• Keine Ergebnisse gefunden

The code used to generate the energy–economy–climate model REMIND can be accessed at

github.com/remindmodel/remind (in particular modules/36_buildings/services_putty). The scenarios displayed in this study use a slightly adapted model version from the central repository.

References

1. Rogelj, J. et al. Chapter 2: Mitigation pathways compatible with 1.5°C in the context of

sustainable development. in Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission

5.7 References 155

pathways, in the context of strengthening the global response to the threat of climate change (Intergovernmental Panel on Climate Change, 2018).

2. Levesque, A. et al. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 148, 514–527 (2018).

3. Lucon, O. et al. Buildings. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T.

Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1–103 (Cambridge University Press, 2014).

4. Hausman, J. A. Individual discount rates and the purchase and utilization of energy-using durables. The Bell Journal of Economics 33–54 (1979).

5. Rosenfeld, A. et al. Conserved energy supply curves for US buildings. Contemporary Economic Policy 11, 45–68 (1993).

6. Brown, R. US building-sector energy efficiency potential. (2008).

7. Uerge-Vorsatz, D. & Novikova, A. Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy 36, 642–661 (2008).

8. Nauclér, T. & Enkvist, P.-A. Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost curve. McKinsey & Company 192, (2009).

9. Jaffe, A. B. & Stavins, R. N. The energy-efficiency gap What does it mean? Energy policy 22, 804–

810 (1994).

10. Gerarden, T. D., Newell, R. G. & Stavins, R. N. Assessing the Energy-Efficiency Gap. Journal of Economic Literature 55, 1486–1525 (2017).

11. Gillingham, K. & Palmer, K. Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy 8, 18–38 (2014).

12. Newell, R. G. & Siikamäki, J. Individual time preferences and energy efficiency. American Economic Review 105, 196–200 (2015).

156 Chapter 5 Decarbonising buildings energy services

13. Allcott, H. & Greenstone, M. Is there an energy efficiency gap?

http://www.nber.org/papers/w17766 (2012).

14. Gillingham, K., Harding, M. & Rapson, D. Split incentives in residential energy consumption. The Energy Journal 37–62 (2012).

15. Fowlie, M., Greenstone, M. & Wolfram, C. Do energy efficiency investments deliver? Evidence from the weatherization assistance program. The Quarterly Journal of Economics 133, 1597–

1644 (2018).

16. Levinson, A. How Much Energy Do Building Energy Codes Save? Evidence from California Houses.

American Economic Review 106, 2867–2894 (2016).

17. Kotchen, M. J. Longer-run evidence on whether building energy codes reduce residential energy consumption. Journal of the Association of Environmental and Resource Economists 4, 135–153 (2017).

18. Davis, L. W., Fuchs, A. & Gertler, P. Cash for coolers: evaluating a large-scale appliance

replacement program in Mexico. American Economic Journal: Economic Policy 6, 207–38 (2014).

19. Hoffman, I. M. et al. Estimating the cost of saving electricity through US utility customer-funded energy efficiency programs. Energy Policy 104, 1–12 (2017).

20. Gillingham, K., Keyes, A. & Palmer, K. Advances in evaluating energy efficiency policies and programs. Annual Review of Resource Economics 10, 511–532 (2018).

21. Connolly, D. et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy policy 65, 475–489 (2014).

22. Paardekooper, S. et al. Heat Roadmap Europe 4: Quantifying the Impact of Low-Carbon Heating and Cooling Roadmaps. (2018).

23. Clarke, L. et al. Assessing Transformation Pathways. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.) 141 (Cambridge University Press, 2014).

5.7 References 157

24. Ürge-Vorsatz, D., Danny Harvey, L. D., Mirasgedis, S. & Levine, M. D. Mitigating CO2 emissions from energy use in the world’s buildings. Building Research & Information 35, 379–398 (2007).

25. Ürge-Vorsatz, D., Novikova, A., Köppel, S. & Boza-Kiss, B. Bottom–up assessment of potentials and costs of CO 2 emission mitigation in the buildings sector: insights into the missing elements.

Energy Efficiency 2, 293–316 (2009).

26. Levesque, A., Pietzcker, R. C. & Luderer, G. Halving energy demand from buildings: The impact of low consumption practices. Technological Forecasting and Social Change 146, 253–266 (2019).

27. Cullen, J. M. & Allwood, J. M. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy 38, 75–81 (2010).

28. Schleich, J., Gassmann, X., Faure, C. & Meissner, T. Making the implicit explicit: A look inside the implicit discount rate. Energy Policy 97, 321–331 (2016).

29. Train, K. Discount rates in consumers’ energy-related decisions: A review of the literature. Energy 10, 1243–1253 (1985).

30. Allcott, H. & Rogers, T. The short-run and long-run effects of behavioral interventions:

Experimental evidence from energy conservation. The American Economic Review 104, 3003–

3037 (2014).

31. Asensio, O. I. & Delmas, M. A. Nonprice incentives and energy conservation. Proceedings of the National Academy of Sciences of the United States of America 112, E510–E515 (2015).

32. Huppmann, D. et al. IAMC 1.5°C Scenario Explorer and Data hosted by IIASA. (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).

doi:10.22022/SR15/08-2018.15429.

33. International Energy Agency. Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations. https://www.iea.org/etp2017/ (2017).

34. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change 8, 626–633 (2018).

35. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat Commun 10, 5229 (2019).

158 Chapter 5 Decarbonising buildings energy services

36. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy 3, 515–527 (2018).

37. McCollum, D. L. et al. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy 3, 664 (2018).

38. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

39. ADVANCE. Reference card - REMIND - ADVANCE.

http://themasites.pbl.nl/models/advance/index.php/Reference_card_-_REMIND (2016).

40. Huntington, H. G. The policy implications of energy-efficiency cost curves. The Energy Journal 7–

21 (2011).

41. Koomey, J. G., Webber, C. A., Atkinson, C. S. & Nicholls, A. Addressing Energy-Related Challenges for the US Buildings Sector: Results From the Clean Energy Futures Study. Energy Policy 29, 1209–1221 (2001).

42. Wilkerson, J. T., Cullenward, D., Davidian, D. & Weyant, J. P. End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors. Energy Economics 40, 773–784 (2013).

43. Capros, P. EU Reference Scenario 2016: Energy, transport and GHG emissions - Trends to 2050.

(2016).

44. Nordhaus, W. Critical assumptions in the Stern Review on climate change. Science 317, 201–202 (2007).

45. Stern, N. & Taylor, C. Climate change: Risk, ethics, and the Stern review. Science 317, 203–204 (2007).

46. Min, J., Azevedo, I. L., Michalek, J. & de Bruin, W. B. Labeling energy cost on light bulbs lowers implicit discount rates. Ecological Economics 97, 42–50 (2014).

47. Sun, J. W. & Ang, B. W. Some properties of an exact energy decomposition model. Energy 25, 1177–1188 (2000).

5.7 References 159

Acknowledgements

This work was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 730403 (INNOPATHS).