• Keine Ergebnisse gefunden

3   Results

3.1   Characterisation  of  the  used  Drosophila  transgenes

3 Results  

As   described   in   chapter   1.9   the   aim   of   this   work   is   to   identify   modifiers   of   Tau   induced   pathology.   This   was   done   in   a   genetic   modifier   screen   using   an   RNAi-­‐based   approach   and   the   REP   induced   by   Tau   as   a   readout   (see   chapter   1.8.1).   Thus,   characterisations  of  the  used  transgenes  were  performed  according  to  their  REP  induction   and  life  span.  

3.1 Characterisation  of  the  used  Drosophila  transgenes  

Two   transgenic   lines   modelling   Tau-­‐induced   toxicity   were   kindly   provided   by   Mel   Feany  [125].  The  two  transgenes  Tau[WT]  (P{w[+mC]=UAS-­hTau[WT]})  and  Tau[R406W]  

(P{w[+mC]=UAS-­hTau[R406W]})   were   used   to   model   Tau-­‐induced   neurodegeneration   (FTDP-­‐17).   Besides   Tau,   two   other   transgenes   were   evaluated   for   induction   of   a   REP,   when  expressed  in  the  compound  eye:  Aβ42  (P{[+mC]=UAS-­Aβ42})  used  to  model  amyloid-­‐

induced  AD  [241]  and  Q78  (P{[+mC]=UAS-­MJD.tr-­Q78})  used  to  model  the  poly-­‐glutamine   disease   spinocerebellar   ataxia   type   3   [248].   These   two   Tau   unrelated   transgenes   were   utilised  to  analyse  specificity  of  found  modifiers  for  Tau  pathology.  

3.1.1 Rough  eye  phenotypes  of  the  models  

For  the  evaluation  of  transgene-­‐induced  toxicity  in  photoreceptors,  the  transgenes   were   expressed   in   post-­‐mitotic   cells   of   the   compound   eye   (GMR-­Gal4   [233]).   Several   controls   for   eye   appearance   were   used   (Figure   9   A-­‐D).   In   contrast   to   the   wildtype   eye   phenotype   (Figure   9   A),   a   very   subtle   REP   was   visible   after   GMR   mediated   Gal4   expression   (Figure   9   B).   Comparable   phenotypes   could   be   observed   in   GFP   expression   (transgene  P{[+mC]=UAS-­eGFP}4)   and  transcription  of  a  control  shRNA  (shRNA  directed   against  ZIC4)  (Figure  9  C,  D).  

GMR-­‐Gal4  mediated  expression  of  Tau[WT]  and  Tau[R406W]  showed  a  severe  REP,   with   loss   of   texture   and   reduced   size   of   the   compound   eye   (Figure   9   E,   F).   In   flies   expressing  Tau[R406W],  necrotic  spots  in  the  eye  could  be  observed  occasionally.  Since   the  Tau[R406W]-­‐induced  phenotype  was  found  to  be  more  robust,  with  only  minor  inter-­‐

individual   differences   compared   to   Tau[WT],   GMR-­‐mediated   expression   of   the   mutant   variant  Tau[R406W]  was  chosen  for  further  analysis  and  the  modifier  screen.  

The  REP  induced  by  expression  of  Aβ42  (Figure  9  G)  did  not  differ  from  the  control   phenotypes   (Figure   9   B-­‐D)   (in   contrast   to   published   data   [241]).   Nevertheless,  

 

enhancement  of  the  phenotype  induced  by  modifiers  should  be  observable.  Expression  of   Q78  (a  C-­‐terminal  fragment  of  MJD  containing  a  stretch  of  78  glutamines)  induced  a  severe   REP.   Although   the   eye   size   is   not   affected   by   Q78   expression,   texture   and   ommatidial   structure  are  impaired  and  dints  as  well  as  necrotic  spots  occur  (Figure  9  H).  

 

3.1.2 Developmental  effects  of  Tau  expression  

As  the  REP  is  a  sign  of  neurodegeneration  already  present  after  hatching  of  the  adult   fly,   larval   eye   progenitors   were   examined   to   determine   the   onset   of   neurodegenerative   effects.  The  structure  in  Drosophila  L3  larvae,  which  will  form  the  compound  eye,  is  called   eye   imaginal   disc.   The   eye   imaginal   disc   is   a   two-­‐layered   epithelial   sack-­‐like   structure   connected  posterior  to  the  optic  lobes  and  anterior  to  the  antenna  imaginal  disc  (Figure  10   A).   During   development   specification   of   neurons   takes   place   in   a   spatiotemporal   order   starting  posterior.   The   so   called   morphogenic   furrow   (MF)   represents   the   border   of   neuron  specification  dividing  post-­‐mitotic  neuronal  precursor  cells  on  the  posterior  and    

Figure  9:  Phenotypes  induced  by  GMR-­mediated  expression  of  the  different  transgenes.  

Compound   eye   phenotypes   of   wildtype   flies   (A),   control   situations   (B-­‐D)   and   flies   expressing   transgenes   modelling   neurodegenerative   diseases   (E-­‐H).   Compared   to   wildtype   flies   (A),   the  GMR-­Gal4   driver   alone   induces   a   subtle   REP   (B),   which   is   also   present   in  GMR-­Gal4   mediated   GFP   expression   (C)   and   control   shRNA  transcription  (D).  Expression  of  either  Tau[WT]  (E)  or  Tau[R406W]  (F)  induces  a  severe  REP  with   disturbances  of  ommatidial  structure  and  eye  size.  The  REP  induced  by  Gal4-­‐mediated  expression  of  Aβ42   (G)   is   not   distinguishable   from   the   phenotypes   of   control   situations.   Severe   changes   of   eye   texture,   accompanied  by  dints  and  necrotic  spots  are  found  in  expression  of  the  Q78  fragment  (H).  Orientation  of  the   images  is  dorsal-­‐up  and  cranial-­‐left.  The  magnification  is  depicted  in  D  (bar  =  200µm).  

 

 

yet  unspecified  cells  on  the  anterior  side  is  [249,  250].  The  GMR-­‐mediated  expression  of   transgenes  is  specific  for  post-­‐mitotic  cells  posterior  of  the  MF  (Figure  10  B).  Loss  of  cells   leading  to  the  REP  observed  in  adult  flies  might  be  already  visible  in  the  imaginal  disc  of   the  Drosophila  compound  eye  [229,  251].  To  examine  cell  death  events  induced  by  Tau   expression,   eye   disc   of  Drosophila   were   stained   with   acridine   orange   (AO).   AO   labels   dying  cells  in  situ,  due  to  their  inability  to  exclude  AO.  In  these  cells  AO  intercalates  into   DNA  resulting  in  green  fluorescence  signal  [252].    

Eye   imaginal   discs   of  GMR-­Gal4   flies,   showed   a   small   number   of   AO   positive   cells   directly  at  the  morphogenic  furrow  where  supernumerary  cells  are  eliminated  (Figure  10   C).   In   eye   imaginal   discs   with  GMR-­Gal4-­‐induced   Tau[R406W]   expression   an   increased   number   of   AO   positive   cells   was   detectable   in   the   area  posterior   of   the   morphogenic   furrow   (Figure   10   D),   suggesting   that   toxic   effects   of   Tau[R406W]   already   induce   cell   death  in  the  developing  eye  of  Drosophila  and  are  not  exclusively  mediated  by  long-­‐term   accumulation  of  a  toxic  protein  species.  

   

 

Figure  10:  Developmental  effects  of  Tau[R406W]  expression  in  the  eye  imaginal  disc  of  Drosophila.  

Schematic  view  of  the  antenna  imaginal  disc  (AID)  and  the  eye  imaginal  disc  (EID)  (A).  The  morphogenic   furrow  (MF)  is  the  border  of  cell  differentiation  starting  posterior  (post.).  The  differentiation  results  in  post-­‐

mitotic   neuronal   precursor   cells   (N)   posterior   of   the   MF.   These   resemble   the   area   of  GMR-­Gal4-­‐mediated   expression   (grey),   also   visible   in   GMR-­‐driven   GFP   expression   (B).   In  GMR-­Gal4   flies   AO-­‐positive   cells   undergoing  apoptosis  are  found  directly  at  the  MF  (C).  In  eye  imaginal  discs  with  GMR-­‐mediated  expression   of  Tau[R406W]  an  increased  number  of  AO-­‐positive  cells  are  found  which  are  not  restricted  to  the  MF  (D).  

Orientation  of  the  images  is  anterior-­‐left  and  dorsal-­‐up.  Magnification  is  depicted  in  A  (bar  =  150  µm).  B  is   an  overlay  of  brightfield  and  fluorescence  microscopy.  

 

3.1.3 Comparison  of  Tau  expression  levels  

To   evaluate   the   expression   levels   in   the   screening   stock,   quantitative   PCR   (qPCR)   analysis  was  performed.  Transcript  levels  of  endogenous  Drosophila  Tau  (dTau)  as  well   exogenous   transgene   Tau[R406W]   (human   Tau  hTau)   were   quantified   in   RNA   extracts   from  heads  of  flies  expressing  Tau[R406W]  under  control  of  the  pan-­‐neural  elavC155-­Gal4   driver.   As   a   control,   the   driver   line   was   used   without   any   transgene   expression.  ΔΔCt   analysis  revealed  no  significant  change  of  endogenous  dTau  mRNA  levels  in  Tau[R406W]  

expressing  flies,    compared  to  control  flies,  normalised  to  ACTG1  (Actin  5C)  (Figure  11  A).  

To   evaluate   Tau[R406W]   transcript   levels   ΔCt   analysis   was   performed   comparing   Tau[R406W]   mRNA   to   dTau   mRNA.   Transcript   levels   of   transgenic   Tau[R406W]   were   significantly   increased   (1.8-­‐fold,   p=0.0006)   compared   to   measured   dTau   mRNA   levels   (Figure  11  B).  

 

 

 

Figure  11:  Tau  mRNA  levels  in  the  used  Tau[R406W]  model.  

(A)   The   effect   of   elav-­‐driven   Tau[R406W]   expression   on   endogenous   dTau   mRNA   levels   in   total   RNA   preparations  from  the  head.  No  significant  change  is  measurable.  (B)  Comparison  of  dTau  and  Tau[R406W]  

mRNA   levels   in   total   RNA   preparations   from   head   in   flies   with   elav-­‐driven   Tau[R406W]   expression.   The   Tau[R406W]  transgene  has  1.8  times  higher  transcription  levels  compared  to  endogenous  dTau  (standard  t-­‐

test:  ***  p<0.001).  

 

3.1.4 Longevity  of  the  disease  models  

Human  neurodegenerative  diseases  are  progressive  disorders  with  ongoing  loss  of   neuronal  function,  leading  to  reduced  life  span.  This  can  also  be  modelled  in  Drosophila   [125,  241,  248].  Therefore,  transgenes  are  expressed  via  pan-­‐neural  elavC155-­Gal4  driver.  

Compared  to  GFP  expression  as  a  control,  both  Tau[R406W]  and  Aβ42  expression  led  to  a   significant  decrease  in  life  span  (Figure  12  A).  Pan-­‐neural  expression  of  Q78  under  control   of  elavC155-­Gal4  was  already  lethal  during  pupal  stage  and  therefore  could  not  be  used  for   longevity  analysis.