• Keine Ergebnisse gefunden

a) b)

Figure A.2: Schematic to explain the COLC. a shows an Ewald sphere intersecting a two dimensional reciprocal lattice with reciprocal basis vectors a1 and a2. The two dimensional crystal is oriented in a low indexed ZA. The reciprocal lattice does not consist of points but of reciprocal lattice rods (relrods) due to the finite size of the TEM specimen.

The incident electron beam with wave vector k0 and one scattered wave vector k is shown.

The Ewald sphere intersects relrods of the zero order Laue zone (ZOLZ) (lower row), and one relrod of the first order Laue zone (FOLZ) (upper row), giving rise to reflections gh0

and g71 in the diffraction pattern with intensities as schematically indicated by the size of the black circles at the bottom of the image (not all reflections are labeled). In b the crystal is tilted. Now the Ewald sphere intersects the relrods corresponding to g00 and g40 in their centres, i. e. the excitation error is zero in both cases. In three dimensions, the intersection of the Ewald sphere and the ZOLZ is described by a circle, whose centre is called centre of Laue circle (COLC). The COLC corresponding to this two dimensional example is g20 and is indicated by the cross in b.

Fourier transform, Dirac’s delta function, and convolution

The Fourier transform of a function f is defined as Frkf(r) = f˜(k) =

Z

r

e2πi k·rf(r)d r . (B.1)

The inverse Fourier transform is given by Fk1rf˜(k) =

Z

k

e2πi k·rf(˜ k)d k . (B.2)

Hence it is obtained

Fk1rFrkf(r) = f(r) . (B.3)

The convolution of a function f(r) with a function g(r) is given by f(r)⊗g(r) =

Z

r

f(r)g(r − r)d r . (B.4)

The following relations are found:

multiplication theorem Frk[f(r)g(r)] = [Frkf(r)]⊗[Frkg(r)] (B.5)

and (B.6)

convolution theorem Frk[f(r)⊗g(r)] = [Frkf(r)][Frkg(r)] . (B.7) 141

The Dirac δ function is defined by its properties

δ(r − r0) = 0 for r 6= r0 and (B.8)

r2

Z

r1

δ(r− r0)f(r)d r = f(r0) for r0 ∈[r1, r2] . (B.9)

Important relations concerning the δ-function are

Frkδ(r) = 1 , (B.10)

Frkδ(r − r0) = e2πi k·r0 , (B.11)

Fk1rδ(k − k0) = e2πi k0·r , (B.12)

δ(a r) = 1

|a|δ(r) , and (B.13)

f(r)δ(r − r0) = f(r0)δ(r − r0) . (B.14)

Fit functions

The used fit functions with fit parameters ai and bi for the averaged projected displace-ments and normalised local distances were chosen as they result in a good reproduction of the experimental values. There is no physical model for them. For fitting the projected displacementsu in [0002] (fringe numbern), the following fit function was used (InGaN in area n > a0):

u =















−(a1+ 0.5a2(a3 ∗(a0−n)+

+a3(a0−n)erf(−a3(a0−n))−ea23(a0n)2π1 for n ≤ a0

−(a1+ 0.5a2(a3 ∗(a0−n)+

+a3(a0−n)erf(−a3(a0−n))−ea23(a0n)2π1 + +a4(a0−n)2+a5(a0−n)3+a6ea7(a0n)+a8

for n > a0

. (C.1)

For the fit of the normalised local (1100) distances, the fit function was d1100(x)

d1100(0) =

b1erf(b2(n−b0)) for n ≤ b0

b1erf(b2(n−b0)) +b3+a4eb5(nb0) for n > b0 . (C.2)

143

List of island samples

To study the InxGa1xN islands, various samples were analysed for this work. The im-portant growth parameters are given in chapter 5, as soon as the samples are introduced.

Nevertheless, all island samples are listed here to allow a better overview to the reader.

For the “InxGa1xN sample series with QD like PL”, schematic sketches are displayed.

Detailed information about the individual samples can be found in chapter 5. In the fol-lowing, Tg denotes the growth temperature of the InxGa1xN or of the GaN cap layer and tg is the duration of InGaN growth. In addition, the nominal GaN cap layer thicknesses are given for the MBE samples.

Analysed island samples grown by MBE

sample Tg(InxGa1xN ) tg(InxGa1xN ) In+InGa Tg(GaN, cap) nom. cap layer

no. [C] [s] flux ratio [C] thickness [nm]

n0921 450 90 0.5 − − − − − −

n0944 450 110 0.5 450 40

n1018 510 70 0.7 − − − − − −

n1023 510 70 0.7 510 2

n1021 510 70 0.7 510 8

The samples n0921 and n0944, where the InxGa1xN was grown at 450C, are refered to as

“low temperature series”. MBE samples grown at 510C belong to the “high temperature series”.

145

Samples with geometric InGaN islands grown by MOVPE sample Tg(InxGa1xN ) tg(InxGa1xN ) In+InGa Tg(GaN, cap) sample

no. [C] [s] ratio [C] series

g0509-6 600 100 0.848 − − −

g0538 780 75 0.848 − − − C1

g0540 780 250 0.848 − − −

g0622 600 22 0.736 − − −

g0623 600 33 0.736 − − − C2

g0652 600 17 0.582 − − −

g0653 600 35 0.582 − − −

g0654 600 52 0.582 − − − C3

g0690 600 52 0.582 820

MOVPE grown InxGa1xN sample series with QD like PL

g0770 g0768

a) b)

g0769 g0764

c) d)

For the InxGa1xN sample series with QD like PL, the hatched areas in the above figure correspond to material grown at Tg = 700C, whereas the GaN cap layers marked in grey are grown at 820C. For each sample the sample number is given above the sketch.

The nominal In concentrations and layer thicknesses are displayed. The two different InxGa1xN layers were grown using an In+InGa ratio of 0.736 and 0.218, resulting in nominal In concentration of 0.4 and 0.1, respectively.

2.1 Wurtzite and sphalerite unit cells . . . 6 2.2 Derivation of binodal and spinodal curves from Gibbs free energy G . . . . 9 2.3 Binodal and spinodal curves for InxGa1xN . . . 10 2.4 Bandgap energies of InxGa1xN . . . 12 2.5 Band alignment and influence of piezoelectric effect . . . 12 2.6 Density of states for bulk material, QW and QD . . . 13 2.7 MOVPE reactor . . . 15 2.8 MBE chamber . . . 16 2.9 Growth modes of epitaxial films . . . 17 3.1 Electron scattering at a single atom . . . 21 3.2 Atomic electron scattering amplitudes . . . 23 3.3 Electron scattering at a periodic lattice . . . 24 3.4 Normalised beam intensities for GaN . . . 28 3.5 Image formation . . . 30 3.6 Aberration functionχ(k) . . . 32 3.7 Effect of spatial and temporal incoherence envelope functions . . . 35 3.8 Projected displacements . . . 36 3.9 Indium concentration in dependence of c lattice spacing for different states

of strain relaxation . . . 41 3.10 Optimum imaging condition for 0002 fringe images (h1100i ZA orientation,

0.00≤x≤1.00) . . . 47 3.11 Optimum imaging condition for 0002 fringe images (h1120i ZA orientation,

0.00≤x≤1.00) . . . 48 147

3.12 Optimum imaging condition for 0002 fringe images (h1100i ZA orientation, 0.00≤x≤0.40) . . . 49 3.13 Optimum imaging condition for 0002 fringe images (h1120i ZA orientation,

0.00≤x≤0.40) . . . 50 3.14 Optimum imaging condition for 1100 fringe images . . . 51 3.15 Absolute error of x due to specimen thickness variations . . . 53 3.16 Elastic relaxation of a thin TEM specimen . . . 54 3.17 Indium concentration in dependence of clattice spacing for different sets of

elastic constants . . . 55 3.18 Intensity difference between 0002 and 0002 beams of wurtzite GaN . . . . 58 4.1 Schematic of a pyramidal defect . . . 60 4.2 Antibixbyite structure . . . 61 4.3 STEM images of PDs . . . 63 4.4 EDS of a PD . . . 64 4.5 HRTEM image of a single PD . . . 65 4.6 Diffractogram of amorphous material . . . 66 4.7 Simulated HRTEM images in comparison to the basal plane IDB of a PD . 68 5.1 AFM and SEM images of InGaN surfaces before and after etching . . . 83 5.2 HRTEM image of a droplet . . . 84 5.3 EDS linescan of a droplet . . . 84 5.4 Topography of sample n0921 . . . 87 5.5 TEM overview of n0921 . . . 87 5.6 Islands types of n0921 . . . 88 5.7 Averaged projected displacement of a wurtzite island of n0921 . . . 89 5.8 0002 WBDF image of sample n0944 . . . 90 5.9 Analysis of high resultion images of n0944 . . . 91 5.10 Experimental segregation profile of n0944 . . . 92 5.11 Strained epitaxial layer . . . 94 5.12 Topography of sample n1018 . . . 97 5.13 TEM overview of n1018 . . . 97

5.14 Z-contrast image of n1018 . . . 98 5.15 TEM overview image of sample n1023 . . . 98 5.16 Averaged projected displacements of n1023 in between islands . . . 99 5.17 HRTEM image and map of strain of sample n1021 . . . 100 5.18 Z-contrast image of n1021 . . . 101 5.19 SEM image of sample g0509-6 . . . 104 5.20 0002 WBDF image of g0509-6 . . . 105 5.21 SAD pattern of g0509-6 . . . 105 5.22 0002 fringe image of sample g0622 . . . 107 5.23 Averaged projected displacements along [0001] in the centre of one island of

g0622 . . . 107 5.24 HRTEM image in h1120i ZA orientation of sample g0623 . . . 109 5.25 In concentration evaluation from 0002 fringe image for g0623 . . . 109 5.26 SEM image of sample g0652 . . . 112 5.27 HRTEM overview image of g0652 . . . 112 5.28 SEM image of sample g0653 . . . 113 5.29 HRTEM overview image of g0653 . . . 113 5.30 SEM image of sample g0654 . . . 114 5.31 HRTEM overview image of g0654 . . . 114 5.32 Bright field TEM image of sample g0690 . . . 115 5.33 Comparison of the C3 sample series . . . 116 5.34 Schematic structure of sample g0770 . . . 118 5.35 Cross sectional TEM overview image of sample g0770 . . . 119 5.36 In concentration profile and Z-contrast image of g0770 . . . 120 5.37 Schematic structure of samples g0768, g0769, and g0764 . . . 120 5.38 Cross sectional TEM overview image of sample g0768 . . . 121 5.39 TEM overview images of g0769 and g0764 . . . 121 5.40 Averaged In concentration profiles of sample g0769 and g0764 . . . 122 5.41 In concentration of one island of g0622 . . . 126 5.42 Focus variation image reconstruction of g0654 . . . 128

5.43 In concentration map for an island of g0654 . . . 129 5.44 In concentration profile along [0001] within one island of g0654 . . . 130 A.1 Planes in a hexagonal unit cell . . . 139 A.2 Centre of Laue circle . . . 140

2.1 Material parameters . . . 7 2.2 Precursors for MOVPE . . . 14 3.1 Defocus values for delocalisation free two beam imaging . . . 33 5.1 Island samples grown with MBE . . . 86 5.2 Samples with geometric InGaN islands grown by MOVPE . . . 104 5.3 In concentration measured along [0001] within the centre of islands of g0622 108 5.4 WL thickness of uncapped samples of the C3 series . . . 116 5.5 Muraki fit parameters for g0769 and g0764 . . . 122 A.1 Physical constants . . . 137 A.2 Vacuum classification . . . 137 A.3 Notation for directions, planes, and reflections . . . 138

151

[1] S. Nakamura, S. Pearton, and G. Fasol.The blue laser diode - The complete story. Springer, Berlin, 2nd edition, 2000.

[2] J. H. Edgar, editor. Properties of group III nitrides. Number 11 in EMIS Datareviews Series. INSPEC, the Institution of Electrical Engineers, London, United Kingdom, 1994.

[3] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. san Miguel, I. Grzegory, and A. Polian.

Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure.

Physical Review B, 45(1), 83–89, 1992.

[4] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura. Stability of the wurtzite-type structure under high pressure: GaN and InN. Physical Review B, 49(1), 14–21, 1994.

[5] P. Villars and L. D. Calvert. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, vol. 3. American Society for Metals, Ohio, 1985.

[6] Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov, and M. A. O’Keefe. Defects in p-doped bulk GaN crystals grown with Ga polarity. Journal of Crystal Growth,281, 125–134, 2005.

[7] J. E. Northrup, J. Neugebauer, R. M. Feenstra, and A. R. Smith. Structure of GaN(0001):

The laterally contracted Ga bilayer model. Physical Review B,61(15), 9932–9935, 2000.

[8] M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon, and T. S. Cheng. Lattice parameters of gallium nitride. Applied Physics Letters,69(1), 73–75, 1996.

[9] L. Vegard. Die Konstitution der Mischkristalle und die Raumf¨ullung der Atome. Zeitschrift f¨ur Physik,5, 17–26, 1921.

[10] W. Paszkowicz, J. Adamczyk, S. Krukowski, M. Leszczy´nski, S. Porowski, J. A. Soko lowski, M. Michalec, and W. Lasocha. Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium. Philosophical Magazine A, 79(5), 1145–1154, 1999.

[11] A. F. Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics, 82(6), 2833–2839, 1997.

153

[12] A. P. Lima, A. Tabata, J. R. Leite, S. Kaiser, D. Schikora, B. Sch¨ottker, T. Frey, D. J.

As, and K. Lischka. Growth of cubic InN on InAs(001) by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,201/202, 396–398, 1999.

[13] M. B. Kanoun, A. E. Merad, G. Merad, J. Cibert, and H. Aourag. Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN. Solid-State Electronics, 48, 1601–1606, 2004.

[14] L. Liu and J. H. Edgar. Substrates for gallium nitride epitaxy. Materials Science and Engineering Reports, 37(3), 61–127, 2002.

[15] I.-H. Ho and G. B. Stringfellow. Solid phase immiscibility in GaInN. Applied Physics Letters, 69(18), 2701–2703, 1996.

[16] I.-H. Ho and G. B. Stringfellow. Solubility of nitrogen in binary III-V systems. Journal of Crystal Growth, 178, 1–7, 1997.

[17] S. Y. Karpov.Suppression of phase separation in InGaN due to elastic strain. MRS Internet Journal of Nitride Semiconductor Research, 3, 16–1–16–5, 1998.

[18] G. Gottstein. Physikalische Grundlagen der Materialkunde. Springer, Berlin, 1998.

[19] C. G. van de Walle, C. Stampfl, and J. Neugebauer. Theory of doping and defects in III-V nitrides. Journal of Crystal Growth, 189/190, 505–510, 1998.

[20] C. G. van de Walle and J. Neugebauer. First-principles calculations for defects and impu-rities: Applications to III-nitrides. Journal of Applied Physics,95(8), 3851–3879, 2004.

[21] J. K. Sheu and G. C. Chi. The doping process and dopant characteristics of GaN. Journal of Physics: Condensed Matter, 14, R657–R702, 2002.

[22] Z. Liliental-Weber, S. Ruvimov, T. Suski, J. W. Ager III, W. Swider, Y. Chen, C. Kisielowski, J. Washburn, I. Akasaki, H. Amano, C. Kuo, and W. Imler. Effect of Si doping on the structure of GaN. Materials Research Society Symposium Proceedings, 423, 487–493, 1996.

[23] T. Nakamura, S. Mochizuki, S. Terao, T. Sano, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki. Structural analysis of Si-doped AlGaN/GaN multi-quantum wells. Journal of Crystal Growth, 237-239, 1129–1132, 2002.

[24] T. Schmidt, M. Siebert, J. I. Flege, S. Gangopadhyay, A. Pretorius, R. Kr¨oger, S. Figge, L. Gregoratti, A. Barinov, D. Hommel, and J. Falta. Surface segregation of Si and Mg dopants in MOVPE grown GaN films revealed by x-ray photoemission spectro-microscopy.

physica status solidi (c), 3(6), 1725–1728, 2006.

[25] T. Schmidt, M. Siebert, A. Pretorius, S. Gangopadhyay, S. Figge, J. I. Flege, L. Gregoratti, A. Barinov, D. Hommel, and J. Falta. Spectro-microscopy of Si doped GaN films. Nuclear Instruments and Methods in Physics Research B, 246, 79–84, 2006.

[26] J. Neugebauer and C. G. van de Walle. Chemical trends for acceptor impurities in GaN.

Journal of Applied Physics, 85(5), 3003–3005, 1999.

[27] T. S. Cheng, S. V. Novikov, C. T. Foxon, and J. W. Orton. Mechanisms of magnesium in-corporation into GaN layers grown by molecular beam epitaxy. Solid State Communications, 109, 439–443, 1999.

[28] Z. Liliental-Weber, M. Benamara, W. Swider, J. Washburn, I. Grzegory, S. Porowski, R. D.

Dupuis, and C. J. Eiting.Mg segregation difficulties of p-doping in GaN. Materials Research Society Symposium Proceedings, 595, W9.7.1–W9.7.6, 2000.

[29] S. Figge, R. Kr¨oger, T. B¨ottcher, P. Ryder, and D. Hommel. Pyramidal defect formation in view of magnesium segregation. physica status solidi (a),192(2), 456–460, 2002.

[30] S. Figge, R. Kr¨oger, T. B¨ottcher, P. L. Ryder, and D. Hommel. Magnesium segregation and the formation of pyramidal defects in p-GaN. Applied Physics Letters,81(25), 4748–4750, 2002.

[31] Z. Liliental-Weber, M. Benamara, J. Washburn, I. Grzegory, and S. Porowski. Spontaneous ordering in bulk GaN:Mg samples. Physical Review Letters, 83(12), 2370–2373, 1999.

[32] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 89(11), 5815–5875, 2001.

[33] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff.

Small band gap bowing in In1xGa−xN alloys. Applied Physics Letters,80(25), 4741–4743, 2002.

[34] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto. Optical bandgap energy of wurtzite InN. Applied Physics Letters,81(7), 1246–1248, 2002.

[35] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A.

Vekshin, F. Bechstedt, J. Furthm¨uller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller. Band gap of hexagonal InN and InGaN alloys. physica status solidi (b),234(3), 787–795, 2002.

[36] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthm¨uller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller. Band gap of InN and In-rich InxGa1xN alloys (0.36< x <1).

physica status solidi (b), 230(2), R4–R6, 2002.

[37] Y. Ishitani, H. Masuyama, W. Terashima, M. Yoshitani, N. Hashimoto, S. B. Che, and A. Yoshikawa. Bandgap energy of InN and its temperature dependence. physica status solidi (c), 2(7), 2276–2280, 2005.

[38] A. Klochikhin, V. Davydov, V. Emtsev, A. Sakharov, V. Kapitonov, B. Andreev, H. Lu, and W. J. Schaff. Photoluminescence of n-InN with low electron concentrations. physica status solidi (a), 203(1), 50–58, 2006.

[39] E. Valcheva, S. Alexandrova, S. Dimitrov, H. Lu, and W. J. Schaff. Recombination processes with and without momentum conservation in degenerate InN. physica status solidi (a), 203(1), 75–79, 2006.

[40] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J.

Scaff. Universal bandgap bowing in group-III nitride alloys. Solid State Communications, 127(6), 411–414, 2003.

[41] I. Vurgaftman and J. R. Meyer. Band parameters for nitrogen-containing semiconductors.

Journal of Applied Physics, 94(6), 3675–3696, 2003.

[42] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34(1), 149–154, 1967.

[43] W. W. Chow and S. W. Koch. Semiconductor-laser fundamentals - Physics of Gain Mate-rials. Springer, Berlin, 1999.

[44] D. Bimberg, M. Grundmann, and N. N. Ledentsov. Quantum dot heterostructures. John Wiley & Sons, Chichester, 1999.

[45] T. B¨ottcher. Heteroepitaxy of group-III-nitrides for the application in laser diodes. PhD thesis, Universit¨at Bremen, 2002.

[46] J. E. Mahan, K. M. Geib, G. Y. Robinson, and R. G. Long.A review of the geometrical fun-damentals of reflection high-energy electron diffraction with application to silicon surfaces.

Journal of Vacuum Science and Technology A, 8(5), 3692–3700, 1990.

[47] E. Bauer and J. H. van der Merwe. Structure and growth of crystalline superlattices: From monolayer to superlattice. Physical Review B,33(6), 3657–3671, 1986.

[48] E. Bauer.Ph¨anomenologische Theorie der Kristallabscheidung an Oberfl¨achen. I. Zeitschrift f¨ur Kristallographie,110(5-6), 372–394, 1958.

[49] R. Hull and J. C. Bean. Misfit dislocations in lattice-mismatched epitaxial films. Critical Reviews in Solid State and Materials Sciences, 17(6), 507–546, 1992.

[50] I. N. Stranski and L. Krastanow. Zur Theorie der orientierten Ausscheidung von Io-nenkristallen aufeinander. Akademie der Wissenschaften Wien Klasse IIb, 146, 797–810, 1938.

[51] M. Volmer and A. Weber. Keimbildung in ¨ubers¨attigten Gebilden. Zeitschrift f¨ur Physika-lische Chemie, 119, 277–301, 1926.

[52] P. W. Hawkes and E. Kasper.Wave optics, vol.3ofPrinciples of electron optics. Academic Press, London, 1994.

[53] A. Rosenauer.Transmission electron microscopy of semiconductor nanostructures: Analysis of composition and strain state. Springer, Berlin, 2003.

[54] P. A. Doyle and P. S. Turner.Relativistic Hartree-Fock X-ray and electron scattering factors.

Acta Crystallographica A, 24, 390–397, 1968.

[55] P. G. Self, M. A. O’Keefe, P. R. Buseck, and A. E. C. Spargo. Practical computation of amplitudes and phases in electron diffraction. Ultramicroscopy, 11, 35–52, 1983.

[56] M. de Graef. Introduction to conventional transmission electron microscopy. Cambridge University Press, Cambridge, 2002.

[57] P. A. Stadelmann. EMS - A software package for electron diffraction analysis and HREM image simulation in material science. Ultramicroscopy,21, 131–146, 1987.

[58] A. Rosenauer, S. Kaiser, T. Reisinger, J. Zweck, and W. Gebhardt. Digital analysis of high resolution transmission electron microscopy lattice images. Optik,102(2), 63–69, 1996.

[59] A. Rosenauer, D. Gerthsen, and V. Potin. Strain state analysis of InGaN/GaN - sources of error and optimized imaging conditions. physica status solidi (a),203(1), 176–184, 2006.

[60] A. Rosenauer and D. Gerthsen. Optimum imaging conditions for strain state analysis of InGaN/GaN heterostructures. Proceedings of the 13th European Microscopy Congress, Antwerp, Belgium,August 22-27, 1, 103–104, 2004.

[61] T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys.

Analysis of InGaN/GaN single quantum wells by X-ray scattering and transmission electron microscopy. physica status solidi (b), 240(2), 297–300, 2003.

[62] T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys.

Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detec-tion in the transmission electron microscope. Applied Physics Letters, 83(26), 5419–5421, 2003.

[63] T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter, L. Reißmann, and D. Bimberg.

Indium redistribution in an InGaN quantum well induced by electron-beam irradiation in a transmission electron microscope. Applied Physics Letters, 86, 241911–1–241911–3, 2005.

[64] K. A. Mkhoyan and J. Silcox. Electron-beam-induced damage in wurtzite InN. Applied Physics Letters, 82(6), 859–861, 2003.

[65] T. J. Eustis and J. Silcox. Electron beam induced damage of GaN and changes in EELS.

Microscopy and Microanalysis, 5, 642–643, 1999.

[66] J. P. O’Neill, I. M. Ross, A. G. Cullis, T. Wang, and P. J. Parbrook. Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells. Applied Physics Letters,83(10), 1965–

1967, 2003.

[67] J. P. O’Neill, I. M. Ross, A. G. Cullis, T. Wang, and P. J. Parbrook. Nano-clustering anomalies in InGaN/GaN multiple quantum well structures. Institute of Physics Conference Series,180, 297–300, 2003.

[68] T. Bartel, J. R. Jinschek, B. Freitag, P. Specht, and C. Kisielowski. Quantitative electron microscopy of InN−GaN alloys. physica status solidi (a),203(1), 167–175, 2006.

[69] K. Kim, R. L. Lambrecht, and B. Segall. Electronic structure of GaN with strain and phonon distortions. Physical Review B, 50(3), 1502–1505, 1994.

[70] Y. Takagi, M. Ahart, T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura.Brillouin scattering study in the GaN epitaxial layer. Physica B, 219/220, 547–549, 1996.

[71] A. Polian, M. Grimsditch, and I. Grzegory. Journal of Applied Physics, 79, 3343–3344, 1996.

[72] R. B. Schwarz, K. Khachaturyan, and E. R. Weber. Elastic moduli of gallium nitride.

Applied Physics Letters, 70(9), 1122–1124, 1997.

[73] T. Azuhata, T. Sota, and K. Suzuki. Elastic constants of III-V compound semiconductors:

modification of Keyes’ relation. Journal of Physics: Condensed Matter,8, 3111–3119, 1996.

[74] K. Kim, W. R. L. Lambrecht, and B. Segall. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Physical Review B, 53(24), 16310–16326, 1996.

[75] J. A. Chisholm, D. W. Lewis, and P. D. Bristowe. Classical simulations of the properties of group-III nitrides. Journal of Physics: Condensed Matter, 11, L235–L239, 1999.

[76] M. G. Friedel. Sur les sym´etries cristallines que peut r´ev´eler la diffraction des rayons R¨ontgen. Comptes Rendus Hebdomadaires des S´eances de l’Acad´emie des Sciences, 157, 1533–1536, 1913.

[77] W. Mader and A. Reˇcnik. Determination of crystal polarity by electron diffraction from thin crystals. physica status solidi (a),166, 381–395, 1998.

[78] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki. p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Japanese Journal of Applied Physics,28(12), L2112–L2114, 1989.

[79] H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki. Growth and luminescence properties of Mg-doped GaN prepared by MOVPE. Journal of the Electrochemical Society, 137(5), 1639–1641, 1990.

[80] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa. Thermal annealing effects on p-type Mg-doped GaN films. Japanese Journal of Applied Physics,31, L139–L142, 1992.

[81] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai. Hole compensation mechansim of p-type GaN films. Japanese Journal of Applied Physics, 31, 1258–1266, 1992.

[82] J. Neugebauer and C. G. van de Walle.Role of hydrogen in doping of GaN. Applied Physics Letters, 68(13), 1829–1831, 1996.

[83] C. G. van de Walle and J. Neugebauer. Theory of point defects and interfaces. Materials Research Society Symposium Proceedings, 449, 861–870, 1997.

[84] A. J. Ptak, T. H. Myers, L. T. Romano, C. G. van de Walle, and J. E. Northrup.Magnesium incorporation in GaN grown by molecular-beam epitaxy. Applied Physics Letters, 78(3), 285–287, 2001.

[85] S. Figge. GaN-basierte Laserdioden - Epitaxie und Simulation. PhD thesis, Universit¨at Bremen, 2003.

[86] I. P. Smorchkova, E. Haus, B. Heying, P. Kozodoy, P. Fini, J. P. Ibbetson, S. Keller, S. P.

DenBaars, J. S. Speck, and U. K. Mishra. Mg doping of GaN layers grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 76(6), 718–720, 2000.

[87] D. P. Bour, H. F. Chung, W. G¨otz, L. Romano, B. S. Krusor, D. Hofstetter, S. Rudaz, C. P. Kuo, F. A. Ponce, N. M. Johnson, M. G. Craford, and R. D. Bringans. Characteriza-tion of OMVPE-grown AlGaInN heterostructures. Materials Research Society Symposium Proceedings, 449, 509–518, 1997.

[88] M. D. McCluskey, L. T. Romano, B. S. Krusor, and N. M. Johnson. Interdiffusion of In and Ga in InGaN quantum wells. Applied Physics Letters,73(9), 1281–1283, 1998.

[89] C. H. Seager, S. M. Myers, G. A. Petersen, J. Han, and T. Headley. Infrared and transmis-sion electron microscopy studies of ion-implanted H in GaN. Journal of Applied Physics, 85(5), 2568–2573, 1999.

[90] S. M. Myers, J. Han, T. J. Headley, C. R. Hills, G. A. Petersen, C. H. Seager, and W. R.

Wampler. Ion-implanted hydrogen in gallium nitride. Nuclear Instruments and Methods in Physics Research B, 148, 386–390, 1999.

[91] Z. Liliental-Weber, M. Benamara, W. Swider, J. Washburn, I. Grzegory, S. Porowski, D. J. H. Lambert, C. J. Eiting, and R. D. Dupuis. Mg-doped GaN: Similar defects in bulk crystals and layers grown on Al2O3 by metal-organic chemical-vapor deposition. Applied Physics Letters, 75(26), 4159–4161, 1999.

[92] P. Venn´egu`es, M. Leroux, S. Dalmasso, M. Benaissa, P. de Mierry, P. Lorenzini, B. Dami-lano, B. Beaumont, J. Massies, and P. Gibart. Atomic structure of pyramidal defects in Mg-doped GaN. Physical Review B,68, 235214–1–235214–8, 2003.

[93] P. Venn´egu`es, M. Benaissa, B. Beaumont, E. Feltin, P. de Mierry, S. Dalmasso, M. Leroux, and P. Gibart. Pyramidal defects in metalorganic vapor phase epitaxial Mg doped GaN.

Applied Physics Letters, 77(6), 880–882, 2000.

[94] M. Hansen, L. F. Chen, J. S. Speck, and S. P. DenBaars.Observation of Mg-rich precipitates in the p-type doping of GaN-based laser diodes. physica status solidi (b), 228(2), 353–356, 2001.

[95] M. Hansen, L. F. Chen, S. H. Lim, S. P. DenBaars, and J. S. Speck. Mg-rich precipitates in the p-type doping of InGaN-based laser diodes. Applied Physics Letters,80(14), 2469–2471, 2002.

[96] J. David, Y. Laurent, and J. Lang. Etude structurale de Mg´ 3N2. Bulletin de la Soci´et´e fran¸caise de Min´eralogie et de Cristallographie, 94, 340–346, 1971.

[97] D. E. Partin, D. J. Williams, and M. O’Keeffe. The crystal structures of Mg3N2 and Zn3N2. Journal of Solid State Chemistry, 132, 56–59, 1997.

[98] C. M. Fang, R. A. de Groot, R. J. Bruls, H. T. Hintzen, and G. de With. Ab initio band structure calculations of Mg3N2 and MgSiN2. Journal of Physics: Condensed Matter, 11, 4833–4842, 1999.

[99] E. Orhan, S. Jobic, R. Brec, R. Marchand, and J.-Y. Saillard. Binary nitridesα-M3N2 (M

= Be, Mg, Ca): a theoretical study. Journal of Materials Chemistry, 12, 2475–2479, 2002.

[100] Z. Liliental-Weber, M. Benamara, W. Swider, J. Washburn, I. Grzegory, S. Porowski, R. D.

Dupuis, and C. J. Eiting. Ordering in bulk GaN: Mg samples: defects caused by Mg doping.

Physica B, 273/274, 124–129, 1999.

[101] Z. Liliental-Weber, J. Jasinski, M. Benamara, I. Grzegory, S. Porowski, D. J. H. Lampert, C. J. Eiting, and R. D. Dupuis. Influence of dopants on defect formation in GaN. physica status solidi (b), 228(2), 345–352, 2001.

[102] Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov, J. Jasinski, M. A. O’Keefe, S. Hautakan-gas, A. Laakso, and K. Saarinen. Atomic structure of defects in GaN:Mg grown with Ga polarity. Materials Research Society Symposium Proceedings, 798, 711–722, 2004.

[103] Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov, J. Jasinski, and M. A. O’Keefe. Atomic structure of defects in GaN:Mg grown with Ga polarity. Physical Review Letters, 93(20), 206102–1–206102–4, 2004.

[104] Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov, M. O’Keefe, S. Hautakangas, K. Saari-nen, J. A. Freitas, and R. L. Henry. Atomic structure of pyramidal defects in GaN:Mg;

Influence of annealing. physica status solidi (a),203(7), 1636–1640, 2006.

[105] M. Benaissa, P. Venn´egu`es, B. Beaumont, P. Gibart, W. Saikaly, and A. Charai. Electron energy-loss spectroscopy characterization of pyramidal defects in metalorganic vapor-phase epitaxy Mg-doped GaN thin films. Applied Physics Letters,77(14), 2115–2117, 2000.

[106] D. Kapolnek, R. D. Underwood, B. P. Keller, S. Keller, S. P. Denbaars, and U. K. Mishra.

Selective area epitaxy of GaN for electron field emission devices. Journal of Crystal Growth, 170, 340–343, 1997.

[107] D. Kapolnek, S. Keller, R. D. Underwood, S. P. DenBaars, and U. K. Mishra. Spatial control of InGaN luminescence by MOCVD selective epitaxy. Journal of Crystal Growth, 189/190, 83–86, 1998.

[108] S. Haffouz, B. Beaumont, and P. Gibart. Effect of magnesium and silicon on the lateral overgrowth of GaN patterned substrates by metal organic vapor phase epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 3, 8–1–8–6, 1998.

[109] J. Wang, M. Nozaki, Y. Ishikawa, M. S. Hao, Y. Morishima, T. Wang, Y. Naoi, and S. Sakai.

Fabrication of nanoscale structures of InGaN by MOCVD lateral overgrowth. Journal of Crystal Growth, 197, 48–53, 1999.

[110] J. Wang, M. Nozaki, M. Lachab, Y. Ishikawa, R. S. Qhalid Fareed, T. Wang, M. Hao, and S. Sakai. Metalorganic chemical vapor deposition selective growth and characterization of InGaN quantum dots. Applied Physics Letters,75(7), 950–952, 1999.

[111] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa. Formation of uniform 10-nm-scale InGaN quantum dots by selective MOCVD growth and their micro-photoluminescence in-tensity images. Journal of Crystal Growth,221, 576–580, 2000.

[112] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa. Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature. Applied Physics Letters, 76(22), 3212–3214, 2000.

[113] Y. Arakawa, T. Someya, and K. Tachibana. Progress in growth and physics of nitride-based quantum dots. physica status solidi (b), 224(1), 1–11, 2001.

[114] Y. Arakawa. Progress in growth and physics of nitride-based quantum dots. physica status solidi (a), 188(1), 37–45, 2001.

[115] P. R. Edwards, R. W. Martin, I. M. Watson, C. Liu, R. A. Taylor, J. H. Rice, J. H. Na, J. W. Robinson, and J. D. Smith. Quantum dot emission from site-controlled InGaN/GaN micropyramid arrays. Applied Physics Letters,85(19), 4281–4283, 2004.

[116] V. P´erez-Sol´orzano, A. Gr¨oning, H. Schweizer, and M. Jetter. Evidence of different con-finement regimes in site-controlled pyramidal InGaN structures. physica status solidi (b), 242(12), R97–R99, 2005.

[117] V. P´erez-Sol´orzano, A. Gr¨oning, M. Jetter, T. Riemann, and J. Christen.Near-red emission from site-controlled pyramidal InGaN quantum dots. Applied Physics Letters, 87, 163121–

1–163121–3, 2005.

[118] M. Grundmann, editor. Nano-optoelectronics: Concepts, physics and devices. Springer, Berlin, 2002.

[119] S. Keller, U. K. Mishra, S. P. DenBaars, and W. Seifert. Spiral growth of InGaN nanoscale islands on GaN. Japanese Journal of Applied Physics, 37, L431–L434, 1998.

[120] S. Keller, B. P. Keller, M. S. Minsky, J. E. Bowers, U. K. Mishra, S. P. DenBaars, and W. Seifert. Growth and properties of InGaN nanoscale islands on GaN. Journal of Crystal Growth, 189/190, 29–32, 1998.

[121] H. Hirayama, S. Tanaka, P. Ramvall, and Y. Aoyagi. Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces. Applied Physics Letters, 72(14), 1736–1738, 1998.

[122] C. N¨orenberg, M. G. Martin, R. A. Oliver, M. R. Castell, and G. A. D. Briggs. Heteroepi-taxial growth of InN islands studied by STM and AFM. Journal of Physics D: Applied Physics,35, 615–619, 2002.

[123] J. Zhang, M. Hao, P. Li, and S. J. Chua. InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant. Applied Physics Letters, 80(3), 485–487, 2002.

[124] Y.-C. Cheng, S.-W. Feng, E.-C. Lin, C.-C. Yang, C.-H. Tseng, C. Hsu, and K.-J. Ma.

Quantum dot formation in InGaN/GaN quantum well structures with silicon doping and the mechanisms for radiative efficiency improvement. physica status solidi (c),0(4), 1093–

1096, 2003.

[125] Y.-C. Cheng, E.-C. Lin, C.-M. Wu, C. C. Yang, J.-R. Yang, A. Rosenauer, K.-J. Ma, S.-C. Shi, L. S.-C. Chen, S.-C.-S.-C. Pan, and J.-I. Chyi. Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions. Applied Physics Letters, 84(14), 2506–2508, 2004.

[126] X. Han, J. Li, J. Wu, X. Wang, D. Li, X. Liu, P. Han, Q. Zhu, and Z. Wang. Effects of different modified underlayer surfaces on growth and optical propteries of InGaN quantum dots. Vacuum,77, 307–314, 2005.

[127] C. Adelmann, R. Langer, G. Feuillet, and B. Daudin. Indium incorporation during the growth of InGaN by molecular-beam epitaxy studied by reflection high-energy electron diffraction intensity oscillations. Applied Physics Letters,75(22), 3518–3520, 1999.

[128] M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki.MOVPE growth of thick homoge-neous InGaN directly on sapphire substrate using AlN buffer layer. Solid-State Electronics, 41(2), 145–147, 1997.

[129] Z. Chen, D. Lu, H. Yuan, P. Han, X. Liu, Y. Li, X. Wang, Y. Lu, and Z. Wang. A new method to fabricate InGaN quantum dots by metalorganic chemical vapor deposition.

Journal of Crystal Growth, 235, 188–194, 2002.

[130] X. Han, Z. Chen, D. Li, J. Wu, J. Li, X. Sun, X. Liu, P. Han, X. Wang, Q. Zhu, and Z. Wang. Structural and optical properties of 3D growth multilayer InGaN/GaN quantum dots by metalorganic chemical vapor deposition. Journal of Crystal Growth, 266, 423–428, 2004.

[131] Z. Chen, D.-C. Lu, P. Han, X. Liu, X. Wang, Y. Li, H. Yuan, Y. Lu, L. Bing, Q. Zhu, Z. Wang, X. Wang, and L. Yan. The structure and current-voltage characteristics of multi-sheet InGaN quantum dots grown by a new multi-step method. Journal of Crystal Growth, 243, 19–24, 2002.

[132] B. Qu, Z. Chen, D. Lu, P. Han, X. Liu, X. Wang, D. Wang, Q. Zhu, and Z. Wang. Struc-ture characteristics of InGaN quantum dots fabricated by passivation and low temperaStruc-ture method. Journal of Crystal Growth,252, 19–25, 2003.

[133] G. Feuillet, B. Daudin, F. Widmann, J. L. Rouvi`ere, and M. Arl´ery. Plastic versus elastic misfit relaxation in III-nitrides grown by molecular beam epitaxy. Journal of Crystal Growth, 189/190, 142–146, 1998.

[134] N. Grandjean and J. Massies. Real time control of InxGa1xN molecular beam epitaxial growth. Applied Physics Letters,72(9), 1078–1080, 1998.

[135] B. Damilano, N. Grandjean, S. Dalmasso, and J. Massies. Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth. Applied Physics Letters, 75(24), 3751–3753, 1999.

[136] C. Adelmann, J. Simon, N. T. Pelekanos, Y. Samson, G. Feuillet, and B. Daudin. Growth and optical characterization of InGaN quantum dots resulting from a 2D-3D transition.

physica status solidi (a), 176, 639–642, 1999.

[137] B. Daudin, G. Feuillet, G. Mula, H. Mariette, J. L. Rouvi`ere, N. Pelekanos, G. Fishman, C. Adelmann, and J. Simon. Epitaxial growth of GaN, AlN and InN: 2D/3D transition and surface effects. physica status solidi (a),176, 621–627, 1999.

[138] C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman. Self-assembled InGaN quantum dots grown by molecular-beam epitaxy. Applied Physics Letters, 76(12), 1570–1572, 2000.

[139] B. Daudin, G. Feuillet, G. Mula, H. Mariette, J. L. Rouvi`ere, N. Pelekanos, G. Fishman, C. Adelmann, and J. Simon. Molecular beam epitaxy of GaN, AlN, InN and related alloys:

from two- to three-dimensional growth mode. Diamond and Related Materials,9, 506–511, 2000.

[140] A. Morel, M. Gallart, T. Taliercio, P. Lefebvre, B. Gil, J. All`egre, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies. Time-resolved spectroscopy of MBE-grown InGaN/GaN self-formed quantum dots. physica status solidi (a),180, 375–380, 2000.

[141] T. Taliercio, P. Lefebvre, A. Morel, M. Gallart, J. All`egre, B. Gil, H. Mathieu, N. Grandjean, and J. Massies. Optical properties of self-assembled InGaN/GaN quantum dots. Materials Science and Engineering B, 82, 151–155, 2001.

[142] Y. F. Ng, Y. G. Cao, M. H. Xie, X. L. Wang, and S. Y. Tong. Growth mode and strain evolution during InN growth on GaN(0001) by molecular-beam epitaxy. Applied Physics Letters, 81(21), 3960–3962, 2002.

[143] M. Jetter, V. Perez-Solorzano, Y. Kobayashi, M. Ost, F. Scholz, and H. Schweizer. Pho-toluminescence studies on InGaN/GaN quantum dots. physica status solidi (a), 192(1), 91–96, 2002.

[144] L. S. Wang, S. J. Chua, K. Y. Zang, and S. Tripathy. InGaN self-organized quantum dots grown by metalorganic chemical vapour deposition (MOCVD). physica status solidi (c), 0(7), 2082–2086, 2003.

[145] J. W. Robinson, J. H. Rice, A. Jarjour, J. D. Smith, R. A. Taylor, R. A. Oliver, G. A. D.

Briggs, M. J. Kappers, C. J. Humphreys, and Y. Arakawa. Time-resolved dynamics in single InGaN quantum dots. Applied Physics Letters,83(13), 2674–2676, 2003.

[146] O. Briot, B. Maleyre, and S. Ruffenach.Indium nitride quantum dots grown by metalorganic vapor phase epitaxy. Applied Physics Letters,83(14), 2919–2921, 2003.

[147] H. J. Kim, H. Na, S.-Y. Kwon, H.-C. Seo, H. J. Kim, Y. Shin, K.-H. Lee, D. H. Kim, H. J.

Oh, S. Yoon, C. Sone, Y. Park, and E. Yoon. Growth of In-rich InGaN/GaN quantum dots by metalorganic chemical vapor deposition. Journal of Crystal Growth,269, 95–99, 2004.

[148] R. A. Oliver, M. J. Kappers, C. J. Humphreys, and G. A. D. Briggs. Growth modes in heteroepitaxy of InGaN on GaN. Journal of Applied Physics,97, 013707–1–013707–8, 2005.

[149] H. T. Dobbs, D. D. Vvedensky, and A. Zangwill. Theory of quantum dot formation in Stranski-Krastanov systems. Applied Surface Science, 123/124, 646–652, 1998.

[150] F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvi`ere, N. T. Pelekanos, and G. Fish-man. Blue-light emission from GaN self-assembled quantum dots due to giant piezoelectric effect. Physical Review B,58(24), R15989–R15992, 1998.

[151] B. Daudin, N. Gogneau, C. Adelmann, E. Sarigiannidou, T. Andreev, F. Enjalbert, E. Mon-roy, F. Fossard, J. L. Rouvi`ere, Y. Hori, X. Biquard, D. Jalabert, L. S. Dang, M. Tanaka, and O. Oda. Structural and optical properties of GaN quantum dots. Materials Research Society Symposium Proceedings, 798, Y4.7.1–Y4.7.11, 2004.

[152] V. Chamard, T. Sch¨ulli, M. Sztucki, T. H. Metzger, E. Sarigiannidou, J.-L. Rouvi`ere, M. Tolan, C. Adelmann, and B. Daudin. Strain distribution in nitride quantum dot multi-layers. Physical Review B,69, 125327–1–125327–8, 2004.

[153] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q. K.

Xue, and S. C. Chen. Growth of nanoscale InGaN self-assembled quantum dots. Journal of Crystal Growth, 249, 144–148, 2003.

[154] L.-W. Ji, Y. K. Su, S. J. Chang, C. S. Chang, L. W. Wu, W. C. Lai, X. L. Du, and H. Chen.

InGaN/GaN multi-quantum dot light-emitting diodes. Journal of Crystal Growth,263, 114–

118, 2004.

[155] L. W. Ji, Y. K. Su, S. J. Chang, S. T. Tsai, S. C. Hung, R. W. Chuang, T. H. Fang, and T. Y. Tsai. Growth of InGaN self-assembled quantum dots and their application to photodiodes. Journal of Vacuum Science and Technology A, 22(3), 792–795, 2004.

[156] L. W. Ji, Y. K. Su, and S. J. Chang. InGaN/GaN multi-quantum dot light-emitting diodes.

physica status solidi (c), 1(10), 2405–2408, 2004.

[157] S.-C. Hung, Y.-K. Su, S.-J. Chang, L.-W. Ji, D. Shen, and C. H. Huang. InGaN/GaN MQD p-n junction photodiodes. Physica E,30, 13–16, 2005.

[158] S.-Y. Kwon, H. J. Kim, H. Na, H.-C. Seo, H. J. Kim, Y. Shin, Y.-W. Kim, S. Yoon, H. J.

Oh, C. Sone, Y. Park, Y. Sun, Y.-H. Cho, and E. Yoon. Effect of growth interruption on In-rich InGaN/GaN single quantum well structures. physica status solidi (c),0(7), 2830–2833, 2003.

[159] S.-Y. Kwon, M.-H. Cho, P. Moon, H. J. Kim, H. Na, H.-C. Seo, H. J. Kim, Y. Shin, D. W.

Moon, Y. Sun, Y.-H. Cho, and E. Yoon. Near-UV emission from In-rich InGaN/GaN single quantum well structure with compositional grading. physica status solidi (a),201(12), 2818–

2822, 2004.

[160] S.-Y. Kwon, S.-I. Baik, Y.-W. Kim, H. J. Kim, D.-S. Ko, E. Yoon, J.-W. Yoon, H. Cheong, and Y.-S. Park. Room temperature near-ultraviolet emission from In-rich InGaN/GaN multiple quantum wells. Applied Physics Letters,86, 192105–1–192105–3, 2005.

[161] S.-Y. Kwon, H. J. Kim, H. Na, Y.-W. Kim, H.-C. Seo, H. J. Kim, Y. Shin, and E. Yoon. In-rich InGaN/GaN quantum wells grown by metal-organic chemical vapor deposition. Journal of Applied Physics, 99, 044906–1–044906–5, 2006.

[162] M. A. L. Johnson, W. C. Hughes, W. H. Rowland Jr., J. W. Cook Jr., J. F. Schetzina, M. Leonard, H. S. Kong, J. A. Edmond, and J. Zavada. Growth of GaN, InGaN, and AlGaN films and quantum well structures by molecular beam epitaxy. Journal of Crystal Growth, 175/176, 72–78, 1997.

[163] T. B¨ottcher, S. Einfeldt, V. Kirchner, S. Figge, H. Heinke, D. Hommel, H. Selke, and P. L.

Ryder. Incorporation of indium during molecular beam epitaxy of InGaN. Applied Physics Letters, 73(22), 3232–3234, 1998.

[164] S. Kim, K. Lee, H. Lee, K. Park, C.-S. Kim, S.-J. Son, and K.-W. Yi. The influence of ammonia pre-heating to InGaN films grown by TPIS-MOCVD. Journal of Crystal Growth, 247, 55–61, 2003.

[165] M. Shimizu, K. Hiramatsu, and N. Sawaki. Metalorganic vapor phase epitaxy growth of (InxGa1xN/GaN)n layered structures and reduction of indium droplets. Journal of Crystal Growth, 145, 209–213, 1994.

[166] H. Selke, M. Amirsawadkouhi, P. L. Ryder, T. B¨ottcher, S. Einfeldt, D. Hommel, F. Bertram, and J. Christen. Compositional inhomogeneities in InGaN studied by trans-mission electron microscopy and spatially resolved cathodoluminescence. Materials Science and Engineering B, 59, 279–282, 1999.

[167] R. A. Oliver, M. J. Kappers, J. H. Rice, J. D. Smith, R. A. Taylor, C. J. Humphreys, and G. A. D. Briggs. Growth of InGaN quantum dots on GaN by MOVPE, employing a growth temperature nitrogen anneal. physica status solidi (c), 0(7), 2515–2519, 2003.