• Keine Ergebnisse gefunden

1.3 Canine distemper virus

1.3.4 Cell tropism and viral receptors

The tropism of morbillivirus-infectable cells has been correlated to the presence of both well known and unidentified cellular receptors. SLAM, a membrane glycoprotein, is a well known specific morbillivirus receptor expressed on a variety of different lymphoid cell subpopulations, including immature thymocytes, primary B cells, activated T cells, memory T cells, macrophages and mature dendritic cells (Kruse et al., 2001; Ostrakhovitch and Li, 2006). The distribution of SLAM-presenting cells is in accordance with the lymphotropism

and immunosuppression following morbillivirus infection (Schneider-Schaulies and Schneider-Schaulies, 2008; Tatsuo and Yanagi, 2002; Tatsuo et al., 2001; Wenzlow et al., 2007). SLAM acts as an efficient receptor for vaccine and field strains/clinical isolates of morbillivirus (Tatsuo et al., 2000). However, laboratory virus strains infect well known target cells, such as epithelial, endothelial and neuronal cells via a SLAM-independent mechanism as shown by the lack of cellular SLAM receptor expression (Andres et al., 2003; Wenzlow et al., 2007). CD46, a membrane cofactor protein (MCP) or a complement regulatory molecule, represents a primate-specific receptor for the laboratory-adapted Edmonston strain of MV which is expressed on all human cells except erythrocytes (Dörig et al., 1993, 1994). CD9, a tetraspan transmembrane protein, plays a role in a variety of physiological conditions; such as cell adhesion, motility, activation and proliferation, as well as during pathological conditions, including tumor metastases or viral infection. CD9 was found in the myelin and in exosomes of dendritic cells (Bronstein, 2000; Charrin et al., 2001). CD9 is considered an essential factor for CDV uptake by target cells, cell-cell (but not virus-cell) syncytial cell formation and the production of progeny virus (Löffler et al., 1997; Schmid et al., 2000). In addition, an unidentified epithelial cell receptor (EpR) located on the basolateral side of epithelial cell has been reported as a tight junction-related molecule to facilitate viral transmission directly to the airway lumen and to disseminate the pathogen without initial infection of the respiratory epithelium (Leonard et al., 2008; Tahara et al., 2008).

Within the CNS, astrocytes, microglia, oligodendrocytes, neurons, ependymal cells and choroid plexus epithelial cells have been documented as CDV target cells (Alldinger et al., 1993; Seehusen et al., 2007; Stein et al., 2006). Studies of in vivo and in vitro infection revealed differential susceptibility of various glial cell types to specific CDV strains.

Astrocytes represent the first cell target of CDV following CNS infection and play a role for virus persistence and replication leading to chronic demyelinating lesions in the CNS (Headley et al., 2001; Mutinelli et al., 1989; Pearce-Kelling et al., 1990). Recently, Seehusen et al. (2007) demonstrated CDV infection in situ of GFAP+ astrocytes in acute distemper lesions, while vimentin+ astrocyte-like cells were targeted in chronic demyelinating disease.

This finding suggests a change of cell tropism and/or susceptibility of glial cells during disease progression in DL. Subsequently, in vitro experiments using mixed adult canine brain cell cultures demonstrated the differential susceptibility of glial cells following infection with the CDV-R252 strain. The dominant cytopathic effect (CPE) noted in infected GFAP+ astrocytes, especially in the multinucleated syncytial cells, consisted of a ruptured cytoskeleton, whereas vimentin+ cells displayed no change in the filament network. The in vitro findings support a role of immature astrocytes for virus persistence and spread in advanced DL lesions (Seehusen et al., 2007).

Focusing on CDV strain-specific CNS lesions, the virulent CDV Snyder Hill (CDV-SH) strain initiated an acute encephalitis with predominantly induced gray matter lesions, while the demyelinating CDV-A75-17 and CDV-R252 strains resulted in a chronic encephalitis that more strikingly affected the white matter (Summers et al., 1984). In cultures of neonatal dog brains, the attenuated CDV Rockborn (CDV-RO) and the virulent CDV-SH strains rapidly replicated in various cell types, including neurons, astrocytes, bipolar oligodendrocytes and macrophages by 14dpi. Contrary to this, infection with the CDV-A75-17 strain did not affect neurons and replication was delayed until after 28-35dpi. In addition, multipolar oligodendrocytes were rarely infected by any of the virus strains (Pearce-Kelling et al., 1990, 1991). Similarly, the CPE characteristics also differed between different CDV strains. Both CDV-SH and CDV-A75-17 strains induced a non-cytolytic infection whereas CDV-RO caused a cytolysis of infected astrocytes (Pearce-Kelling et al., 1990).

Previously, CDV-mediated demyelination was thought to be caused by a selective infection of myelin-forming oligodendrocytes that leads to morphological changes, metabolic impairment and complete disappearance of oligodendrocytes in demyelinating lesions (Blakemore et al., 1989; Glaus et al., 1990; Summers and Appel, 1987). Although a down-regulation of myelin gene transcription was observed before demyelination occurred; the number of oligodendrocytes was not decreased until demyelination became evident and they remained presented in a significant amount even in chronic, completely demyelinated distemper lesions. These findings suggest that demyelination precedes oligodendrocyte loss (Schobesberger et al., 1999, 2002).

Besides astrocytes and oligodendrocytes that represent pivotal factors in the pathogenesis of distemper demyelination, microglia and peripheral macrophages invading the CNS during the course of the inflammatory response also play an important role in the demyelinating process (Stein et al., 2004; Vandevelde and Zurbriggen, 2005). In vivo and in vitro studies showed a significant upregulation of certain surface molecules, such as CD1c, B7-1, B7-2, MHC I and CD11b, in microglia and peripheral blood monocytes following CDV infection (Stein et al., 2004, 2008). All these molecules play a key role in the host´s immune response, notably antigen presentation and cell adhesion. Therefore, these findings suggest an enhancement of macrophage functions which may facilitate the entry of peripheral monocytes in the CNS leading to effective clearance of the virus but may also increase demyelination via a bystander effect (Stein et al., 2008).

Recently, the infection of the attenuated CDV-Onderstepoort strain expressing the green fluorescent protein (CDV-OndeGFP) and CDV-R252 strain has been investigated in mixed adult canine brain cultures. Infection with the CDV-R252 strain resulted in a preferential affect in microglia and astrocytes compared to CDV-OndeGFP strain. Following infection, a

bipolar spindle-shaped Schwann cell-like population designated presently “Schwann cell-like brain glia (SCBG)” was observed. These cells displayed a high susceptibility to attenuated CDV strains as early as 3dpi (Orlando et al., 2008). So far there are no data available on CDV infection of p75NTR-expressing SCBG in vivo.

References

Alldinger, S., Baumgärtner, W. and Örvell, C., 1993. Restricted expression of viral surface proteins in canine distemper encephalitis. Acta Neuropathol (Berl). 85, 635-645.

Anderson, D. E. and von Messling, V., 2008. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 82, 10510-10518.

Andres, O., Obojes, K., Kim, K. S., ter Meulen, V. and Schneider-Schaulies, J., 2003. CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol. 84, 1189-1197.

Appel, M. J. and Jones, O. R., 1967. Use of alveolar macrophages for cultivation of canine distemper virus. Proc Soc Exp Biol Med. 126, 571-574.

Appel, M. J., 1970. Distemper pathogenesis in dogs. J Am Vet Med Assoc. 156, 1681-1684.

Appel, M. J., 1987. Canine distemper virus. In: Horzinek, M. C. M. (Ed), Virus infections of vertebrates, Elsevier Science Publishers B.V., Amsterdam, Oxford, New York, Tokyo, Vol. 1. pp. 133-159.

Aronsson, F., Robertson, B., Ljunggren, H. G. and Kristensson, K., 2003. Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol. 16, 415-423.

Au, E. and Roskams, A. J., 2003. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia. 41, 224-236.

Axthelm, M. K. and Krakowka, S., 1987. Canine distemper virus: the early blood-brain barrier lesion. Acta Neuropathol (Berl). 75, 27-33.

Barber, P. C. and Lindsay, R. M., 1982. Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes. Neuroscience. 7, 3077-3090.

Barrett, T., Blixenkrone-Moller, M., Di Guardo, G., Domingo, M., Duignan, P., Hall, A., Mamaev, L. and Osterhaus, A. D., 1995. Morbilliviruses in aquatic mammals: report on round table discussion. Vet Microbiol. 44, 261-265.

Bathen-Nöthen, A., Stein, V. M., Puff, C., Baumgärtner, W. and Tipold, A., 2008. Magnetic resonance imaging findings in acute canine distemper virus infection. J Small Anim Pract. 49, 460-467.

Baumgärtner, W. and Alldinger, S., 2005. The pathogenesis of canine distemper virus induced demyelination-a biphasic process. In: Lavi, E., Constantinescu, C. S. (Eds), Experimental models of multiple sclerosis, Springer, New York, pp. 871-887.

Baumgärtner, W., Alldinger, S., Beineke, A., Gröters, S., Herden, C., Kaim, U., Müller, G., Seeliger, F., Van Moll, P. and Wohlsein, P., 2003. Canine distemper virus--an agent looking for new hosts. Dtsch Tierärztl Wochenschr. 110, 137-142.

Baumgärtner, W., Boyce, R. W., Alldinger, S., Axthelm, M. K., Weisbrode, S. E., Krakowka, S. and Gaedke, K., 1995a. Metaphyseal bone lesions in young dogs with systemic canine distemper virus infection. Vet Microbiol. 44, 201-209.

Baumgärtner, W., Boyce, R. W., Weisbrode, S. E., Alldinger, S., Axthelm, M. K. and Krakowka, S., 1995b. Histologic and immunocytochemical characterization of canine distemper-associated metaphyseal bone lesions in young dogs following experimental infection. Vet Pathol. 32, 702-709.

Baumgärtner, W., Krakowka, S. and Blakeslee, J. R., 1987. Persistent infection of Vero cells by paramyxoviruses. A morphological and immunoelectron microscopic investigation.

Intervirology. 27, 218-223.

Baumgärtner, W., Örvell, C. and Reinacher, M., 1989. Naturally occurring canine distemper virus encephalitis: distribution and expression of viral polypeptides in nervous tissues.

Acta Neuropathol (Berl). 78, 504-512.

Beineke, A., Puff, C., Seehusen, F. and Baumgärtner, W., 2009. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol. 127, 1-18.

Bhatheja, K. and Field, J., 2006. Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol. 38, 1995-1999.

Bittegeko, S. B., Arnbjerg, J., Nkya, R. and Tevik, A., 1995. Multiple dental developmental abnormalities following canine distemper infection. J Am Anim Hosp Assoc. 31, 42-45.

Blakemore, W. F., Summers, B. A. and Appel, M. G., 1989. Evidence of oligodendrocyte infection and degeneration in canine distemper encephalomyelitis. Acta Neuropathol (Berl). 77, 550-553.

Bolin, L. M., Iismaa, T. P. and Shooter, E. M., 1992. Isolation of activated adult Schwann cells and a spontaneously immortal Schwann cell clone. J Neurosci Res. 33, 231-238.

Bronstein, J. M., 2000. Function of tetraspan proteins in the myelin sheath. Curr Opin Neurobiol. 10, 552-557.

Bunge, M. B., Williams, A. K. and Wood, P. M., 1982. Neuron-Schwann cell interaction in basal lamina formation. Dev Biol. 92, 449-460.

Bunge, R. P., 1993. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol. 3, 805-809.

Caswell, J. L. and Williams, K. J., 2007. Respiratory system. In: Grant Maxie, M. (Ed.), Jubb, Kennedy and Palmer´s Pathology of domestic animals, Elsevier Saunders, Edinburgh, London, New York, Oxford, Philadelphia, St Louis, Sydney, Toronto, Vol.

2. pp. 635-636.

Chan, J. R., Cosgaya, J. M., Wu, Y. J. and Shooter, E. M., 2001. Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci USA. 98, 14661-14668.

Charrin, S., Le Naour, F., Oualid, M., Billard, M., Faure, G., Hanash, S. M., Boucheix, C. and Rubinstein, E., 2001. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem. 276, 14329-14337.

Chen, S., Rio, C., Ji, R. R., Dikkes, P., Coggeshall, R. E., Woolf, C. J. and Corfas, G., 2003.

Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci. 6, 1186-1193.

Chuah, M. I., Cossins, J., Woodhall, E., Tennent, R., Nash, G. and West, A. K., 2000. Glial growth factor 2 induces proliferation and structural changes in ensheathing cells.

Brain Res. 857, 265-274.

Chuah, M. I., Vincent, A. J. and West, A. K., 2004-05. Do olfactory ensheathing cells play a role in the defense of the brain against infection? Neuroembryol Aging. 3, 152-156.

Corfas, G., Velardez, M. O., Ko, C. P., Ratner, N. and Peles, E., 2004. Mechanisms and roles of axon-Schwann cell interactions. J Neurosci. 24, 9250-9260.

Cosgaya, J. M., Chan, J. R. and Shooter, E. M., 2002. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science. 298, 1245-1248.

de Swart, R. L., Ludlow, M., de Witte, L., Yanagi, Y., van Amerongen, G., McQuaid, S., Yuksel, S., Geijtenbeek, T. B., Duprex, W. P. and Osterhaus, A. D., 2007.

Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 3, e178.

Decaro, N., Camero, M., Greco, G., Zizzo, N., Tinelli, A., Campolo, M., Pratelli, A. and Buonavoglia, C., 2004. Canine distemper and related diseases: report of a severe outbreak in a kennel. New Microbiol. 27, 177-181.

Deem, S. L., Spelman, L. H., Yates, R. A. and Montali, R. J., 2000. Canine distemper in terrestrial carnivores: a review. J Zoo Wildl Med. 31, 441-451.

Diallo, A., 1990. Morbillivirus group: genome organisation and proteins. Vet Microbiol. 23, 155-163.

Dong, Z., Dean, C., Walters, J. E., Mirsky, R. and Jessen, K. R., 1997. Response of Schwann cells to mitogens in vitro is determined by pre-exposure to serum, time in vitro, and developmental age. Glia. 20, 219-230.

Dörig, R. E., Marcil, A. and Richardson, C. D., 1994. CD46, a primate-specific receptor for measles virus. Trends Microbiol. 2, 312-318.

Dörig, R. E., Marcil, A., Chopra, A. and Richardson, C. D., 1993. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 75, 295-305.

Doucette, J. R., 1984. The glial cells in the nerve fiber layer of the rat olfactory bulb. Anat Rec. 210, 385-391.

Doucette, R., 1993. Glial cells in the nerve fiber layer of the main olfactory bulb of embryonic and adult mammals. Microsc Res Tech. 24, 113-130.

Dubielzig, R. R., Higgins, R. J. and Krakowka, S., 1981. Lesions of the enamel organ of developing dog teeth following experimental inoculation of gnotobiotic puppies with canine distemper virus. Vet Pathol. 18, 684-689.

Eccleston, P. A., Mirsky, R. and Jessen, K. R., 1991. Spontaneous immortalisation of Schwann cells in culture: short-term cultured Schwann cells secrete growth inhibitory activity. Development. 112, 33-42.

Esiri, M. M. and Tomlinson, A. H., 1984. Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory and trigeminal pathways after infection of facial skin in mice. J Neurol Sci. 64, 213-217.

Field, P., Li, Y. and Raisman, G., 2003. Ensheathment of the olfactory nerves in the adult rat.

J Neurocytol. 32, 317-324.

Franceschini, I. A. and Barnett, S. C., 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol. 173, 327-343.

Franklin, R. J. M. and Ffrench-Constant, C., 2008. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 9, 839-855.

Friese, M. A., Montalban, X., Willcox, N., Bell, J. I., Martin, R. and Fugger, L., 2006. The value of animal models for drug development in multiple sclerosis. Brain. 129, 1940-1952.

Frisk, A. L., Baumgärtner, W. and Gröne, A., 1999a. Dominating interleukin-10 mRNA expression induction in cerebrospinal fluid cells of dogs with natural canine distemper virus induced demyelinating and non-demyelinating CNS lesions. J Neuroimmunol.

97, 102-109.

Frisk, A. L., Konig, M., Moritz, A. and Baumgärtner, W., 1999b. Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper. J Clin Microbiol. 37, 3634-3643.

Glaus, T., Griot, C., Richard, A., Althaus, U., Herschkowitz, N. and Vandevelde, M., 1990.

Ultrastructural and biochemical findings in brain cell cultures infected with canine distemper virus. Acta Neuropathol (Berl). 80, 59-67.

Gröne, A., Fonfara, S. and Baumgärtner, W., 2002. Cell type-dependent cytokine expression after canine distemper virus infection. Viral Immunol. 15, 493-505.

Gröne, A., Groeters, S., Koutinas, A., Saridomichelakis, M. and Baumgärtner, W., 2003.

Non-cytocidal infection of keratinocytes by canine distemper virus in the so-called hard pad disease of canine distemper. Vet Microbiol. 96, 157-163.

Hall, A. J., 1995. Morbilliviruses in marine mammals. Trends Microbiol. 3, 4-9.

Hall, W. W., Lamb, R. A. and Choppin, P. W., 1980. The polypeptides of canine distemper virus: synthesis in infected cells and relatedness to the polypeptides of other morbilliviruses. Virology. 100, 433-449.

Hanani, M., 2005. Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev. 48, 457-476.

Harvey, A. R. and Plant, G. W., 2006. Olfactory ensheathing glia and spinal cord injury: basic mechanisms to transplantation. Future Neurology. 1, 453-463.

Headley, S. A., Soares, I. C. and Graca, D. L., 2001. Glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in dogs infected with canine distemper virus. J Comp Pathol. 125, 90-97.

Herrmann, D. N., 2008. Experimental therapeutics in hereditary neuropathies: the past, the present, and the future. Neurotherapeutics. 5, 507-515.

Higgins, R. J., Krakowka, S. G., Metzler, A. E. and Koestner, A., 1982a. Experimental canine distemper encephalomyelitis in neonatal gnotobiotic dogs. A sequential ultrastructural study. Acta Neuropathol (Berl). 57, 287-295.

Higgins, R. J., Krakowka, S. G., Metzler, A. E. and Koestner, A., 1982b. Primary demyelination in experimental canine distemper virus induced encephalomyelitis in gnotobiotic dogs. Sequential immunologic and morphologic findings. Acta Neuropathol. 58, 1-8.

Hoyland, J. A., Dixon, J. A., Berry, J. L., Davies, M., Selby, P. L. and Mee, A. P., 2003. A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease. J Virol Methods. 109, 253-259.

Jeffery, N. D., Lakatos, A. and Franklin, R. J., 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma. 22, 1282-1293.

Jeffery, N. D., Smith, P. M., Lakatos, A., Ibanez, C., Ito, D. and Franklin, R. J., 2006. Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord. 44, 584-593.

Jessen, K. R. and Mirsky, R., 1991. Schwann cell precursors and their development. Glia. 4, 185-194.

Jessen, K. R. and Mirsky, R., 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 6, 671-682.

Jessen, K. R., 2004. Glial cells. Int J Biochem Cell Biol. 36, 1861-1867.

Jessen, K. R., Morgan, L., Stewart, H. J. and Mirsky, R., 1990. Three markers of adult non-myelin-forming Schwann cells, 217c (Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development. 109, 91-103.

Kai, C., Ochikubo, F., Okita, M., Iinuma, T., Mikami, T., Kobune, F. and Yamanouchi, K., 1993. Use of B95a cells for isolation of canine distemper virus from clinical cases. J Vet Med Sci. 55, 1067-1070.

Kennedy, S., 1998. Morbillivirus infections in aquatic mammals. J Comp Pathol. 119, 201-225.

Khan, S. A., Brennan, P., Newman, J., Gray, R. E., McCloskey, E. V. and Kanis, J. A., 1996.

Paget's disease of bone and unvaccinated dogs. Bone. 19, 47-50.

Kipar, A., Baumgärtner, W., Vogl, C., Gaedke, K. and Wellman, M., 1998.

Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet Pathol. 35, 43-52.

Koutinas, A. F., Baumgärtner, W., Tontis, D., Polizopoulou, Z., Saridomichelakis, M. N. and Lekkas, S., 2004. Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (hard pad disease) in dogs with natural canine distemper. Vet Pathol. 41, 2-9.

Koutinas, A. F., Polizopoulou, Z. S., Baumgärtner, W., Lekkas, S. and Kontos, V., 2002.

Relation of clinical signs to pathological changes in 19 cases of canine distemper encephalomyelitis. J Comp Pathol. 126, 47-56.

Krakowka, S. and Koestner, A., 1976. Age-related susceptibility to infection with canine distemper virus in gnotobiotic dogs. J Infect Dis. 134, 629-632.

Krakowka, S., 1982. Mechanisms of in vitro immunosuppression in canine distemper virus infection. J Clin Lab Immunol. 8, 187-196.

Krakowka, S., Axthelm, M. and Johnson, G., 1985. Canine distemper virus. In: Olsen, R.G., Krakowka, S., Blakeslee, J.R., (Eds), Comparative pathology of viral diseases, Vol. 2.

CRC Press Inc, Boca Raton, pp. 137-164.

Krakowka, S., Cockerell, G. and Koestner, A., 1975. Effects of canine distemper virus infection on lymphoid function in vitro and in vivo. Infect Immun. 11, 1069-1078.

Krakowka, S., Higgins, R. J. and Koestner, A., 1980. Canine distemper virus: review of structural and functional modulations in lymphoid tissues. Am J Vet Res. 41, 284-292.

Kreutzer, M., Kreutzer, R., Siebert, U., Müller, G., Reijnders, P., Brasseur, S., Harkonen, T., Dietz, R., Sonne, C., Born, E. W. and Baumgärtner, W., 2008. In search of virus carriers of the 1988 and 2002 phocine distemper virus outbreaks in European harbour seals. Arch Virol. 153, 187-192.

Krudewig, C., Deschl, U. and Wewetzer, K., 2006 Purification and in vitro characterization of adult canine olfactory ensheathing cells. Cell Tissue Res 326, 687-696.

Kruse, M., Meinl, E., Henning, G., Kuhnt, C., Berchtold, S., Berger, T., Schuler, G. and Steinkasserer, A., 2001. Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1 beta. J Immunol. 167, 1989-1995.

Kubo, T., Kagawa, Y., Taniyama, H. and Hasegawa, A., 2007. Distribution of inclusion bodies in tissues from 100 dogs infected with canine distemper virus. J Vet Med Sci.

69, 527-529.

Kumnok, J., Ulrich, R., Wewetzer, K., Rohn, K., Hansmann, F., Baumgärtner, W. and Alldinger, S., 2008. Differential transcription of matrix-metalloproteinase genes in primary mouse astrocytes and microglia infected with Theiler's murine encephalomyelitis virus. J Neurovirol. 14, 205-217.

Lafay, F., Coulon, P., Astic, L., Saucier, D., Riche, D., Holley, A. and Flamand, A., 1991.

Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 183, 320-330.

Lamb, R. A. and Kolakofsky, D., 2001. Paramyxoviridae: The viruses and their replication. In:

Knipe, D. M., Howley, P. M. (Eds), Fields Virology, Lippincott Williams & Wilkins, Philadelphia, pp. 1305-1443.

Lawson, L. J., Perry, V. H., Dri, P. and Gordon, S., 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 39, 151-170.

Leonard, V. H., Sinn, P. L., Hodge, G., Miest, T., Devaux, P., Oezguen, N., Braun, W., McCray, P. B., Jr., McChesney, M. B. and Cattaneo, R., 2008. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest. 118, 2448-2458.

Leung, J. Y., Chapman, J. A., Harris, J. A., Hale, D., Chung, R. S., West, A. K. and Chuah, M. I., 2008. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci. 65, 2732-2739.

Levi, A. D., Bunge, R. P., Lofgren, J. A., Meima, L., Hefti, F., Nikolics, K. and Sliwkowski, M.

X., 1995. The influence of heregulins on human Schwann cell proliferation. J Neurosci. 15, 1329-1340.

Liu, Y. and Rao, M. S., 2004. Glial progenitors in the CNS and possible lineage relationships among them. Biol Cell. 96, 279-290.

Löffler, S., Lottspeich, F., Lanza, F., Azorsa, D. O., ter Meulen, V. and Schneider-Schaulies, J., 1997. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. J Virol. 71, 42-49.

Martella, V., Elia, G. and Buonavoglia, C., 2008. Canine distemper virus. Vet Clin North Am Small Anim Pract. 38, 787-797, vii-viii.

Mee, A. P., Dixon, J. A., Hoyland, J. A., Davies, M., Selby, P. L. and Mawer, E. B., 1998.

Detection of canine distemper virus in 100% of Paget's disease samples by in situ-reverse transcriptase-polymerase chain reaction. Bone. 23, 171-175.

Monahan, A. J., Warren, M. and Carvey, P. M., 2008. Neuroinflammation and peripheral immune infiltration in Parkinson's disease: an autoimmune hypothesis. Cell Transplant. 17, 363-372.

Morales, J. A., Herzog, S., Kompter, C., Frese, K. and Rott, R., 1988. Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med Microbiol Immunol. 177, 51-68.

Müller, G., Kaim, U., Haas, L., Greiser-Wilke, I., Wohlsein, P., Siebert, U. and Baumgärtner, W., 2008. Phocine distemper virus: characterization of the morbillivirus causing the seal epizootic in northwestern Europe in 2002. Arch Virol. 153, 951-956.

Murphy, F. A., Gibbs, E. P. J., Horzinek, M. C. and Studdert, M. J., 1999. Paramyxoviridae.

In: Veterinary virology, Academic Press, New York, pp. 411-428.

Murrell, T. G., O'Donoghue, P. J. and Ellis, T., 1986. A review of the sheep-multiple sclerosis connection. Med Hypotheses. 19, 27-39.

Mutinelli, F., Vandevelde, M., Griot, C. and Richard, A., 1989. Astrocytic infection in canine distemper virus-induced demyelination. Acta Neuropathol (Berl). 77, 333-335.

Nesseler, A., Baumgärtner, W., Gaedke, K. and Zurbriggen, A., 1997. Abundant expression of viral nucleoprotein mRNA and restricted translation of the corresponding viral protein in inclusion body polioencephalitis of canine distemper. J Comp Pathol. 116, 291-301.

Nesseler, A., Baumgärtner, W., Zurbriggen, A. and Örvell, C., 1999. Restricted virus protein translation in canine distemper virus inclusion body polioencephalitis. Vet Microbiol.

69, 23-28.

Neunlist, M., Van Landeghem, L., Bourreille, A. and Savidge, T., 2008. Neuro-glial crosstalk

Neunlist, M., Van Landeghem, L., Bourreille, A. and Savidge, T., 2008. Neuro-glial crosstalk