.

CO N2

val- εi (eV) ∆εi (eV) εi(eV) ∆εi (eV)

state all- PP all- PP

a i electron PBE electron PBE

0.25 2 −16.022 −15.968 −0.054 −15.439 −15.523 0.084 3 −13.737 −13.706 −0.030 −13.619 −13.689 0.070

4 −13.737 −13.706 −0.030 −13.619 −13.689 0.070

5 −10.757 −10.742 −0.015 −12.208 −12.229 0.021 6 −3.661 −3.629 −0.032 −3.793 −3.786 −0.007 0.50 2 −17.923 −17.850 −0.073 −17.395 −17.455 0.060 3 −15.623 −15.584 −0.039 −15.610 −15.672 0.062

4 −15.623 −15.584 −0.039 −15.610 −15.672 0.062

5 −12.481 −12.449 −0.032 −14.160 −14.152 −0.007 6 −5.326 −5.305 −0.021 −5.645 −5.637 −0.008 0.75 2 −19.833 −19.740 −0.092 −19.359 −19.393 0.034

3 −17.516 −17.469 −0.047 −17.609 −17.660 0.051

4 −17.516 −17.469 −0.047 −17.609 −17.660 0.051 5 −14.210 −14.162 −0.048 −16.120 −16.082 −0.038

6 −7.001 −6.992 −0.008 −7.511 −7.500 −0.011

A.6 Comparison of Eigenvalues for the Global Hybrid Functional Table A.5:Eigenvalue comparison of all-electron and EXX pseudopotential results (denoted

PP EXX) for the CO and N2molecule using PBEh(a) and pure EXX. The quantity

εi denotes the eigenvalue difference for the corresponding state.

CO N2

val- εi (eV) ∆εi (eV) εi(eV) ∆εi (eV)

state all- PP all- PP

a i electron EXX electron EXX

0.25 2 −16.022 −16.089 0.067 −15.438 −15.522 0.084 3 −13.737 −13.738 0.001 −13.619 −13.689 0.070

4 −13.737 −13.738 0.001 −13.619 −13.689 0.070

5 −10.757 −10.806 0.049 −12.208 −12.229 0.021 6 −3.661 −3.619 −0.042 −3.793 −3.786 −0.007 0.50 2 −17.924 −17.972 0.048 −17.395 −17.455 0.060

3 −15.623 −15.618 −0.005 −15.610 −15.672 0.062

4 −15.623 −15.618 −0.005 −15.610 −15.672 0.062 5 −12.481 −12.506 0.025 −14.160 −14.151 −0.007

6 −5.326 −5.294 −0.032 −5.645 −5.637 −0.008

0.75 2 −19.833 −19.860 0.027 −19.359 −19.393 0.034

3 −17.516 −17.503 −0.013 −17.609 −17.660 0.051

4 −17.516 −17.503 −0.013 −17.609 −17.660 0.051 5 −14.210 −14.210 −0.001 −16.120 −16.082 −0.038

6 −7.001 −6.979 −0.022 −7.511 −7.500 −0.011

EXX 2 −20.679 −20.723 0.044 −20.291 −20.346 0.055

3 −18.336 −18.315 −0.021 −18.529 −18.568 0.039 4 −18.336 −18.315 −0.021 −18.529 −18.568 0.039 5 −15.038 −15.085 0.047 −17.150 −17.158 0.007 6 −7.763 −7.726 −0.037 −8.436 −8.410 −0.026

Acknowledgments

I am greatly indebted to numerous persons for their support in the process of creating this thesis. In particular, I wish to thank ...

Stephan Kümmel for providing infinite amounts of both guidance and partnership. This thesis would not have been possible without his advice and ability to inspire, and I am grateful to have met a person like him along my way.

Leeor Kronikfor his hospitality during my research stay in Israel as well as his scientific support as my second supervisor.

Eli Kraisler for a fruitful and pleasant scientific collaboration that turned into a cordial friendship.

the current and former members of the Kronik groupfor their openness, in particularAdi Makmalfor her technical advice regardingDARSEC.

Rodrigo Q. Albuquerque for the discussions here in Bayreuth as well as his advice and hospitality in Brazil.

Matthias Dauthfor providing the right balance of support and distraction as my office mate during the past five years and for his friendship for many more years to come.

all current and former members of the TP IV groupfor creating a pleasant and inspiring working environment. In particular, I want to thankThilo,Ingo,Philipp, andMatthiasfor carefully proofreading the manuscript of this dissertation.

Monika Birkelbach,Markus Hilt, andBernhard Winklerfor their technical and adminis-trative assistance.

all my friendsfor contributing to the precious moments and memories that are inseparably linked to my time in Bayreuth.

my parentsDagmarandVolkeras well as my brotherMirkoand his family for supporting me in countless ways during the past years.

Annette for her appreciation and care. Walking this path would not have been the same without her.

I further acknowledge financial support by the SFB 840 of the DFG, the German-Israeli Foundation, and theElite Network of Bavaria("Macromolecular Science" program).

B3LYP global hybrid functional with 20% exact exchange, LSDA exchange and corre-lation, B88 exchange, and LYP correlation . . . 22 B88 exchange functional of Becke from 1988 . . . 20 BHLYP global hybrid functional with 50% EXX, 50% B88 exchange, and LYP correla-tion . . . 35 BLYP xc energy functional using B88 exchange with LYP correlation . . . 19 DFA density-functional approximation . . . 15 DFT density-functional theory. . . 3 DOS density of states . . . 39 EA electron affinity . . . 12 EXX exact exchange. . . 10 GGA generalized gradient approximation . . . 19 GKLI generalized approximation of Krieger, Li, and Iafrate . . . 21 GKS generalized Kohn-Sham . . . 17 GOEP generalized optimized effective potential . . . 21 GSIC generalized self-interaction correction . . . 21 HF Hartree-Fock . . . 54 ho highest occupied . . . 12 IP ionization potential . . . 12 ISO local hybrid functional of Schmidt, Kraisler, Makmal, Kronik, and Kümmel . . . 31 ISOII modification of the ISO local hybrid functional. . . 34 KLI approximation of Krieger, L,i and Iafrate . . . 17 KS Kohn-Sham. . . 6 L(S)DA local (spin-)density approximation . . . 15 LMF local mixing function . . . 25

lu lowest unoccupied . . . 13 LYP correlation functional of Lee, Yang, and Parr . . . 20 many-error many-electron self-interaction error . . . 16 meta-GGA meta-generalized gradient approximation . . . 20 NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride . . . 40 OEP optimized effective potential . . . 16 one-error one-electron self-interaction error . . . 15 PBE xc energy functional of Perdew, Burke, and Ernzerhof . . . 19 PBE0 global hybrid functional with 25% exact exchange and PBE components for semilocal exchange and correlation . . . 22 PBEh global hybrid functional with a certain amount of exact exchange and PBE com-ponents for semilocal exchange and correlation . . . 22 PES photoemission spectroscopy . . . 39 PKZB meta-generalized gradient approximation of Perdew, Kurth, Zupan, and Blaha . . . 20 RSH range-separated hybrid functional . . . 23 SIC self-interaction correction . . . 20 TPSS meta-generalized gradient approximation of Tao, Perdew, Staroverov, and Scuse-ria . . . 20 TPSSh global hybrid functional with 10% EXX, 90% TPSS exchange, and TPSS corre-lation . . . 35 xc exchange-correlation . . . 3

Bibliography

[AAL97] V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method, J. Phys.: Condens. Matter 9, 767 (1997).

[AB98] C. Adamo and V. Barone, Toward chemical accuracy in the computation of NMR shieldings: the PBE0 model, Chem. Phys. Lett. 298, 113 (1998).

[AB99] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110, 6158 (1999).

[ABK09] A. V. Arbuznikov, H. Bahmann and M. Kaupp, Local Hybrid Functionals with an Explicit Dependence on Spin Polarization, J. Phys. Chem. A 113, 11898 (2009).

[AES00] C. Adamo, M. Ernzerhof and G. E. Scuseria, The meta-GGA functional: Thermo-chemistry with a kinetic energy density dependent exchange-correlation functional, J. Chem. Phys. 112, 2643 (2000).

[Ahl04] R. Ahlrichs, Efficient evaluation of three-center two-electron integrals over Gaussian functions, Phys. Chem. Chem. Phys. 6, 5119 (2004).

[AK07] A. V. Arbuznikov and M. Kaupp, Local hybrid exchange-correlation functionals based on the dimensionless density gradient, Chem. Phys. Lett. 440, 160 (2007).

[AK11] A. V. Arbuznikov and M. Kaupp, Advances in Local Hybrid Exchange-Correlation Functionals: From Thermochemistry to Magnetic-Resonance Parameters and Hyper-polarizabilities, Int. J. Quantum Chem. 111, 2625 (2011).

[AK12] A. V. Arbuznikov and M. Kaupp, Importance of the correlation contribution for local hybrid functionals: Range separation and self-interaction corrections, J. Chem. Phys.

136, 014111 (2012).

[AK13] R. Armiento and S. Kümmel, Orbital Localization, Charge Transfer, and Band Gaps in Semilocal Density-Functional Theory, Phys. Rev. Lett. 111, 036402 (2013).

[AK14] A. V. Arbuznikov and M. Kaupp, Towards improved local hybrid functionals by calibration of exchange-energy densities, J. Chem. Phys. 141, 204101 (2014).

[AKB06] A. V. Arbuznikov, M. Kaupp and H. Bahmann, From local hybrid functionals to

"localized local hybrid" potentials: Formalism and thermochemical tests, J. Chem.

Phys. 124, 204102 (2006).

[AMH+00] J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li and L.-S. Wang, Alu-minum cluster anions : Photoelectron spectroscopy andab initiosimulations, Phys.

Rev. B 62, 13216 (2000).

[AvB85] C.-O. Almbladh and U. von Barth, Exact results for the charge and spin densities, exchange-correlation potentials and density-functional eigenvalues, Phys. Rev. B 31, 3231 (1985).

[AYC+13] V. Atalla, M. Yoon, F. Caruso, P. Rinke and M. Scheffler, Hybrid density functional theory meets quasiparticle calculations: A consistent electronic structure approach, Phys. Rev. B 88, 165122 (2013).

[BA96] R. Bauernschmitt and R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys.

Lett. 256, 454 (1996).

[Bae01] E. J. Baerends, Exact Exchange-Correlation Treatment of Dissociated H2in Density Functional Theory, Phys. Rev. Lett. 87, 133004 (2001).

[BAMT95] J. Baker, J. Andzelm, M. Muir and P. R. Taylor, OH + H2 → H2O + H. The importance of ’exact exchange’ in density functional theory, Chem. Phys. Lett. 237, 53 (1995).

[BC95] N. Binggeli and J. R. Chelikowsky, Photoemission Spectra and Structures of Si Clusters at Finite Temperature, Phys. Rev. Lett. 75, 493 (1995).

[BCL98] K. Burke, F. G. Cruz and K.-C. Lam, Unambiguous exchange-correlation energy density, J. Chem. Phys. 109, 8161 (1998).

[BE90] A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92, 5397 (1990).

[Bec85] A. D. Becke, Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies, Int. J. Quantum Chem. 27, 585 (1985).

[Bec88a] A. D. Becke, Correlation energy of an inhomogeneous electron gas: A coordinate-space model, J. Chem. Phys. 88, 1053 (1988).

[Bec88b] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988).

[Bec92a] A. D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction, J. Chem. Phys. 96, 2155 (1992).

[Bec92b] A. D. Becke, Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction, J. Chem. Phys. 97, 9173 (1992).

[Bec93a] A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys. 98, 1372 (1993).

[Bec93b] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648 (1993).

[Bec96] A. D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys. 104, 1040 (1996).

[Bec97] A. D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals, J. Chem. Phys. 107, 8554 (1997).

[Bec98] A. D. Becke, A new inhomogeneity parameter in density-functional theory, J. Chem.

Phys. 109, 2092 (1998).

[Bec14] A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Chem. Phys. 140, 18A301 (2014).

[BEP97] K. Burke, M. Ernzerhof and J. P. Perdew, The adiabatic connection method: a non-empirical hybrid, Chem. Phys. Lett. 265, 115 (1997).

[BGvM13] E. J. Baerends, O. V. Gritsenko and R. van Meer, The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies, Phys. Chem. Chem. Phys. 15, 16408 (2013).

[BHS82] G. B. Bachelet, D. R. Hamann and M. Schlüter, Pseudopotentials that work: From H to Pu, Phys. Rev. B 26, 4199 (1982).

[BIN+08] E. N. Brothers, A. F. Izmaylov, J. O. Normand, V. Barone and G. E. Scuseria, Accurate solid-state band gaps via screened hybrid electronic structure calculations, J. Chem. Phys. 129, 011102 (2008).

[BLS10] R. Baer, E. Livshits and U. Salzner, Tuned Range-Separated Hybrids in Density Functional Theory, Annu. Rev. Phys. Chem. 61, 85 (2010).

[BN05] R. Baer and D. Neuhauser, Density Functional Theory with Correct Long-Range Asymptotic Behavior, Phys. Rev. Lett. 94, 043002 (2005).

[BO27] M. Born and J. R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 389, 457 (1927).

[BP95] K. Burke and J. P. Perdew, Real-Space Analysis of the Exchange-Correlation Energy, Int. J. Quantum Chem. 56, 199 (1995).

[BPE97] K. Burke, J. P. Perdew and M. Ernzerhof, Why the Generalized Gradient Approxi-mation Works and How to Go Beyond It, Int. J. Quantum Chem. 61, 287 (1997).

[BPE98] K. Burke, J. P. Perdew and M. Ernzerhof, Why semilocal functionals work: Accuracy of the on-top pair density and importance of system averaging, J. Chem. Phys. 109, 3760 (1998).

[BRAK07] H. Bahmann, A. Rodenberg, A. V. Arbuznikov and M. Kaupp, A thermochemically competitive local hybrid functional without gradient corrections, J. Chem. Phys. 126, 011103 (2007).

[BS97] T. Bally and G. N. Sastry, Incorrect Dissociation Behavior of Radical Ions in Density Functional Calculations, J. Phys. Chem. A 101, 7923 (1997).

[Cap06] K. Capelle, A Bird’s-Eye View of Density-Functional Theory, Braz. J. Phys. 36, 1318 (2006).

[CC89] M. E. Casida and D. P. Chong, Large r approximation for spherically averaged momentum distributions, Chem. Phys. 132, 391 (1989).

[CC13] J.-D. Chai and P.-T. Chen, Restoration of the Derivative Discontinuity in Kohn-Sham Density Functional Theory: An Efficient Scheme for Energy Gap Correction, Phys.

Rev. Lett. 110, 033002 (2013).

[CGB02] D. P. Chong, O. V. Gritsenko and E. J. Baerends, Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials, J. Chem. Phys. 116, 1760 (2002).

[CHG08] J.-D. Chai and M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, J. Chem. Phys. 128, 084106 (2008).

[CJ98] G. I. Csonka and B. G. Johnson, Inclusion of exact exchange for self-interaction corrected H3density functional potential energy surface, Theor. Chem. Acc. 99, 158 (1998).

[CJCS98] M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approxi-mation ionization threshold, J. Chem. Phys. 108, 4439 (1998).

[CLA14] R. G. Capelo, L. Leppert and R. Q. Albuquerque, The Concept of Localized Atomic Mobility: Unraveling Properties of Nanoparticles, J. Phys. Chem. C 118, 21647 (2014).

[CLB98] F. G. Cruz, K.-C. Lam and K. Burke, Exchange-Correlation Energy Density from Virial Theorem, J. Phys. Chem. A 102, 4911 (1998).

[CMSY08] A. J. Cohen, P. Mori-Sánchez and W. Yang, Insights into Current Limitations of Density Functional Theory, Science 321, 792 (2008).

[CMSY12] A. J. Cohen, P. Mori-Sánchez and W. Yang, Challenges for Density Functional Theory, Chem. Rev. 112, 289 (2012).

[COM14] T. F. T. Cerqueira, M. J. T. Oliveira and M. A. L. Marques, Benchmarking the AK13 Exchange Functional: Ionization Potentials and Electron Affinities, J. Chem. Theory Comput. 10, 5625 (2014).

[CS00] M. E. Casida and D. R. Salahub, Asymptotic correction approach to improving approximate exchange-correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra, J. Chem. Phys. 113, 8918 (2000).

[CS13] W. Cencek and K. Szalewicz, On asymptotic behavior of density functional theory, J. Chem. Phys. 139, 024104 (2013).

[DB84] M. S. Daw and M. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443 (1984).

[DFC15] F. Della Sala, E. Fabiano and L. A. Constantin, Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals, Phys. Rev. B 91, 035126 (2015).

[DG90] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer, Berlin, 1990.

[DG01] F. Della Sala and A. Görling, Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules, J. Chem. Phys. 115, 5718 (2001).

[DG02] F. Della Sala and A. Görling, Asymptotic Behavior of the Kohn-Sham Exchange Potential, Phys. Rev. Lett. 89, 033003 (2002).

[DHG04] A. Dreuw and M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for LongRange ChargeTransfer Excited States: The Zincbacteriochlorin -Bacteriochlorin and Bacteriochlorophyll - Spheroidene Complexes, J. Am. Chem.

Soc. 126, 4007 (2004).

[DHG06] A. D. Dutoi and M. Head-Gordon, Self-interaction error of local density functionals for alkali-halide dissociation, Chem. Phys. Lett. 422, 230 (2006).

[DK16] M. Dauth and S. Kümmel, Predicting photoemission intensities and angular distri-butions with real-time density-functional theory, Phys. Rev. A 93, 022502 (2016).

[DKK+11] M. Dauth, T. Körzdörfer, S. Kümmel, J. Ziroff, M. Wiessner, A. Schöll, F. Reinert, M. Arita and K. Shimada, Orbital Density Reconstruction for Molecules, Phys. Rev.

Lett. 107, 193002 (2011).

[DMK+06] N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik and E. Umbach, Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride:

Experiment and theory, Phys. Rev. B 73, 195208 (2006).

[Dob92] J. F. Dobson, Spin-density functionals for the electron correlation energy with automatic freedom from orbital self-interaction, J. Phys.: Condens. Matter 4, 7877 (1992).

[dQK14] T. B. de Queiroz and S. Kümmel, Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning, J. Chem. Phys. 141, 084303 (2014).

[dQK15] T. B. de Queiroz and S. Kümmel, Tuned range separated hybrid functionals for solvated low bandgap oligomers, J. Chem. Phys. 143, 034101 (2015).

[dSC14] P. de Silva and C. Corminboeuf, Simultaneous Visualization of Covalent and Non-covalent Interactions Using Regions of Density Overlap, J. Chem. Theory Comput.

10, 3745 (2014).

[dSC15] P. de Silva and C. Corminboeuf, Local hybrid functionals with orbital-free mixing functions and balanced elimination of self-interaction error, J. Chem. Phys. 142, 074112 (2015).

[DWF+14] M. Dauth, M. Wiessner, V. Feyer, A. Schöll, P. Puschnig, F. Reinert and S. Kümmel, Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation, New J. Phys. 16, 103005 (2014).

[DWHG03] A. Dreuw, J. L. Weisman and M. Head-Gordon, Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange, J.

Chem. Phys. 119, 2943 (2003).

[EB09] P. Elliott and K. Burke, Non-empirical derivation of the parameter in the B88 exchange functional, Can. J. Chem. 87, 1485 (2009).

[ED11] E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced Course, Springer, Berlin, 2011.

[EHS+01] E. Engel, A. Höck, R. N. Schmid, R. M. Dreizler and N. Chetty, Role of the core-valence interaction for pseudopotential calculations with exact exchange, Phys. Rev.

B 64, 125111 (2001).

[EPB97] M. Ernzerhof, J. P. Perdew and K. Burke, Coupling-Constant Dependence of Atomization Energies, Int. J. Quantum Chem. 64, 285 (1997).

[Ern96] M. Ernzerhof, Construction of the adiabatic connection, Chem. Phys. Lett. 263, 499 (1996).

[ES99] M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys. 110, 5029 (1999).

[EWRA+14] D. A. Egger, S. Weissman, S. Refaely-Abramson, S. Sharifzadeh, M. Dauth, R. Baer, S. Kümmel, J. B. Neaton, E. Zojer and L. Kronik, Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional, J. Chem. Theory Comput. 10, 1934 (2014).

[Fer27] E. Fermi, Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo, Rend. Accad. Naz. Lincei 6, 602 (1927).

[FJJ08] R. Ferrando, J. Jellinek and R. L. Johnston, Nanoalloys: From Theory to Applica-tions of Alloy Clusters and Nanoparticles, Chem. Rev. 108, 846 (2008).

[FNM03] C. Fiolhais, F. Nogueira and M. Marques, editors, A Primer in Density Functional Theory, Springer, Berlin, 2003.

[FOF+14] D. Forberg, J. Obenauf, M. Friedrich, S.-M. Hühne, W. Mader, G. Motz and R. Kempe, The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles, Catal. Sci. Technol. 4, 4188 (2014).

[FYK+06] H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo and N. Ueno, Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: Hole stabilization versus band dispersion, Phys. Rev.

B 73, 245310 (2006).

[GB06] O. V. Gritsenko and E. J. Baerends, Correct Dissociation Limit for the Exchange-Correlation Energy and Potential, Int. J. Quantum Chem. 106, 3167 (2006).

[GBB03] O. V. Gritsenko, B. Braïda and E. J. Baerends, Physical interpretation and evaluation of the Kohn-Sham and Dyson components of theε−I relations between the Kohn-Sham orbital energies and the ionization potentials, J. Chem. Phys. 119, 1937 (2003).

[GCF13] P. Ghosh, M. F. Camellone and S. Fabris, Fluxionality of Au Clusters at Ceria Surfaces during CO Oxidation: Relationships among Reactivity, Size, Cohesion, and Surface Defects from DFT Simulations, J. Phys. Chem. Lett. 4, 2256 (2013).

[GEH+15] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photovolt: Res. Appl. 23, 1 (2015).

[GG95] T. Grabo and E. K. U. Gross, Density-functional theory using an optimized exchange-correlation potential, Chem. Phys. Lett. 240, 141 (1995).

[GG97] T. Grabo and E. K. U. Gross, The Optimized Effective Potential Method of Density Functional Theory: Applications to Atomic and Molecular Systems, Int. J. Quantum Chem. 64, 95 (1997).

[GGS09] P. Gori-Giorgi and A. Savin, Study of the Discontinuity of the Exchange-Correlation Potential in an Exactly Soluble Case, Int. J. Quantum Chem. 109, 2410 (2009).

[GGvGB01] M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen and E. J. Baerends, The Failure of Generalized Gradient Approximations (GGAs) and Meta-GGAs for the Two-Center Three-Electron Bonds in He+2, (H2O)+2, and (NH3)+2, J. Phys. Chem. A 105, 9211 (2001).

[GJL76] O. Gunnarsson, M. Jonson and B. I. Lundqvist, Exchange and correlation in atoms, molecules and solids, Phys. Lett. A 59, 177 (1976).

[GJL79] O. Gunnarsson, M. Jonson and B. I. Lundqvist, Descriptions of exchange and correlation effects in inhomogeneous electron systems, Phys. Rev. B 20, 3136 (1979).

[GKC04] J. Gräfenstein, E. Kraka and D. Cremer, Effect of the self-interaction error for three-electron bonds: On the development of new exchange-correlation functionals, Phys.

Chem. Chem. Phys. 6, 1096 (2004).

[GKG97] T. Grabo, T. Kreibich and E. K. U. Gross, Optimized Effective Potential for Atoms and Molecules, Mol. Eng. 7, 27 (1997).

[GL76] O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Phys. Rev. B 13, 4274 (1976).

[GL77] O. Gunnarsson and B. I. Lundqvist, Erratum: "Exchange and correlation in atoms, molecules, and solids by the spin-density- functional formalism" [Phys. Rev. B13, 4274 (1976)], Phys. Rev. B 15, 6006(E) (1977).

[GL94] A. Görling and M. Levy, Exact Kohn-Sham scheme based on perturbation theory, Phys. Rev. A 50, 196 (1994).

[GSB97] O. V. Gritsenko, P. R. T. Schipper and E. J. Baerends, Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree-Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2, J. Chem. Phys. 107, 5007 (1997).

[GSK+10] G. Glatz, T. Schmalz, T. Kraus, F. Haarmann, G. Motz and R. Kempe, Copper-Containing SiCN Precursor Ceramics (Cu@SiCN) as Selective Hydrocarbon Oxida-tion Catalysts Using Air as an Oxidant, Chem. Eur. J. 16, 4231 (2010).

[GU97] S. Goedecker and C. J. Umrigar, Critical assessment of the self-interaction-corrected-local-density-functional method and its algorithmic implementation, Phys. Rev. A 55, 1765 (1997).

[Haf08] J. Hafner, Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond, J. Comput. Chem. 29, 2044 (2008).

[Har84] J. Harris, Adiabatic-connection approach to Kohn-Sham theory, Phys. Rev. A 29, 1648 (1984).

[Has07] A. S. K. Hashmi, Gold-catalyzed organic reactions, Chem. Rev. 107, 3180 (2007).

[HC01] N. C. Handy and A. J. Cohen, Left-right correlation energy, Mol. Phys. 99, 403 (2001).

[HCW+98] R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal and R. J. Needs, Exchange and correlation in silicon, Phys. Rev. B 57, 8972 (1998).

[HFM+12] J. Hermannsdörfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S. Kümmel and R. Kempe, Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd Nanoparticles, Angew. Chem. Int. Ed. 51, 11473 (2012).

[HHJHS10] R. Haunschild, T. M. Henderson, C. A. Jiménez-Hoyos and G. E. Scuseria, Many-electron self-interaction and spin polarization errors in local hybrid density function-als, J. Chem. Phys. 133, 134116 (2010).

[HJ74] J. Harris and R. O. Jones, The surface energy of a bounded electron gas, J. Phys. F:

Met. Phys. 4, 1170 (1974).

[HJS08] T. M. Henderson, B. G. Janesko and G. E. Scuseria, Generalized gradient approx-imation model exchange holes for range-separated hybrids, J. Chem. Phys. 128, 194105 (2008).

[HJS09] R. Haunschild, B. G. Janesko and G. E. Scuseria, Local hybrids as a perturbation to global hybrid functionals, J. Chem. Phys. 131, 154112 (2009).

[HK64] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136, 864 (1964).

[HK12a] D. Hofmann and S. Kümmel, Integer particle preference during charge transfer in Kohn-Sham theory, Phys. Rev. B 86, 201109(R) (2012).

[HK12b] D. Hofmann and S. Kümmel, Self-interaction correction in a real-time Kohn-Sham scheme: Access to difficult excitations in time-dependent density functional theory, J. Chem. Phys. 137, 064117 (2012).

[HKK12] D. Hofmann, T. Körzdörfer and S. Kümmel, Kohn-Sham Self-Interaction Correction in Real Time, Phys. Rev. Lett. 108, 146401 (2012).

[HKKK12] D. Hofmann, S. Klüpfel, P. Klüpfel and S. Kümmel, Using complex degrees of freedom in the Kohn-Sham self-interaction correction, Phys. Rev. A 85, 062514 (2012).

[HS04a] J. Heyd and G. E. Scuseria, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys. 120, 7274 (2004).

[HS04b] J. Heyd and G. E. Scuseria, Efficient hybrid density functional calculations in solids:

Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, J.

Chem. Phys. 121, 1187 (2004).

[HS10] R. Haunschild and G. E. Scuseria, Range-separated local hybrids, J. Chem. Phys.

132, 224106 (2010).

[HSC79] D. R. Hamann, M. Schlüter and C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43, 1494 (1979).

[HSE03] J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118, 8207 (2003).

[HSE06] J. Heyd, G. E. Scuseria and M. Ernzerhof, Erratum: "Hybrid functionals based on

[HSE06] J. Heyd, G. E. Scuseria and M. Ernzerhof, Erratum: "Hybrid functionals based on