• Keine Ergebnisse gefunden

Breakdown of mitochondrial membrane potential and apoptosis Early after discovery of XIAP, its protective capability was proven for all conceivable

3 MATERIALS AND METHODS

5.4 Breakdown of mitochondrial membrane potential and apoptosis Early after discovery of XIAP, its protective capability was proven for all conceivable

inducers of apoptosis. It was shown that XIAP could block apoptosis induced by the redistribution of cytochrome c but not its release from mitochondria 81. For cytochrome c release, BH-only proteins forming a pore within the outer mitochondrial membrane 1. In addition, the breakdown of membrane potential was described as an element that contributes to apoptosis induction 158-161. However, the point that mitochondrial depolarization is accompanied by cytochrome c release is contradictory discussed in literature 160.

To investigate whether depolarization of the mitochondria is an early event in execution of cell death in the used model, experiments using the specifically staining of polarized mitochondria, was performed. The experiments revealed that the potential of most cells was intact after three hours despite of about three thirds of cells displayed apoptotic morphology in their nuclei. A decrease of stain was observed after six hours. Because of the high apoptosis rate at three hours, the decrease was probably due to the advanced death of cells. Therefore, general breakdown of mitochondrial potential was rather a consequence than a cause of apoptosis. In literature, several reports supporting the obtained result. For HeLa cells, Gao et al.

showed that cytochrome c release was faster than swelling of mitochondria in UV and TNFα treated cells and this was not caspase-dependent 175. However, Waterhouse et al. and others described a reduction of membrane potential-dependent staining of mitochondria, which could partially be prevented by caspase inhibition 160,162. In addition, they could demonstrate that cytochrome c was even able to maintain mitochondrial potential and ATP generation when released into cytosol. Strikingly, single cells could restore the membrane potential of mitochondria after caspase arrest whereas cytochrome c release was not reversible. Supposing that the reduction of mitochondrial membrane potential was slower than cytochrome c release and dependent on caspase activity, XIAP was probably able to bridge the time for regeneration of cytochrome c in mitochondria. Therefore, XIAP could rescue cells even with released cytochrome c.

In conclusion, HeLa cells showed destroyed nuclei while membrane potential of mitochondria was hardly affected after three hours. These cells with condensed nuclei cannot be rescued and therefore mitochondrial membrane potential is not involved for

5 DISCUSSION

induction of apoptosis in the used model. This does not mean that mitochondria play no role because release of some cytochrome c might be sufficient to induce the intrinsic pathway without destroying membrane potential 175.

6 SUMMARY

6 SUMMARY

Cell death independent of caspase activity and sensitive to serine protease inhibitors has been described for many different cellular systems. However, this type of cell death has not been demonstrated for the cervix carcinoma derived HeLa cell line so far.

In the presented study, the ability of HeLa cells to undergo cell death after caspase arrest was investigated. For this purpose, concentration-dependent caspase inhibitor studies were performed together with analyses of serine protease inhibitors in cell death lacking caspase activity. As a result, induction of apoptosis with TNFα revealed a serine protease inhibitor-sensitive cell death after caspase arrest. Since over-expression of XIAP protects HeLa cells, different XIAP mutants were employed to investigate this serine protease inhibitor-sensitive cell death. Expression of a mutant abolished to bind and inhibit caspases completely failed to protect HeLa cells from TNFα induced apoptosis. This result demonstrates that the caspase binding sites of XIAP are decisive for the inhibitory abilities. To distinguish between caspase-dependent and other functions of XIAP, a mutant lacking the C-terminal RING domain was assayed. This mutant significantly protected cells but protection was accompanied by a dramatic decrease in potency. Since the E3 ubiquitin protein ligase is localized within the RING domain, a XIAP with abolished ligase activity was assayed to characterize this ineffectiveness. This defect caused an ineffectiveness of protection comparable to the complete removal of the RING domain. Finally, experiments combining the caspase inhibitor experiments with the expression of XIAP mutants did not revealed any caspase-independent effects of the protection by XIAP.

These results show that the caspase-binding abilities of XIAP are essential for protection of HeLa cells from caspase independent and dependent cell death.

To investigate whether caspase-8 was able to induce this serine protease inhibitor-sensitive cell death after caspase arrest, experiments were performed, which short-circuited the receptor pathway with an active caspase-8. Over-expression of caspase-8 caused a cell death that was independent of caspase-3-like activity and hardly preventable by XIAP. However, it was sensitive towards serine protease inhibitors after caspase arrest indicating that caspase-8 is able to induce this described cell death in HeLa cells.

7 ZUSAMMENFASSUNG

7 ZUSAMMENFASSUNG

Apoptose, unabhängig von Caspaseaktivität, wurde für verschiedeneZelltypen bereits gezeigt – nicht aber für die von einem Cervixcarcinom stammende HeLa Zelllinie.

Deshalb wurde in der vorliegenden Arbeit untersucht, ob HeLa Zellen, nachdem Caspasen inhibiert wurden, immer noch zu einem apoptotischen Zelltod fähig sind.

Aus diesem Grund wurden vergleichende Studien zur Caspaseaktivität und der entsprechenden Apoptoserate durchgeführt. Diese Studien zeigten, dass HeLa Zellen auch nach einer Inhibition der Caspasen weiterhin in der Lage sind apoptotisch zu sterben. Diese Art des Zelltodes wurde weiter untersucht und dabei konnte gezeigt werden, dass unspezifische Serinproteaseinhibitoren in der Lage sind, nach Inhibition der Caspasen diesen durch TNFα ausgelösten Zelltod zu hemmen.

HeLa Zellen können durch Überexpression von XIAP geschützt werden. Deshalb boten sich verschiedene XIAP Mutanten zur genaueren Untersuchung dieses Zelltodes an. XIAP, das nicht mehr in der Lage war Caspasen zu binden, war auch nicht mehr in der Lage, Zellen zu schützen. Dieses Ergebnis streicht die essentielle Bedeutung der Caspasebindungstellen von XIAP für die protektive Wirkung heraus.

Um Caspase unabhängige XIAP Funktionen von abhängigen zu unterscheiden, wurde ein XIAP ohne RING-Domäne verwendet. Diese Mutante konnte zwar noch HeLa Zellen vor TNFα induziertem Zelltod schützen aber nur mit deutlich geringerer Wirksamkeit. Die Ergebnisse eines XIAPs mit unterbundener Ubiquitinligaseaktivität waren vergleichbar zu denen des XIAPs ohne RING-Domäne. Diese Untersuchungen zusammen mit Untersuchungen, die die XIAP Mutanten mit der Inhibition von Caspasen durch synthetische Caspaseinhibitoren verbanden, zeigt, dass XIAP seine Caspasebindestellen für den Schutz von Zellen benötigt, sogar für den Zelltod ohne Caspaseaktivität.

Um zu untersuchen, ob Caspase-8 in der Lage war, diesen Zelltod zu induzieren, wurde mittels aktiver Caspase-8 der rezeptorvermittelte Apoptoseinduktionsweg kurzgeschlossen. Die Überexpression von Caspase-8 führte zu apoptotischem Zelltod, der unabhängig von Caspase-3-Aktivität war und außerdem nur bedingt von XIAP gehemmt werden konnte. Da dieser Zelltod unter Bedingungen der Caspasehemmung von Serineproteaseinhibitoren gehemmt werden konnte, wird klar, dass Caspase-8 in der Lage ist, in HeLa Zellen diese Art des

8 REFERENCES

8 REFERENCES

Das Zitat entstammt dem Buch Joachim Fest: Begegnungen. Über nahe und ferne Freunde. Rowohlt Verlag, Reinbek 2004.

1. Assuncao Guimaraes, C. & Linden, R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271, 1638-1650 (2004).

2. Bleackley, R. C. & Heibein, J. A. Enzymatic control of apoptosis. Nat Prod Rep 18, 431-40 (2001).

3. Goldsworthy, T. L., Conolly, R. B. & Fransson-Steen, R. Apoptosis and cancer risk assessment. Mutat Res 365, 71-90 (1996).

4. Kidd, V. J. Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60, 533-73 (1998).

5. Matsumura, H. et al. Necrotic Death Pathway in Fas Receptor Signaling. J.

Cell Biol. 151, 1247-1256 (2000).

6. Adam-Klages, S. et al. Caspase-Mediated Inhibition of Human Cytosolic Phospholipase A2 During Apoptosis. J Immunol 161, 5687-5694 (1998).

7. Denault, J. B. & Salvesen, G. S. Caspases: keys in the ignition of cell death.

Chem Rev 102, 4489-500 (2002).

8. Mitsui, K., Nakagawa, D., Nakamura, M., Okamoto, T. & Tsurugi, K. Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett 579, 723-7 (2005).

9. Boyce, M., Degterev, A. & Yuan, J. Caspases: an ancient cellular sword of Damocles. Cell Death Differ 11, 29-37 (2004).

10. Shiozaki, E. N. & Shi, Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 29, 486-94 (2004).

11. Bratton, S. B., Lewis, J., Butterworth, M., Duckett, C. S. & Cohen, G. M. XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ 9, 881-92 (2002).

12. Creagh, E. M. & Martin, S. J. Caspases: cellular demolition experts. Biochem Soc Trans 29, 696-702 (2001).

13. Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 27, 19-26. (2002).

14. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An Induced Proximity Model for Caspase-8 Activation. J. Biol. Chem. 273, 2926-2930 (1998).

15. Stennicke, H. R. et al. Caspase-9 Can Be Activated without Proteolytic Processing. J. Biol. Chem. 274, 8359-8362 (1999).

16. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 96, 10964-7 (1999).

17. Boatright, K. M. et al. A unified model for apical caspase activation. Mol Cell 11, 529-41 (2003).

18. Boatright, K. M. & Salvesen, G. S. Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725-31 (2003).

19. Abraham, M. C. & Shaham, S. Death without caspases, caspases without death. Trends Cell Biol 14, 184-93 (2004).

8 REFERENCES

20. Juo, P., Kuo, C. J., Yuan, J. & Blenis, J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8, 1001-8 (1998).

21. Wang, K., Brems, J. J., Gamelli, R. L. & Ding, J. Reversibility of caspase activation and its role during glycochenodeoxycholate-induced hepatocyte apoptosis. J Biol Chem (2005).

22. Harper, N., Hughes, M., MacFarlane, M. & Cohen, G. M. Fas-associated Death Domain Protein and Caspase-8 Are Not Recruited to the Tumor Necrosis Factor Receptor 1 Signaling Complex during Tumor Necrosis Factor-induced Apoptosis. J. Biol. Chem. 278, 25534-25541 (2003).

23. Wong, G. H. & Goeddel, D. V. Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J Immunol 152, 1751-5 (1994).

24. Seino, K. et al. Protection against Fas-mediated and tumor necrosis factor receptor 1-mediated liver injury by blockade of FADD without loss of nuclear factor-kappaB activation. Ann Surg 234, 681-8. (2001).

25. Harper, N., Farrow, S. N., Kaptein, A., Cohen, G. M. & MacFarlane, M.

Modulation of tumor necrosis factor apoptosis-inducing ligand- induced NF-kappa B activation by inhibition of apical caspases. J Biol Chem 276, 34743-52 (2001).

26. Yang, Y. L. & Li, X. M. The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10, 169-77 (2000).

27. Muhlenbeck, F. et al. TRAIL/Apo2L activates c-Jun NH2-terminal kinase (JNK) via caspase-dependent and caspase-independent pathways. J Biol Chem 273, 33091-8 (1998).

28. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205-19 (2004).

29. Sinicrope, F. A., Penington, R. C. & Tang, X. M. Tumor Necrosis

Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis Is Inhibited by Bcl-2 but Restored by the Small Molecule Bcl-2 Inhibitor, HA 14-1, in Human Colon Cancer Cells. Clin Cancer Res 10, 8284-8292 (2004).

30. Nijhawan, D. et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1475-1486 (2003).

31. Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R. & Shi, Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926-933 (2005).

32. Hill, M. M., Adrain, C. & Martin, S. J. Portrait of a Killer: The Mitochondrial Apoptosome Emerges From the Shadows. Mol. Interv. 3, 19-26 (2003).

33. Blanc, C. et al. Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60, 4386-90 (2000).

34. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389-99 (2000).

35. Boehning, D., van Rossum, D. B., Patterson, R. L. & Snyder, S. H. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. PNAS 102, 1466-1471 (2005).

36. Takahashi, R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273, 7787-90 (1998).

37. Dünstl, G. A serine Protease-Dependent Mechanism of Apoptosis after Caspase Arrest. Konstanzer-Online-Publications-System (2004).

8 REFERENCES

38. Oudejans, J. J. et al. Absence of caspase 3 activation in neoplastic cells of nasopharyngeal carcinoma biopsies predicts rapid fatal outcome. Mod Pathol (2005).

39. Janicke, R. U., Sprengart, M. L., Wati, M. R. & Porter, A. G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273, 9357-60 (1998).

40. Kawahara, A., Enari, M., Talanian, R. V., Wong, W. W. & Nagata, S. Fas-induced DNA fragmentation and proteolysis of nuclear proteins. Genes Cells 3, 297-306 (1998).

41. Meergans, T., Hildebrandt, A. K., Horak, D., Haenisch, C. & Wendel, A. The short prodomain influences caspase-3 activation in HeLa cells. Biochem J 349, 135-40 (2000).

42. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173, 2976-84 (2004).

43. Cande, C., Vahsen, N., Garrido, C. & Kroemer, G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ 11, 591-5 (2004).

44. Lorenzo, H. K. & Susin, S. A. Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557, 14-20 (2004).

45. Susin, S. A. et al. Two Distinct Pathways Leading to Nuclear Apoptosis. J. Exp.

Med. 192, 571-580 (2000).

46. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 22, 4385-4399 (2003).

47. Arnoult, D. et al. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J. Cell Biol. 159, 923-929 (2002).

48. Carter, B. Z. et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 102, 4179-86 (2003).

49. Chang, N. S. A potential role of p53 and WOX1 in mitochondrial apoptosis (review). Int J Mol Med 9, 19-24 (2002).

50. Chang, N.-S. et al. Hyaluronidase Induction of a WW Domain-containing Oxidoreductase That Enhances Tumor Necrosis Factor Cytotoxicity. J. Biol.

Chem. 276, 3361-3370 (2001).

51. Lockshin, R. A. & Zakeri, Z. Caspase-independent cell death? Oncogene 23, 2766-73 (2004).

52. Jaattela, M. Programmed cell death: many ways for cells to die decently. Ann Med 34, 480-8 (2002).

53. Stenson-Cox, C., FitzGerald, U. & Samali, A. In the cut and thrust of apoptosis, serine proteases come of age. Biochem Pharmacol 66, 1469-74 (2003).

54. Williams, M. & Henkart, P. Apoptotic cell death induced by intracellular proteolysis. J Immunol 153, 4247-4255 (1994).

55. Hughes, F. M., Jr., Evans-Storms, R. B. & Cidlowski, J. A. Evidence that non-caspase proteases are required for chromatin degradation during apoptosis.

Cell Death Differ 5, 1017-27 (1998).

56. Dickinson, J. L., Bates, E. J., Ferrante, A. & Antalis, T. M. Plasminogen Activator Inhibitor Type 2 Inhibits Tumor Necrosis Factor alpha-induced Apoptosis. J. Biol. Chem. 270, 27894-27904 (1995).

57. Torriglia, A. et al. Differential involvement of DNases in HeLa cell apoptosis induced by etoposide and long term-culture. Cell Death Differ 6, 234-44 (1999).

8 REFERENCES

58. Gong, B., Chen, Q., Endlich, B., Mazumder, S. & Almasan, A. Ionizing Radiation-induced, Bax-mediated Cell Death Is Dependent on Activation of Cysteine and Serine Proteases. Cell Growth Differ 10, 491-502 (1999).

59. Egger, L. et al. Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ 10, 1188-203 (2003).

60. Altairac, S., Wright, S. C., Courtois, Y. & Torriglia, A. L-DNase II activation by the 24 kDa apoptotic protease (AP24) in TNFalpha-induced apoptosis. Cell Death Differ 10, 1109-11 (2003).

61. Counis, M. F. & Torriglia, A. DNases and apoptosis. Biochem Cell Biol 78, 405-14 (2000).

62. Srinivasula, S. M. et al. Inhibitor of Apoptosis Proteins Are Substrates for the Mitochondrial Serine Protease Omi/HtrA2. J. Biol. Chem. 278, 31469-31472 (2003).

63. Cheng, J. Q. et al. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the

phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat 5, 131-46 (2002).

64. Grabarek, J., Ardelt, B., Du, L. & Darzynkiewicz, Z. Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase). Exp Cell Res 278, 61-71 (2002).

65. Grabarek, J. et al. Sequential activation of caspases and serine proteases (serpases) during apoptosis. Cell Cycle 1, 124-31 (2002).

66. Park, I. C. et al. TNF-alpha induces apoptosis mediated by AEBSF-sensitive serine protease(s) that may involve upstream caspase-3/CPP32 protease activation in a human gastric cancer cell line. Int J Oncol 16, 1243-8 (2000).

67. Park, I. C. et al. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis is dependent on activation of cysteine and serine proteases. Cytokine 15, 166-70 (2001).

68. Grabarek, J. & Darzynkiewicz, Z. In situ activation of caspases and serine proteases during apoptosis detected by affinity labeling their enzyme active centers with fluorochrome-tagged inhibitors. Exp Hematol 30, 982-9 (2002).

69. Grabarek, J., Dragan, M., Lee, B. W., Johnson, G. L. & Darzynkiewicz, Z.

Activation of chymotrypsin-like serine protease(s) during apoptosis detected by affinity-labeling of the enzymatic center with fluoresceinated inhibitor. Int J Oncol 20, 225-33 (2002).

70. Kagawa, S. et al. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 7, 1474-80 (2001).

71. Bortner, C. D. & Cidlowski, J. A. Cellular mechanisms for the repression of apoptosis. Annu Rev Pharmacol Toxicol 42, 259-81 (2002).

72. Duckett, C. S. et al. A conserved family of cellular genes related to the

baculovirus iap gene and encoding apoptosis inhibitors. Embo J 15, 2685-94 (1996).

73. Uren, A. G., Pakusch, M., Hawkins, C. J., Puls, K. L. & Vaux, D. L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci U S A 93, 4974-8 (1996).

74. Deveraux, Q. L. & Reed, J. C. IAP family proteins--suppressors of apoptosis.

Genes Dev 13, 239-52 (1999).

75. Dohi, T. et al. An IAP-IAP complex inhibits apoptosis. J Biol Chem 279, 34087-90 (2004).

8 REFERENCES

76. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-4 (1997).

77. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B.

Characterization of XIAP-deficient mice. Mol Cell Biol 21, 3604-8 (2001).

78. Uren, A. G., Coulson, E. J. & Vaux, D. L. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23, 159-62 (1998).

79. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17, 2215-23 (1998).

80. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. Embo J 18, 5242-51 (1999).

81. Duckett, C. S. et al. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol Cell Biol 18, 608-15 (1998).

82. Asselin, E., Mills, G. B. & Tsang, B. K. XIAP regulates Akt activity and

caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61, 1862-8 (2001).

83. Lewis, J. et al. Uncoupling of the Signaling and Caspase-inhibitory Properties of X-linked Inhibitor of Apoptosis. J. Biol. Chem. 279, 9023-9029 (2004).

84. Holcik, M., Gordon, B. W. & Korneluk, R. G. The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the

heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23, 280-8 (2003).

85. Holcik, M. Translational upregulation of the X-linked inhibitor of apoptosis. Ann N Y Acad Sci 1010, 249-58 (2003).

86. Holcik, M., Gibson, H. & Korneluk, R. G. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-61 (2001).

87. Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J. C. & Takahashi, R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct

modes. J Biol Chem 276, 27058-63 (2001).

88. Ekert, P. G., Silke, J. & Vaux, D. L. Caspase inhibitors. Cell Death Differ 6, 1081-6 (1999).

89. Scott, F. L. et al. XIAP inhibits caspase-3 and -7 using two binding sites:

evolutionarily conserved mechanism of IAPs. Embo J (2005).

90. Stehlik, C. et al. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 188, 211-6 (1998).

91. Luschen, S., Scherer, G., Ussat, S., Ungefroren, H. & Adam-Klages, S.

Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, and enhances cytotoxicity.

Exp Cell Res 293, 196-206 (2004).

92. Sun, C. et al. NMR Structure and Mutagenesis of the Third Bir Domain of the Inhibitor of Apoptosis Protein XIAP. J. Biol. Chem. 275, 33777-33781 (2000).

93. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11, 519-27 (2003).

94. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin Protein Ligase Activity of IAPs and Their Degradation in Proteasomes in Response to Apoptotic Stimuli. Science 288, 874-877 (2000).

8 REFERENCES

95. Shin, H. et al. Identification of ubiquitination sites on the X-linked inhibitor of apoptosis protein. Biochem J 373, 965-71 (2003).

96. Silke, J., Kratina, T., Ekert, P. G., Pakusch, M. & Vaux, D. L. Unlike

Diablo/smac, Grim Promotes Global Ubiquitination and Specific Degradation of X Chromosome-linked Inhibitor of Apoptosis (XIAP) and Neither Cause

Apoptosis. J. Biol. Chem. 279, 4313-4321 (2004).

97. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death.

PNAS 98, 8662-8667 (2001).

98. Chen, L., Smith, L., Wang, Z. & Smith, J. B. Preservation of Caspase-3 Subunits from Degradation Contributes to Apoptosis Evoked by Lactacystin:

Any Single Lysine or Lysine Pair of the Small Subunit Is Sufficient for Ubiquitination. Mol Pharmacol 64, 334-345 (2003).

99. Creagh, E. M., Murphy, B. M., Duriez, P. J., Duckett, C. S. & Martin, S. J.

Smac/Diablo Antagonizes Ubiquitin Ligase Activity of Inhibitor of Apoptosis Proteins. J. Biol. Chem. 279, 26906-26914 (2004).

100. Morizane, Y., Honda, R., Fukami, K. & Yasuda, H. X-linked inhibitor of

apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem (Tokyo) 137, 125-32 (2005).

101. MacFarlane, M., Merrison, W., Bratton, S. B. & Cohen, G. M. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277, 36611-6 (2002).

102. Li, X., Yang, Y. & Ashwell, J. D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345-7 (2002).

103. Sun, X. M. et al. Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14, 81-93 (2004).

104. Dan, H. C. et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279, 5405-12 (2004).

105. Kim, J.-E. & Tannenbaum, S. R. Insulin Regulates Cleavage of Procaspase-9 via Binding of X Chromosome-Linked Inhibitor of Apoptosis Protein in HT-29 Cells. Cancer Res 64, 9070-9075 (2004).

106. Hatano, E. & Brenner, D. A. Akt protects mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis through NK-kappa B activation. Am J Physiol Gastrointest Liver Physiol 281, G1357-68. (2001).

107. Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26, 657-64. (2001).

108. Coffer, P. J., Jin, J. & Woodgett, J. R. Protein kinase B (c-Akt): a

108. Coffer, P. J., Jin, J. & Woodgett, J. R. Protein kinase B (c-Akt): a