• Keine Ergebnisse gefunden

In this section, we provide a version of the Lions–Aubin or Lions–Aubin–Simon lemma, a well-established strong compactness result for Bochner spaces. This version is also known as the Lions–Aubin–Dubinskiˇilemma and deals with the case of piecewise constant functions in time, which avoids the construction of weakly time differentiable functions.

Lemma A.2.1 (Lions–Aubin–Dubinskiˇi) Let X, B and Y be Banach spaces such that the embeddingX ,B is compact and the embeddingB ,Y is continuous.

Furthermore, let either 1≤p <and r= 1 or p=∞ and r >1, and let (uτn)n∈N be a sequence of functions that are constant on each subinterval ((k−1)τn, kτn), 1≤

kn, T =n satisfying

τn−1∥στnuτnuτnLr(0,T−τn;Y)+∥uτnLp(0,T;X)C for all n∈N, (A.2.1) where στnu: = u(·+τn) and C > 0 is a constant which is independent of τ. If p <∞, then (uτn)n∈N is relatively compact in Lp(0, T;B) and if p=∞, there exists a subsequence of (uτn)n∈N converging in Lq(0, T;B) for all 1 ≤ q <to a limit

function belonging to C([0, T];B).

Proof. A proof can be found inDreher & Jüngel [64, Theorem 1].

References

[1] M. Agueh, N. Ghoussoub, and X. Kang, Geometric inequalities via a general comparison principle for interacting gases, Geom. Funct. Anal., 14 (2004), pp. 215–244.

[2] S. Aizicovici and V.-M. Hokkanen, Doubly nonlinear equations with unbounded operators, Nonlinear Anal., 58 (2004), pp. 591–607.

[3] S. Aizicovici and V.-M. Hokkanen, Doubly nonlinear periodic problems with unbounded operators, J. Math. Anal. Appl., 292 (2004), pp. 540–557.

[4] G. Akagi, Doubly nonlinear evolution equations with non-monotone perturbations in reflexive Banach spaces, J. Evol. Equ., 11 (2011), pp. 1–41.

[5] G. Akagi and S. Melchionna, Elliptic-regularization of nonpotential perturbations of doubly-nonlinear flows of nonconvex energies: a variational approach, J. Convex Anal., 25 (2018), pp. 861–898.

[6] G. Akagi and U. Stefanelli, Periodic solutions for doubly nonlinear evolution equations, J. Differential Equations, 251 (2011), pp. 1790–1812.

[7] H. Amann and J. Escher, Analysis III, Birkhäuser, Basel, 2001.

[8] L. Ambrosio,Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17 (1990), pp. 439–478.

[9] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat.

Appl. (5), 19 (1995), pp. 191–246.

[10] L. Ambrosio, N. Gigli, and G. Savaré,Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2nd ed., 2008.

[11] J. An and L. Ying, On the gradient flow structure of the isotropic landau equation, (2020).

[12] G. Andrews,On the existence of solutions to the equation utt= uxxt+σ(ux)x, J. Differential Equations, 35 (1980), pp. 200 – 231.

[13] G. Andrews and J. Ball, Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity, J. Differential Equations, 44 (1982), pp. 306 – 341.

[14] T. Arai, On the existence of the solution for ∂φ(u(t)) +∂ψ(u(t))f(t), J.

Fac. Sci. Univ. Tokyo Sect. IA Math., 26 (1979), pp. 75–96.

[15] M. Arndt, M. Griebel, and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Cont. Mech.

Thermodyn., 15 (2003), pp. 463–485.

[16] E. Asplund, Averaged norms, Israel J. Math., 5 (1967), pp. 227–233.

[17] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, Boston, 1984.

[18] H. Attouch and H. Brézis, Duality for the sum of convex functions in general Banach spaces, in Aspects of mathematics and its applications, vol. 34 of North-Holland Math. Library, North-Holland, Amsterdam, 1986, pp. 125–133.

[19] J.-P. Aubin and H. Frankowska,Set-Valued Analysis, Birkhäuser, Boston, 1990.

[20] A. Bacho, Doubly nonlinear evolution inclusion of second order with non-variational perturbation, arXiv:1910.10128, (2020).

[21] A. Bacho, E. Emmrich, and A. Mielke, An existence result and evolutionary Γ-convergence for perturbed gradient systems, J. Evol. Equ., 19 (2019), pp. 479–522.

[22] J. M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), Springer, Berlin, 1989, pp. 207–215.

[23] A. Bamberger,Étude d’une équation doublement non linéaire, J. Functional Analysis, 24 (1977), pp. 148–155.

[24] V. Barbu,Nonlinear Semigroups and Differential Equations in Banach spaces, Noordhoff, Leyden, 1976.

[25] V. Barbu,Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), pp. 552–569.

[26] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer-Verlag, New York, 2010.

[27] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer-Verlag, Dordrecht, 4th ed., 1986.

[28] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, New York, 2011.

[29] C. Bauzet and G. Vallet, On abstract Barenblatt equations, Differ. Equ.

Appl., 3 (2011), pp. 487–502.

[30] A. Braides, An introduction to homogenization and Gamma-convergence.

School on Homogenization, ICTP, Trieste, 1993.

[31] A. Braides, Γ-Convergence for Beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002.

[32] H. Brézis,Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.

[33] H. Brézis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., 23 (1970), pp. 123–144.

[34] H. Brézis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér.

A-B, 282 (1976), pp. Ai, A1197–A1198.

[35] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.

[36] H. Brézis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), pp. Aii, A971–A974.

[37] M. Bulíček, P. Kaplický, and M. Steinhauer, On existence of a classical solution to a generalized Kelvin-Voigt model, Pacific J. Math., 262 (2013), pp. 11–33.

[38] M. Bulíček, J. Málek, and K. R. Rajagopal, On Kelvin-Voigt model and its generalizations, Evol. Equ. Control Theory, 1 (2012), pp. 17–42.

[39] W. L. Bynum, Characterizations of uniform convexity, Pacific J. Math., 38 (1971), pp. 577–581.

[40] W. L. Bynum, Weak parallelogram laws for Banach spaces, Canad. Math.

Bull., 19 (1976), pp. 269–275.

[41] J. A. Carrillo, M. G. Delgadino, L. Desvillettes, and J. Wu, The landau equation as a gradient flow, arXiv:2007.08591, (2020).

[42] C. Castaing, P. Raynaud de Fitte, and M. Valadier,Young measures on topological spaces, vol. 571 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004. With applications in control theory and probability theory.

[43] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin–

New York, 1977.

[44] P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl. Math., 9 (1992), pp. 181–203.

[45] P. Colli and A. Visintin,On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations, 15 (1990), pp. 737–756.

[46] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent.

Math., 146 (2001), pp. 219–257.

[47] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport, Ann. Fac. Sci. Toulouse Math. (6), 15 (2006), pp. 613–635.

[48] D. Cordero-Erausquin, B. Nazaret, and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182 (2004), pp. 307–332.

[49] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265–298.

[50] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.

[51] E. De Giorgi, Sulla convergenza di alcune successioni d’integrali del tipo dell’area, Rend. Mat. (6), 8 (1975), pp. 277–294.

[52] E. De Giorgi,Γ-convergenza e G-convergenza., Boll. Unione Mat. Ital., V.

Ser., A 14 (1977), pp. 213–220.

[53] E. De Giorgi and T. Franzoni,Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), pp. 842–850.

[54] E. De Giorgi, A. Marino, and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl.

Sci. Fis. Mat. Natur. (8), 68 (1980), pp. 180–187.

[55] E. De Giorgi and S. Spagnolo,Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 8 (1973), pp. 391–411.

[56] E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), pp. 731–751.

[57] J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975.

[58] J. Diestel and J. J. Uhl, Jr., Vector Measures, American Mathematical Society, Providence, R.I., 1977. Mathematical Surveys, No. 15.

[59] P.-A. Dionne, Sur les problèmes de Cauchy hyperboliques bien posés, J.

Analyse Math., 10 (1962/63), pp. 1–90.

[60] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, at the Clarendon Press, 1947.

[61] J. Dixmier, General Topology, Springer-Verlag, New York, 1984.

[62] M. Dobrowolski, Angewandte Funktionalanalysis, Springer-Verlag, Heidelberg, 2nd ed., 2010.

[63] J. R. Dorroh, A nonlinear Hille-Yosida-Phillips theorem, J. Functional Analysis, 3 (1969), pp. 345–353.

[64] M. Dreher and A. Jüngel,Compact families of piecewise constant functions in Lp(0, T;B), Nonlinear Anal., 75 (2012), pp. 3072–3077.

[65] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publ., New York, 1958.

[66] A. Eikmeier and E. Emmrich, On a multivalued differential equation with nonlocality in time, Vietnam J. Math., 48 (2020), pp. 703–718.

[67] A. Eikmeier, E. Emmrich, and H.-C. Kreusler, Nonlinear evolution equations with exponentially decaying memory: existence via time discretisation, uniqueness, and stability, Comput. Methods Appl. Math., 20 (2020), pp. 89–108.

[68] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), pp. 324–353.

[69] I. Ekeland and R. Témam, Convex analysis and variational problems, vol. 28 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[70] J. Elstrodt,Maß- und Integrationstheorie, Springer-Verlag, Berlin, 4th ed., 2005.

[71] E. Emmrich, Gewöhnliche und Operator-Differentialgleichungen, Vieweg, Wiesbaden, 2004.

[72] E. Emmrich and D. Puhst, Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics, Comput. Methods Appl.

Math., 15 (2015), pp. 483–496.

[73] E. Emmrich and D. Šiška, Full discretisation of second-order nonlinear evolution equations: strong convergence and applications, Comput. Methods Appl. Math., 11 (2011), pp. 441–459.

[74] E. Emmrich and D. Šiška, Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization, J. Differential Equations, 255 (2013), pp. 3719–3746.

[75] E. Emmrich, D. Šiška, and M. Thalhammer, On a full discretisation for nonlinear second-order evolution equations with monotone damping:

construction, convergence, and error estimates, Found. Comput. Math., 15 (2015), pp. 1653–1701.

[76] E. Emmrich and M. Thalhammer,Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Found. Comput. Math., 10 (2010), pp. 171–190.

[77] E. Emmrich and M. Thalhammer,Doubly nonlinear evolution equations of second order: existence and fully discrete approximation, J. Differential Equations, 251 (2011), pp. 82–118.

[78] E. Emmrich and G. Vallet, Existence via time discretization for a class of doubly nonlinear operator-differential equations of Barenblatt-type, J. Differential Equations, 254 (2013), pp. 2499–2514.

[79] E. Emmrich, D. Šiška, and A. Wróblewska-Kamińska, Equations of second order in time with quasilinear damping: existence in Orlicz spaces via convergence of a full discretisation, Math. Methods Appl. Sci., 39 (2016), pp. 2449–2460.

[80] M. Erbar, A gradient flow approach to the boltzmann equation, arxiv:1603.0540, (2019).

[81] L. C. Evans, Weak convergence methods for nonlinear partial differential equations, vol. 74 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990.

[82] H. O. Fattorini,The Cauchy problem, vol. 18 of Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass., 1983.

[83] A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity, Pacific J. Math., 135 (1988), pp. 29–55.

[84] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag,

Berlin, 1974.

[85] G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly nonlinear Volterra equation, J. Differential Equations, 228 (2006), pp. 707–736.

[86] G. Gilardi and U. Stefanelli,Existence for a doubly nonlinear Volterra equation, J. Math. Anal. Appl., 333 (2007), pp. 839–862.

[87] O. Grange and F. Mignot, Sur la résolution d’une équation et d’une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), pp. 77–

92.

[88] H. Grassmann,Extension Theory, vol. 19, American Mathematical Society, Providence, RI; London Mathematical Society, London, 2000.

[89] M. Grmela and H. C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E (3), 56 (1997), pp. 6620–6632.

[90] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover Publications, New York, 1953.

[91] M. Hazewinkel, ed., Encyclopaedia of mathematics. Supplement. Vol. II, Kluwer Academic Publishers, Dordrecht, 2000.

[92] E. Hille, On the generation of semi-groups and the theory of conjugate functions, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy.

Physiog. Soc. Lund], 21 (1952), p. 13.

[93] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957.

[94] V.-M. Hokkanen, Existence of a periodic solution for implicit nonlinear equations, Differential Integral Equations, 9 (1996), pp. 745–760.

[95] A. D. Ioffe, On lower semicontinuity of integral functionals. I, SIAM J.

Control Optimization, 15 (1977), pp. 521–538.

[96] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1–17.

[97] T. Kato,Integration of the equation of evolution in a Banach space, J. Math.

Soc. Japan, 5 (1953), pp. 208–234.

[98] T. Kato and H. Tanabe,On the analyticity of solution of evolution equations, Osaka Math. J., 4 (1967), pp. 1–4.

[99] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J.

Math., 22 (1975), pp. 304–331.

[100] N. Kenmochi and M. Kubo, Periodic solutions to a class of nonlinear variational inequalities with time-dependent constraints, Funkcial. Ekvac., 30 (1987), pp. 333–349.

[101] N. Kenmochi and M. Kubo, Periodic behavior of solutions to parabolic-elliptic free boundary problems, J. Math. Soc. Japan, 41 (1989), pp. 625–640.

[102] B. T. Kien, The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space, Acta Math. Vietnam., 27 (2002), pp. 53–67.

[103] M. Koike, M. Ôtani, and S. Uchida,Periodic problem for doubly nonlinear evolution equation, arXiv:2010.11570, (2020).

[104] A. Kraft and S. V. Gurevich, Time-delayed feedback control of spatio-temporal self-organized patterns in dissipative systems, in Control of Self-Organizing Nonlinear Systems, E. Schöll, S. Klapp, and P. Hövel, eds., Springer, 2016, pp. 413–430.

[105] J. Leray,Hyperbolic differential equations, The Institute for Advanced Study, Princeton, N. J., 1953.

[106] J.-L. Lions,Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[107] J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.

[108] J.-L. Lions and W. A. Strauss, Some non-linear evolution equations, Bull.

Soc. Math. France, 93 (1965), pp. 43–96.

[109] P.-L. Lions, Solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), pp. 953–956.

[110] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), pp. 679–698.

[111] E. Maitre and P. Witomski, A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations, Nonlinear Anal., 50 (2002), pp. 223–250.

[112] J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.

[113] A. Matas and J. Merker, On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables, J. Evol. Equ., 17 (2017), pp. 869–881.

[114] J. M. Mazón, J. D. Rossi, and J. Toledo,Fractionalp-Laplacian evolution equations, J. Math. Pures Appl. (9), 105 (2016), pp. 810–844.

[115] A. Mielke, Evolution of rate–independent inelasticity with microstructure using relaxation and Young measures, in IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (Stuttgart Aug. 2001), C. Miehe, ed., Kluwer, 2003, pp. 33–44.

[116] A. Mielke, Evolution in rate-independent systems (Ch. 6), in Handbook of Differential Equations, Evolutionary Equations, vol. 2, C. Dafermos and E. Feireisl, eds., Elsevier B.V., Amsterdam, 2005, pp. 461–559.

[117] A. Mielke, Deriving amplitude equations via evolutionary Γ-convergence, Discr. Cont. Dynam. Systems Ser. A, 35 (2015), pp. 2679–2700.

[118] A. Mielke, Deriving effective models for multiscale systems via evolutionary Γ-convergence, in Control of Self-Organizing Nonlinear Systems, E. Schöll, S. Klapp, and P. Hövel, eds., Springer-Verlag, 2016, pp. 235–251.

[119] A. Mielke, On evolutionary Γ-convergence for gradient systems, in Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, vol. 3 of Lect. Notes Appl. Math. Mech., Springer-Verlag, 2016, pp. 187–249.

[120] A. Mielke, R. Rossi, and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discr. Cont. Dynam. Systems Ser. A, 25 (2009), pp. 585–615.

[121] A. Mielke, R. Rossi, and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc.

Var., 18 (2012), pp. 36–80.

[122] A. Mielke, R. Rossi, and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations, Calc. Var. Part. Diff. Eqns., 46 (2013), pp. 253–

310.

[123] A. Mielke, R. Rossi, and G. Savaré,Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Europ. Math. Soc., 18 (2016), pp. 2107–2165.

[124] A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Springer-Verlag, New York, 2015.

[125] U. Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa, 21 (1967), pp. 373–394. Erratum, ibid. (3) 765.

[126] M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), pp. 268–299.

[127] M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems, J. Differential Equations, 54 (1984), pp. 248–273.

[128] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory, Arch. Rational Mech. Anal., 141 (1998), pp. 63–103.

[129] F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach, Comm. Pure Appl. Math., 52 (1999), pp. 873–915.

[130] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), pp. 101–174.

[131] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), pp. 361–400.

[132] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.

[133] P. Plecháč and T. Roubíček, Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys, Math. Methods Appl. Sci., 25 (2002), pp. 1281–1298.

[134] D. Puhst, On the evolutionary fractional p-Laplacian, Appl. Math. Res.

Express. AMRX, (2015), pp. 253–273.

[135] K. R. Rajagopal and T. Roubíček, On the effect of dissipation in shape-memory alloys, Nonlinear Anal. Real World Appl., 4 (2003), pp. 581–597.

[136] M. M. Rao and Z. D. Ren,Theory of Orlicz Spaces, vol. 146 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1991.

[137] R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math., 17 (1966), pp. 497–510.

[138] R. T. Rockafellar,Integrals which are convex functionals, Pacific J. Math., 24 (1968), pp. 525–539.

[139] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No.

28, Princeton University Press, Princeton, N.J., 1970.

[140] R. T. Rockafellar,Convex integral functionals and duality, in Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ.

Wisconsin, Madison, Wis., 1971), 1971, pp. 215–236.

[141] R. T. Rockafellar, Integrals which are convex functionals, II, Pacific J.

Math., 39 (1971), pp. 439–469.

[142] R. Rossi, A. Mielke, and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super.

Pisa Cl. Sci. (5), VII (2008), pp. 97–169.

[143] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications, ESAIM Control Optim. Calc. Var., 12 (2006), pp. 564–614.

[144] R. Rossi and M. Thomas, Coupling rate-independent and rate-dependent processes: existence results, SIAM J. Math. Anal., 49 (2017), pp. 1419–1494.

[145] T. Roubíček, Nonlinear Partial Differential Equations with Applications, vol. 153 of International Series of Numerical Mathematics, Birkhäuser, Basel, 2nd ed., 2013.

[146] A. M. Ruf,Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces, Z. Angew.

Math. Phys., 68 (2017), pp. Paper No. 118, 24.

[147] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., LVII (2004), pp. 1627–1672.

[148] G. Schimperna, A. Segatti, and U. Stefanelli,Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discr. Cont. Dynam.

Systems Ser. A, 18 (2008), pp. 15–38.

[149] E. Schrödinger,Quantisierung als eigenwertproblem, Annalen der Physik, 384 (1926), pp. 361–376.

[150] L. Schwartz,Les équations d’évolution liées au produit de composition, Ann.

Inst. Fourier (Grenoble), 2 (1950), pp. 19–49 (1951).

[151] T. Senba,On some nonlinear evolution equation, Funkcial. Ekvac., 29 (1986), pp. 243–257.

[152] S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications, Discr. Cont. Dynam. Systems Ser. A, 31 (2011), pp. 1427–1451.

[153] M. S. Skaff, Vector valued Orlicz spaces generalized N-functions. I, Pacific J. Math., 28 (1969), pp. 193–206.

[154] M. S. Skaff, Vector valued Orlicz spaces. II, Pacific J. Math., 28 (1969), pp. 413–430.

[155] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 47 (2008), pp. 1615–1642.

[156] J. Swift and P. Hohenberg, Hydrodynamic fluctuations at the convective instability, Physical Review A, 15 (1977), pp. 319–328.

[157] R. Temam, Navier-Stokes equations. Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised ed., 1979.

[158] C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.

[159] J. W. von Goethe, Faust. Eine Tragödie von Goethe, J. G. Cotta, Tübigen, 1808.

[160] J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, Leipzig, 1982.

[161] Y. Yamada,On evolution equations generated by subdifferential operators, J.

Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), pp. 491–515.

[162] K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan, 1 (1948), pp. 15–21.

[163] L. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Soc. Sci. Varsovie, Cl. III, 30 (1937), pp. 212–234.

[164] E. Zeidler,Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990.

[165] M. Zemek, Strong monotonicity and Lipschitz-continuity of the duality mapping, Acta Univ. Carolin. Math. Phys., 32 (1991), pp. 61–64.