• Keine Ergebnisse gefunden

An overview over the electrode preparation process and cell assembly of the coin cells is presented in Figure 3.5a. The cathode slurries were prepared by thoroughly mixing 80 wt%

of the active material, 10 wt% carbon Super C65 (TIMCAL), and 10 wt% PVDF (SOLVAY) with NMP in an agate mortar (structural formulas cf. Figure 3.5c). The slurries were spread on carbon-coated Al current collectors (COVERIS ADVANCED COATINGS) with the help of a doctor-blade coater. The electrode sheets were dried at 120 °C for 5 h in a vacuum oven (THERMO

SCIENTIFIC), calendered (INTERNATIONAL ROLLING MILLS device), and then vacuum dried a sec-ond time for 12 h at 120 °C before being transferred into an Ar-filled glove-box (VAC, < 0.1 ppm H2O, < 0.1 ppm O2). The CR2032 coin-type cells (details on the coin cell parts see Figure 3.5b) were assembled using the circular cathode (d = 14.3 mm), a Li foil anode (ALFA AESAR, 0.75 mm, 99.9%, metals basis), a microporous monolayer PP membrane separator (CELGARD

2400, 25 µm, polypropylene), and 1 M LiPF6 dissolved in ethylene carbonate (EC)/diethyl carbonate (DEC) in a ratio of 1:1 (v:v, by volume) as electrolyte (DAIKIN;structural formulas see Figure 3.5c). Galvanostatic cycling was performed on a BIOLOGIC VMP3 multichannel galvanostat in a potential window of 3.0–5.2 V at C rates of 0.1 C, 0.2 C, 0.5 C, and 1 C for three cycles each, followed by 20 cycles at 0.1 C. Current densities and specific capacities were calculated on basis of the weight of active material in the electrode.

3 Experimental Methods

Figure 3.5 (a) Overview over the electrode and cell preparation process using coin cells, (b) components of CR2032 coin cells, and (c) structural formulas of the PVDF (polyvinylidene difluoride) binder, the NMP (N-methyl-2-pyrrolidone) solvent as well as the EC (ethylene carbonate), DMC (dimethyl carbonate), and DEC (diethyl carbonate) electrolytes.

3.4 References

3.4 References

[1] Direct-Q® 3, 5, 8 Water Purification Systems. Millipore Corporation: Billerica, MA, USA, 2011 (www.millipore.com/directq358).

[2] SciFinder® A CAS Solution. Chemical Abstracts Service: Columbus, OH, USA, 2017 (http://www.cas.org/products/scifinder).

[3] digestecTM Berghof Druckaufschlusssystem DAB-2 und DAB-3 Anwenderhandbuch V. 1.0. BERGHOF Products + Instruments GmbH: Eningen, Germany, 2012.

[4] Berghof Homepage. Laborgeräte - Aufschlusstechnik - Druckaufschluss. Übersicht:

Druckaufschluss-Systeme für den geschlossenen Säureaufschluss. BERGHOF Products + Instruments GmbH: Eningen, Germany, 2017 (http://www.berghof-instruments.com/laborgeraete/aufschlusstechnik/druckaufschluss/uebersicht/).

[5] Ludwig, J., Synthesis and Characterization of Phospho-olivines. Master's thesis, Technical University of Munich, Department of Chemistry, Garching, Germany, 2012.

[6] Bedienungsanleitung Monoblockrotor MR-8 HT. MLS GmbH Mikrowellen-Laborsysteme: Leutkirch, Germany, 2009.

[7] Bedienungsanleitung Mikrowellensystem START 1500. MLS GmbH Mikrowellen-Laborsysteme: Leutkirch, Germany, 2009.

[8] Liang, H.; Zhang, L., High-energy-density LiMn0.7Fe0.3PO4 nanorods synthesized by microwave-assisted solvothermal method. Russ. J. Electrochem. 2014, 50, 297–300.

[9] Kuppan, S.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J., Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ. Sci.

2010, 3, 457–464.

[10] Song, J.; Wang, L.; Shao, G.; Shi, M.; Ma, Z.; Wang, G.; Song, W.; Liu, S.; Wang, C., Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 7728–7733.

[11] Friend, J. A. N., The hydrates of lithium sulfate and their solubility in water between

3 Experimental Methods

[12] Linke, W. F.; Seidell, A., Solubilities of Inorganic and Metal Organic Compounds Vol. II. 4th ed. Am. Chem. Soc.: 1966; p 1941 pp.

[13] Ludwig, J.; Marino, C.; Haering, D.; Stinner, C.; Nordlund, D.; Doeff, M. M.; Gasteiger, H. A.; Nilges, T., Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries. RSC Adv. 2016, 6, 82984–82994.

[14] Chen, J.; Wang, S.; Whittingham, M. S., Hydrothermal synthesis of cathode materials.

J. Power Sources 2007, 174, 442–448.

[15] Ludwig, J.; Haering, D.; Doeff, M. M.; Nilges, T., Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends. Solid State Sci. 2017, 65, 100–109.

[16] Ludwig, J.; Marino, C.; Haering, D.; Stinner, C.; Gasteiger, H. A.; Nilges, T., Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries. J. Power Sources 2017, 342, 214–223.

[17] WinXPOW (Version 3.0.2.1). STOE & CIE GmbH: Darmstadt, Germany, 2009.

[18] FindIt - ICSD (Inorganic Crystal Structure Database), Version 1.9.3.

Fachinformationszentrum (FIZ) Karlsruhe, Germany, 2013.

[19] P. Villars; Cenzual, K., Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2008/9 (Version 1.2). ASM International, Materials Park, OH, USA, 2008.

[20] Petricek, V.; Dusek, M.; Palatinus, L., Crystallographic Computing System JANA2006:

General features. Z. Kristallogr. - Cryst. Mater. 2014, 229, 345–352.

[21] Koleva, V.; Zhecheva, E.; Stoyanova, R., Ordered Olivine-Type Lithium-Cobalt and Lithium-Nickel Phosphates Prepared by a New Precursor Method. Eur. J. Inorg. Chem.

2010, 4091–4099.

[22] Kolitsch, U.; Andrut, M.; Giester, G., Satterlyite, (Fe,Mg)12(PO3OH)(PO4)5(OH,O)6: crystal structure and infrared absorption spectra. Eur. J. Mineral. 2002, 14, 127–133.

3.4 References [23] Jensen, T. R.; Norby, P.; Stein, P. C.; Bell, A. M. T., Preparation, structure determination and thermal transformation of a new lithium zinc phosphate, δ1-LiZnPO4. J. Solid State Chem. 1995, 117, 39–47.

[24] Garcia-Moreno, O.; Alvarez-Vega, M.; Garcia-Alvarado, F.; Garcia-Jaca, J.; Gallardo-Amores, J. M.; Sanjuan, M. L.; Amador, U., Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LiMPO4 (M = Fe and Ni). Chem. Mater. 2001, 13, 1570–1576.

[25] Finger, L. W.; Cox, D. E.; Jephcoat, A. P., A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Crystallogr. 1994, 27, 892–900.

[26] Cromer, D. T.; Liberman, D. A., Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge. Acta Crystallogr., Sect. A 1981, A37, 267–

268.

[27] Gelato, L. M.; Parthe, E., STRUCTURE TIDY - a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143.

[28] Spek, A. L., Structure validation in chemical crystallography. Acta Crystallogr., Sect. D:

Biol. Crystallogr. 2009, 65, 148–155.

[29] Berar, J. F.; Lelann, P., E.S.D.'s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Crystallogr. 1991, 24, 1–5.

[30] Westrip, S. P., publCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Crystallogr. 2010, 43, 920–925.

[31] Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M., CIF applications. XV.

enCIFer: a program for viewing, editing and visualizing CIFs. J. Appl. Crystallogr. 2004, 37, 335–338.

[32] checkCIF. International Union of Crystallography (IUCr): Chester, England 2017 (http://checkcif.iucr.org/).

[33] Brandenburg, K., Diamond V3.2d, Crystal Impact Gbr. Bonn, Germany, 2009.

[34] CorelDRAW Graphics Suite X3 (Version 13.0.0.576). Corel Corporation: Ottawa, Canada, 2005.

3 Experimental Methods

[35] Rodriguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69.

[36] Palmer, D. C., CrystalMaker (Version 2.5.5). CrystalMaker Software Ltd: Begbroke, England, 2012.

[37] Lin, F.; Nordlund, D.; Markus, I. M.; Weng, T.-C.; Xin, H. L.; Doeff, M. M., Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries.

Energ. Environ. Sci. 2014, 7, 3077–3085.

[38] Solé, V. A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 2007, 62, 63–68.

[39] Hibberd, A. M.; Doan, H. Q.; Glass, E. N.; de Groot, F. M. F.; Hill, C. L.; Cuk, T., Co Polyoxometalates and a Co3O4 Thin Film Investigated by L-Edge X-ray Absorption Spectroscopy. J. Phys. Chem. C 2015, 119, 4173–4179.

[40] Hu, Z.; Wu, H.; Haverkort, M. W.; Hsieh, H. H.; Lin, H. J.; Lorenz, T.; Baier, J.; Reichl, A.; Bonn, I.; Felser, C.; Tanaka, A.; Chen, C. T.; Tjeng, L. H., Different Look at the Spin State of Co3+ Ions in a CoO5 Pyramidal Coordination. Phys. Rev. Lett. 2004, 92, 207402/1–207402/4.

Chapter 4