• Keine Ergebnisse gefunden

A.3.1

Syringe pump VitFit: RS-485, 7001(+4816), Lambda.

A.3.2

DNA sodium-salt from salmon testes, D1626 Sigma, Munich.

DNA sodium-salt from calf thymus, D1501, Sigma, Munich.

DNA solution: 0.15 M sodium chloride, 3 mM sodium citrate tribasic di-hydrate, 0.05 mM EDTA disodium salt at pH7

Concentration of DNA: (1.5 - 2)gl.

A.3.3

Spinneret: 720 holes of 70µm diameter.

A.3.4

Teon cylinder: 80 mm diameter.

A.3.5

Force sensor: 31E, range: 10 N, Althen, Kelkheim.

A.3.6

Data acquisition card: PCI-6221 (16 bit, 250 kS/s, 16 analog inputs), Na-tional instruments, Munich.

A.3.7

Mylar-Foil: Goodfellow, 61213 Bad Nauheim.

A.3.8

Rotating anode source: J. Schneider Elektrotechnik GmbH, 77652 Oen-burg.

A.3.9

Image plate: Mar345, marresearch, 22850 Norderstedt.

A.3.10

NaDNA lm: No.of layers: 30, thickness of the lm: 0.651 mm.

Bibliography

[1] J. D. Watson and F. H. C. Crick, Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid, Nature, vol. 171, p. 737, 1953.

[2] S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, DNA-programmable nanoparticle crystallization, Nature, vol. 451, p. 553, 2008.

[3] A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J.

Loweth, M. P. Bruchez, and P. G. Schultz, Organization of 'nanocrys-tal molecules' using DNA, Nature, vol. 382, p. 609, 1996.

[4] K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, Specic enzymatic amplication of DNA invitro - the polymerase chain-reaction, Cold Spring Harbor Symposia on Quantitative Biol-ogy, vol. 51, p. 263, 1986.

[5] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. Claren-don Press, Oxford, 1986.

[6] O. Kratky and G. Porod, Röntgenuntersuchung gelöster Faden-moleküle, Recueil des Travaux Chimiques des Pays-Bas, vol. 68, p. 1106, 1949.

[7] J. F. Marco and E. D. Siggia, Stretching DNA, Macromulecules, vol. 28, p. 8759, 1995.

[8] C. Anselmi, P. DeSantis, and A. Scipioni, Nanoscale mechanical and dynamical properties of DNA single molecules, Biophysical Chem-istry, vol. 113, p. 209, 2005.

122

vol. 21, p. 1272, 1953.

[10] B. H. Zimm, Dynamics of polymer molecules in dilute solution - vis-coelasticity, ow birefringence and dielectric loss, Journal of Chem-ical Physics, vol. 24, p. 269, 1956.

[11] M. H. F. Wilkins, R. G. Gosling, and W. E. Seeds, Physical Studies of Nucleic Acid - Nucleic Acid - an Extensible Molecule?, Nature, vol. 167, p. 759, 1951.

[12] D. Smith, H. Babcock, and S. Chu, Single-polymer dynamics in steady shear ow, Science, vol. 283, p. 1724, 1999.

[13] P. Doyle, B. Ladoux, and J. L. Viovy, Dynamics of a tethered poly-mer in shear ow, Physical Review Letters, vol. 84, p. 4769, 2000.

[14] S. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science, vol. 271, p. 795, 1996.

[15] H. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. Mathies, and A. Glazer, Stable uorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: prop-erties and applications, Nucleic Acids Research, vol. 20, p. 2803, 1992.

[16] D. E. Smith, H. P. Babcock, and S. Chu, Single-polymer dynamics in steady shear ow, Science, vol. 283, p. 1724, 1999.

[17] S. T. Milner, Polymer Brushes, Science, vol. 251, p. 905, 1991.

[18] G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, Probing collective motions of terminally anchored polymers, Science, vol. 274, p. 2041, 1996.

123

ceedings of the Institution of Mechanical Engineers part J-Journal of Engineering Tribology, vol. 220, p. 691, 2006.

[20] J. Klein, E. Kumacheva, D. Mahalu, D. Perahia, and L. J. Fetters, Reduction of Frictional Forces between Solid-Surfaces Bearing Poly-mer Brushes, Nature, vol. 370, p. 634, 1994.

[21] J. Klein, D. Perahia, and S. Warburg, Forces between polymer-bearing surfaces undergoing shear, Nature, vol. 352, p. 143, 1991.

[22] N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, and J. Remacle, Comparison between dierent strategies of covalent attachment of DNA to glass surfaces to build DNA mi-croarrays, Analytical Biochemistry, vol. 280, p. 143, 2000.

[23] J. C. Meredith, Advances in combinatorial and high-throughput screening of biofunctional polymers for gene delivery, tissue engi-neering and anti-fouling coatings, Journal of Materials Chemistry, vol. 19(1), p. 34, 2009.

[24]

[25] K. R. Chaurasiya, T. Paramanathan, M. J. Mccauley, and M. C.

Williams, Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form., Physics of Life Re-views, vol. 7, p. 299, 2010.

[26] O. Krichevsky, DNA overstretched state: s-DNA form or force-induced melting ? comment on "biophysical characterization of DNA binding from single molecule force measurements" by mark c. williams et al., Physics of Life Reviews, vol. 7, p. 350, 2010.

[27] M. J. Mccauley, K. R. Chaurasiya, T. Paramanathan, I. Rouzina, and M. C. Williams, DNA stretching as a probe for nucleic acid interactions. reply to comments on "biophysical characterization of DNA binding from single molecule force measurements, Physics of Life Reviews, vol. 7, p. 358, 2010.

124

form., Physical Review E, vol. 83, p. 031903, 2011.

[29] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, DNA: An extensible molecule, Science, vol. 271, p. 792, 1996.

[30] M. C. Williams, I. Rouzina, and M. J. McCauley, Peeling back the mystery of DNA overstretching, Proceedings of the National Academy of Sciences of the United States of America, vol. 106, p. 18047, 2009.

[31] L. D. Landau and E. M. Lifschitz, Fluid Mechanics. Elsevier Butterworth-Heinemann, Amsterdam, 2008.

[32] K. Weissenberg, A continuum theory of rheological phenomena, Na-ture, vol. 159, p. 310, 1947.

[33] A. N. Glazer and H. Rye, Stable dye-DNA intercalation complexes as reagents for high-sensitivity uorescence detection, Nature, vol. 359, p. 859, 1992.

[34] J. D. Watson and F. H. C. Crick, Genetical implications of the struc-ture of deoxyribonucleic acid, Nastruc-ture, vol. 171, p. 964, 1953.

[35] http://en.wikipedia.org/wiki/dna,

[36] M. Adamuti-Trache, W. E. McMullen, and J. F. Douglas, Segmental concentration proles of end-tethered polymers with excluded-volume and surface interactions, Journal of Chemical Physics, vol. 105, p. 4798, 1996.

[37] R. Lehner, Confocal microscopy on uorescently labelled single DNA molecules and force-extension measurements on DNA carpets, Ph.D.

thesis, Konstanz, 2005.

[38] R. Lehner, J. Koota, G. Maret, and T. Gisler, Segment distributions of end-tethered polymers in a good solvent, Physical Review Letters, vol. 96, p. 107801, 2006.

125

persistence length and electrical polarisability of restriction fragments of DNA, Macromolecules, vol. 14, p. 410, 1981.

[40] P. J. Hagerman, Investigation of the exibility of DNA using tran-sient electric birefringence, Biopolymers, vol. 20, p. 1503, 1981.

[41] P. J. Hagerman, Flexibility of DNA, Annual Review of Biophysics and Biophysical Chemistry, vol. 17, p. 265, 1988.

[42] E. A. Dimarzio, Proper accounting of conformations of a polymer near a surface, Journal of Chemical Physics, vol. 42, p. 2101, 1965.

[43] D. E. Smith, T. T. Perkins, and S. Chu, Dynamical scaling of DNA diusion coecients, Macromolecules, vol. 29, p. 1372, 1996.

[44] T. T. Perkins, D. E. Smith, and S. Chu, Single polymer dynamics in an elongational ow, Science, vol. 276, p. 2016, 1997.

[45] D. E. Smith and S. Chu, Response of exible polymers to a sudden elongational ow, Science, vol. 281, p. 1335, 1998.

[46] K. Jo, Y. L. Chen, J. J. de Pablo, and D. C. Schwartz, Elongation and migration of single DNA molecules in microchannels using oscillatory shear ows, Lab on a Chip, vol. 9, p. 2348, 2009.

[47] S. Gerashchenko and V. Steinberg, Statistics of tumbling of a single polymer molecule in shear ow, Physical Review Letters, vol. 96, p. 038304, 2006.

[48] A. Puliato and K. Turitsyn, Numerical study of polymer tumbling in linear shear ows, Physica D-Nonlinear Phenomena , vol. 211, p. 9, 2005.

[49] R. D. Buscalioni, Cyclic motion of a grafted polymer under shear ow, Physical Review Letters, vol. 96, p. 088303, 2006.

[50] C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu, Char-acteristic periodic motion of polymers in shear ow, Physical Review Letters, vol. 95, p. 018301, 2005.

126

[52] Y. Zhang, A. Donev, T. Weisgraber, B. J. Alder, M. D. Graham, and J. J. de Pablo, Tethered DNA dynamics in shear ow, Journal of Chemical Physics, vol. 130, p. 234902, 2009.

[53] C. A. Lueth and E. S. G. Shaqfeh, Experimental and numerical studies of tethered DNA shear dynamics in the ow-gradient plane, Macromolecules, vol. 42, p. 9170, 2009.

[54] A. Onuki, Conjectures on elongation of a polymer in shear-ow, Journal of the Physical Society of Japan, vol. 54, p. 3656, 1985.

[55] P. G. De Gennes, Coil-stretch transition of dilute exible polymer un-der ultrahigh velocity-gradients, Journal of chemical physics, vol. 60, p. 5030, 1974.

[56] R. Knippers, Molekulare Genetik. Thieme, Stuttgart, 2001.

[57] F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, and G. B. Pe-tersen, Nucleotide sequence of bactriophage lambda DNA, Journal of Molecular Biology, vol. 162, p. 729, 1982.

[58] A. Andre, Force-induced structural transition in cross-linked de-oxyribonucleic acid lms, Ph.D. thesis, Konstanz, 2007.

[59] A. Sischka, A. Spiering, M. Khaksar, M. Laxa, J. Koenig, K.-J. Di-etz, and D. Anselmetti, Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers, Journal of Physics-Condensed Matter, vol. 22, p. 454121, 2010.

[60] L. Holland, The properties of glass surfaces, 2th ed. Chapman and Hall, London, 1996.

[61] J. Koota, Mechanical stretching and light scattering on DNA , Ph.D. thesis, Konstanz, 2006.

[62] R. M. Zimmermann and E. C. Cox, DNA stretching on functionalized gold surfaces, Nucleic Acids Research, vol. 22, p. 492, 1994.

127

Diego, 1996.

[64] http://www.invitrogen.com/site/us/en/home/support/product-technical-resources/product-spectra.3601dna.html,

[65] M. Born and E. Wolf, Principles of Optics. Pergamon Press, Oxford, 1993.

[66] E. B. Brown, Modern optics. Newyork, 1965.

[67] A. Schröder Institut Charles Sadron (ICS), CNRS, Strasbourg, France.

[68] T. Kreer, S. Metzger, M. Muller, K. Binder, and J. Baschnagel, Static properties of end-tethered polymers in good solution: A comparison between dierent models, Journal of Chemical Physics, vol. 120, p. 4012, 2004.

[69] Y. L. Chen, M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S. Doyle, Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels, Physical Review E, vol. 70, p. 060901, 2004.

[70] A. Balducci, C. Hsieh, and P. S. Doyle, Relaxation of stretched DNA in slitlike connement, Physical Review Letters, vol. 99, p. 238102, 2007.

[71] C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response, Macromolecules, vol. 40, p. 4250, 2007.

[72] J. L. White, Dynamics of viscoelastic uids, melt fracture, and the rheology of ber spinning., Journal of Applied Polymer Science, vol. 8, p. 2339, 1964.

[73] A. Sischka, K. Toensing, R. Eckel, S. D. Wilking, N. Sewald, R. Ros, and D. Anselemetti, Molecular mechanisms and kinetics between

128

[74] A. Galuschko, Molecular dynamics simulations of sheared polymer brushes, Ph.D. thesis, Strassbourg, 2010.

[75] M. Reiner, The deborah number., Physics Today, vol. 17(1), p. 62, 1964.

[76] A. B. Metzner, J. L. White, and M. M. Denn, Constitutive eqations for viscoelastic uids for short deformation periods and for rapidly changing ows: Signicance of the deborah number., Aiche Journal, vol. 12, p. 863, 1966.

[77] G. Marrucci and G. Astarita, Signicance of the deborah number in steady ows., Meccanica, vol. 2, p. 141, 1967.

[78] L. Holzer and W. Zimmermann, Particles held by springs in a linear shear ow exhibit oscillatory motion, Physical Review E, vol. 73, p. 060801, 2006.

[79] J. Rotne and S. Prager, Variational treatment of hydrodynamic in-teraction in polymers, Journal of Chemical Physics, vol. 50, p. 4831, 1969.

[80] T. protocol was obtained from Semra Oeztuerk in the group of Dr.

Thomas Pfohl at the Max Planck Institute for Dynamics and Self-Organization.

[81] N. Denkov, O. Velev, P. A. Kralchevsky, H. Ivanov, I. B. Yoshimura, and K. Nagayama, Mechanism of formation of two-dimensional crys-tals from latex particles on substrate, Langmuir, vol. 8, p. 3183, 1992.

[82] F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and p. Leiderer, Colloid monolayer lithography-a exible approach for nanostructuring of surfaces, Applied Surface Science, vol. 144-145, p. 461, 1999.

129

slides: A self-assembled monolayer approach, Advanced Materials, vol. 9, p. 426, 1997.

[84] R. Micheletto, H. Fukuda, and M. Ohtsu, A simple method for the production of a 2-dimensional, ordered array of small latex-particles , Langmuir, vol. 11, p. 3333, 1995.

[85] S. Smith, L. Finzi, and C. Bustamante, Direct mechanical measure-ments of the elasticity of single DNA molecules by using magnetic beads, Science, vol. 258, p. 1122, 1992.

[86] A. Lebrun and R. Lavery, Modelling extreme stretching of DNA, Nucleic Acids Research, vol. 24, p. 2260, 1996.

[87] J. Leger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, and J. F. Marko, Structural transitions of a twisted and stretched DNA molecule, Physical Review Letters, vol. 83, p. 1066, 1999.

[88] S. Cocco, J. Yan, J. F. Leger, D. Chatenay, and J. F. Marko, Over-stretching and force-driven strand separation of double-helix DNA, Physical Review E, vol. 70, p. 011910, 2004.

[89] H. Li and T. Gisler, Overstretching of a 30 bp DNA duplex stud-ied with steered molecular dynamics simulation: Eects of structural defects on structure and force-extension relation, European Physical Journal E, vol. 30, p. 325, 2009.

[90] C. Danilowicz, C. Limouse, K. Hatch, A. Conover, V. W. Coljee, N. Kleckner, and M. Prentiss, The structure of DNA overstretched from the 5` 5` ends diers from the structure of DNA overstretched from the 3` 3` ends, Proceedings of the National Academy of Sciences of the United States of America, vol. 106, p. 13196, 2009.

[91] I. Rouzina and V. A. Bloomeld, Force-induced melting of the DNA double helix. 2. eect of solution conditions, Biophysical Journal, vol. 80, p. 894, 2001.

130

eling the structure of DNA during overstretching by using multi-color, single-molecule uorescence imaging, Proceedings of the Na-tional Academy of Sciences of the United States of America, vol. 106, p. 18231, 2009.

[93] H. Fu, H. Chen, J. F. Marko, and J. Yan, Two distinct overstretched DNA states, Nucleic Acids Research, vol. 38, p. 5594, 2010.

[94] A. Rupprecht, A wet spinning method for preparing highly oriented DNA and some physico-chemical studies on the material. Ph.D. the-sis, Royal Institute of Technology (KTH)- Stockholm, 1970.

[95] T. Fischer, Herstellung und Charakterisierung von orientierten Desoxyribonukleinsäure-Filmen, Diplomarbeit, 2007.

[96] W. Fuller, T. Forsyth, and A. Mahendrasingam, Water-DNA interac-tions as studied by x-ray and neutron bre diraction, Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences , vol. 359, p. 1237, 2004.

[97] R. E. Franklin and R. G. Gosling, The structure of sodium thymonu-cleate bers .1. The inuence of water content, Acta Crystallograph-ica, vol. 6, p. 673, 1953.

[98] W. Saenger, Principles of nucleic acid structure. Springer, New York, Berlin, Heidelberg, Tokyo, 1984.

131

I would like to thank all people who supported me in one or the other way during the preparation of my thesis.

First of all I would like to thank Prof. Dr. Georg Maret to give me the opportunity to work in his group. He also spent considerable time to discuss the results with me and supported me a lot in practical ways in the nal stages of the preparation of this thesis.

PD Dr. Thomas Gisler provided me with the main subjects and tasks for my thesis. He always contributed new ideas, helped me to understand various aspects in the analysis of my data and gave me room to try out something new. He often pointed out to me new ways to compare my experimental data with results from the literature.

Prof. Dr. Fuchs very kindly was always ready for discussions about the theory behind my experiments. I thank him very much to spend so much of his time with somebody who was not a member of his group.

I thank Prof. Dr. Welte for allowing me to perform the experiments described in Chapter 4 in his x-ray laboratory.

Dipl. Phys. Mattias Hagner helped me with electron beam lithography patterning of gold lms.

It was always a pleasure to work in the group of Professor Maret and enjoy the friendly people there. In particular, Dr. Alexander Andre assisted me in x-ray measurements and NaDNA lm preparation and discussed the results of my experiments with me. Dipl. Phys. Wolfgang Bührer was always willing to solve computer and internet connection problems for me and helped in many other ways. Dipl. Phys. Markus Ninck helped in last steps of submission of the dissertation.

Ina Seuert, Ansgar Fischer, Christian Ortolf, Hans Ballot and Peter Seige helped me with many technical issues and I would like to thank all of them for their time and eorts. I also thank the mechanical workshop of the University of Konstanz for manufacturing mechanical parts and glassware for my experiments.

Semra Oeztuerk at Max-Planck Institute for Dynamics and

Self-132

Sabine Lucas was tireless to do paper work, organize workshops, plan ahead attendance of conferences, assist in the application for scholarships, and make up for my still incomplete knowledge of German. Many, many thanks, Sabine. Doris Drexler was always patient and with her kind smile willing to help me in many kinds of paper work.

I thank "Deutsche Forschungsgemeinschaft" for a scholarship in the framework of "Graduiertenkolleg Soft Condensed Matter", "Ausschuss für Forschungsfragen", University of Konstanz, for nancial support,

"Gleichstellungsrat", University of Konstanz, for a scholarship ("Brück-enstipendium"), and the German-French University for nancial support.

I would like to thank my friends:

M.Sc. Leila Farnad, Dr. Balbine Amoussou, M.Sc. Nava schulmann, Dr.

Larysa Baraban and Dr. Wellington Gomes-Dantas for their kind help and support during my doctoral work.

I thank my (passed away) teacher Dr. Habib Taghizade, for his kind advices, encouragement, and for his helps.

I thank my family for their patience and support during these years.

133