• Keine Ergebnisse gefunden

U 1 U 2 Σ 1 0

0 Σ 2

V 1 T V 2 T

,

U 1 , V 1 ∈ R n×r

,

U 2 , V 2 ∈ R n×(n−r)

having orthogonal olumns and

Σ 1 =

diag

(ς 1 , . . . ς d )

,

Σ 2 =

diag

(ς d+1 , . . . ς n )

.

5.4.3. Bilinear Krylov Subspae Methods. Model Order Redution

forbilinearsystemsviaKrylovsubspaeshasbeen examinedbyseveral

re-searherssuhasPhilipps[54℄,CondonandIvanov[23℄,BreitenandDamm

[17℄, BaiandSkoogh[8℄, andLin andoworkers[45℄. Momentmathing

anbeahievedbyseriesexpansionsofthemultivariatetransferfuntions

asgivenin(2.37). Foreaseofpresentation,weassume

E = I n

throughout

thefollowingsetion. A multimomentanbedenedas:

Denition5.4.1([45℄,[34℄). Let

Σ bil

beabilinearsystemasgivenin(2.30).

Fornonnegativeintegers

m 1 , . . . , m i ,

amultimoment

H (m i 1 ,...,m i ) (s 1 , . . . , s i )

ofthetransferfuntion

H i (s 1 , . . . , s i )

asgivenin(2.37)isdenedas

H (m i 1 ,...,m i ) (s 1 , . . . , s i ) =(−1) i C(s i I n − A) −m i N [I m ⊗ (s i−1 I n − A) −m i −1 N ] . . .

· [I | m ⊗ · · · ⊗ {z I m }

i−2

times

⊗(s 2 I n − A) −m 2 N ]

· [I | m ⊗ · · · ⊗ {z I m }

i−1

times

⊗(s 1 I n − A) −m 1 B],

(5.41)

where

N = [N 1 . . . N m ]

.

Toensuremoment mathing,Krylovsubspaes(f. 5.2.2)needtobe

built. Often(seef.e. [8,45,17℄),thefollowingKrylovsubspaesareused

formomentmathingaround

s = 0

:

span(V (1) ) = K q (A −1 , A −1 B), span(V (i) ) =

[ m k=1

K q (A −1 , A −1 N k V (i−1) ),

span(V ) = span [ r i=1

span(V (i) )

! .

Momentmathinginpointsotherthantheoriginanbeguaranteedbythe

followingresultgivenbyFlagg[34℄:

Theorem5.4.2 ([34℄, SubsystemInterpolation). Let

{ξ j } k j=1 , {ζ j } k j=1 ⊂ C

andvetors

c T ∈ C p

and

b ∈ C m

begiven. Dene

b j = 1 j ⊗ b

and

N ⊕T = N 1 T , . . . , N m T

where

1 j

isaolumnof

m j−1

ones. Toonstrutaredued

ordersystemthatmathesallthemultimoments

H (l j 1 ,...,l j ) (ξ 1 , . . . , ξ j ) b j

and

c H (l j 1 ,...,l j ) (ζ j , . . . , ζ 1 )

for

j = 1, . . . , k

and

l 1 , . . . , l j = 1, . . . , q,

onstrutthe

matries

V

and

W

asfollows:

span(V (1) ) = K q {(ξ 1 I − A) −1 , (ξ 1 I − A) −1 Bb}, span(W (1) ) = K q {(ζ 1 I − A) −∗ , (ζ 1 I − A) −∗ C c },

span(V (j) ) = K q {(ξ j I − A) −1 , (ξ j I − A) −1 N (I m ⊗ V (j −1) )}

for

j = 2, . . . , k, span(W (j) ) = K q {(ζ j I − A) −∗ , (ζ j I − A) −∗ N ⊕T (I m ⊗ W (j−1) )}

for

j = 2, . . . , k, span(V ) = span{

[ k j=1

span(V (j) )},

span(W ) = span{

[ k j=1

span(W (j) )}.

Provided

W ˜ T = (W T V ) −1 W T

isdened,thereduedsystem

A ˆ = ˜ W T AV

,

N ˆ k = ˜ W T N k V

,

C ˆ = CV

and

B ˆ = ˜ W T B

satises:

H (l j 1 ,...,l j ) (ξ 1 , . . . , ξ j ) b j = ˆ H (l 1 ,...,l j ) (ξ 1 , . . . , ξ j ) b j

and

c H (l j 1 ,...,l j ) (ζ 1 , . . . , ζ j ) = c H ˆ (l 1 ,...,l j ) (ζ 1 , . . . , ζ j )

for

j = 1, . . . , k

and

l 1 , . . . , l k = 1, . . . , q

.

5.5.

H 2

-OPTIMALBILINEARMODELORDERREDUCTION 73

Usingthismomentmathingofmultimomentswouldinvolveastrategy

forndingpoints

{ξ j } k j=1 , {ζ j } k j=1 ⊂ C

and vetors

c T ∈ C p

and

b ∈ C m

suhthatthereduedmodeldeliversagoodapproximation totheoriginal

model. Theadvantageofthisapproahisthatit doesnotdependonthe

onvergeneof theunderlyingVolterraseries, whihmight notbe known

apriori (f. the denitionof BIBO stability and the onvergene of the

VolterraseriesgiveninSetion2.3.2).Inadditiontothemomentmathing

approah, one might thinkof the interpolation of the multivariate

trans-fer funtions

H i (s 1 , . . . , s i )

, or in other words the interpolation of theVolterraseries. ThisapproahhasbeenexaminedbyFlagg[34℄inhis

dissertationandresultedin aderivationofinterpolationonditionsforthe

Volterraseriesrepresentationof abilinearsystem. Flaggwas ableto

es-tablishaonnetion betweenVolterra series interpolationand the results

onerningthe

H 2

-optimalonditionsforbilinearsystems reentlyderived byZhangandLam[72℄andBennerandBreiten[12℄.

5.5.

H 2

-optimalbilinearModelOrderRedution

As in the linear ase, one is interested in

H 2

-optimalbilinear MOR.

Withinthissetion,neessary

H 2

-optimalityonditionsforbilinearsystems are obtainedby deriving the

H 2

-norm (5.39) ofthe error system (5.35).

First,thebilinearWilsononditionsoriginallyobtainedby ZhangandLam

[72℄ will bederived. Usingadierent approah,Bennerand Breiten[12℄

obtainedtheBilinearInterpolatory RationalKrylovAlgorithm(BIRKA),a

generalizationtobilinearsystemsofthelinearIRKA(Algorithm1). In

addi-tion,wewillderiveanew

H 2

-optimalalgorithmrelyingonoptimizationon Grassmannmanifolds,whihisageneralizationofthemethodsgiveninthe

linearasebyYanandLam[69℄andXuandZeng[68℄.

AstheFiniteElement Disretisationofindustrialmodelsleads tosystems

with

E 6= I n

,weneedtoinorporate

E

inourderivation.Weannotsimply invertthematrix

E

asduetotheirlargedimension,theinversionwouldbe

numeriallyexpensive or evenimpossible. Hene, we willderiveoptimality

onditionsfor systems with

E 6= I n

,

E

nonsingular, whihhavenot been statedelsewhere. Allsystemswillbeassumedto bereahable,observable,

BIBOstableandtheGramiansshallexist.

5.5.1. Wilsononditionsforbilinearsystems. Dening

C = C T

− C ˆ T

[ C − C ˆ ]

,thenormoftheerrorsystemanbegivenas:

J = ||Σ err bil || 2 H 2 = tr [ C − C ˆ ] P err C T

− C ˆ T

= tr (P err C) .

(5.42)

Bydierentiatingthenorm(5.42)andusingtheLyapunovequations(5.36)

and(5.38)weobtainthefollowingonditions(foradetailedderivationsee

AppendixA.1):

E ˆ = −Y 22 −1 Y 12 T EP 12 P 22 −1 ,

(5.43)

A ˆ = −Y 22 −1 Y 12 T AP 12 P 22 −1 ,

(5.44)

N ˆ k = −Y 22 −1 Y 12 T N k P 12 P 22 −1 ,

for

k = 1, . . . , m,

(5.45)

B ˆ = −Y 22 −1 Y 12 T B,

(5.46)

C ˆ = CP 12 P 22 −1 ,

(5.47)

with

Y i j

asgivenin(5.37)and

P i j

asin(5.36). Thisleadstothefollowing

theorem:

Theorem5.5.1 ([72℄). If thereduedsystem

Σ ˆ bil

,whihisreahableand

observable, isan

H 2

-optimalreduedorder modelforthe system

Σ bil

and

the reahabilityand observabilityGramians

P err

and

Q err

exist,then there

existmatries

W, V ∈ R n×r

suhthat

E ˆ = W T EV, A ˆ = W T AV, N ˆ k = W T N k V, B ˆ = W T B, C ˆ = CV.

(5.48)

Theyanbeobtainedbyequations (5.43)to (5.44)as

W := −Y 12 Y 22 −1

and

V := P 12 P 22 −1 .

Remark 5.5.2. Inserting the observability Gramian

Q err

in the equations

leadstotheprojetionsforthesystemmultipliedby

E −1

:

E ˆ = −Y 22 −1 Y 12 T EP 12 P 22 −1

= − EQ ˆ −1 22 E ˆ T E ˆ −T Q T 12 E −1 EP 12 P 22 −1 ,

⇒ I r = −Q −1 22 Q T 12 P 12 P 22 −1 , A ˆ = −Y 22 −1 Y 12 T AP 12 P 22 −1

= − EQ ˆ −1 22 E ˆ T E ˆ −T Q T 12 E −1 AP 12 P 22 −1 ,

⇒ E ˆ −1 A ˆ = −Q −1 22 Q T 12 E −1 AP 12 P 22 −1 ,

withanaloguealulationsfor

N k

,

B

and

C

.

5.5.

H 2

-OPTIMALBILINEARMODELORDERREDUCTION 75

5.5.2. TheoptimalityonditionsderivedbyBennerandBreiten. As

intheaseoftheWilsononditions,BennerandBreitendeduethe

opti-malityonditionsbydierentiatingthe

H 2

-normoftheerrorsystem(5.40).

Inontrasttotheirderivation,weneedtoonsider

E 6= I n

,

E

nonsingular.

Theobtainedreduedsystem anbewrittenas

( ˆ A, N ˆ k , B, ˆ C) ˆ

after

multi-plyingwith

E ˆ −1

fromtheleft,andhenewewillassume

E ˆ = I r

. Inaddition,

weassumethat

A ˆ

isdiagonalizable.

Itispossibletorewritetherepresentationofthe

H 2

-normasgivenin(5.40) byusing:

A ˆ = SΛS −1 , B ˜ T = S −1 B, ˆ C ˜ = ˆ CS, N ˜ k T = S −1 ( ˆ N) k S,

whihleadsto:

J = ||Σ err bil || 2 H 2

= vec(I 2p ) T ([ C − C ˜ ] ⊗ [ C − C ˜ ])

× − A

Λ

E

I r

E

I r

A

Λ

− X m

k=1

h N

k N ˜ k T

i

⊗ h N

k N ˜ k T

i ! −1

× B

B ˜ T

B

B ˜ T

vec(I 2m ).

(5.49)

Derivations with respet to the eigenvalues of the redued system

Λ = diag(ˆ λ 1 , . . . , ˆ λ r )

and the matries

N ˜ k , B, ˜

and

C ˜

leadto the

follow-ingoptimalityonditions(theirderivationanbefoundinAppendixA.2):

vec(I p ) T ( ˜ C ⊗ C) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

(e i e i T ⊗ E) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

( ˜ B T ⊗ B)vec(I m )

= vec(I p ) T ( ˜ C ⊗ C) ˆ −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

(e i e i T ⊗ I r ) −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

( ˜ B T ⊗ B)vec(I ˆ m ),

(5.50)

vec(I p ) T ( ˜ C ⊗ C) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

(e i e j T ⊗ N) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

( ˜ B T ⊗ B)vec(I m )

= vec(I p ) T ( ˜ C ⊗ C) ˆ −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

(e i e j T ⊗ N) ˆ −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

( ˜ B T ⊗ B)vec(I ˆ m ),

(5.51)

vec(I p ) T ( ˜ C ⊗ C) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

· (e j e i T ⊗ B)vec(I m )

= vec(I p ) T ( ˜ C ⊗ C) ˆ −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

· (e j e i T ⊗ B)vec(I ˆ m ),

(5.52)

vec(I p ) T (e i e T j ⊗ C) −I r ⊗ A − Λ ⊗ E − X m

k=1

N ˜ k T ⊗ N k

! −1

· ( ˜ B T ⊗ B)vec(I m )

= vec(I p ) T (e i e j T ⊗ C) ˆ −I r ⊗ A ˆ − Λ ⊗ I r − X m

k=1

N ˜ k T ⊗ N ˆ k

! −1

· ( ˜ B T ⊗ B)vec(I ˆ m ).

(5.53)

Thefollowingtheoremshowsthe onnetionbetween anoptimalredued

ordermodelandtheonditions(5.50)(5.53).

5.5.

H 2

-OPTIMALBILINEARMODELORDERREDUCTION 77

Theorem5.5.3([12℄). Let

Σ bil

denoteaBIBOstablebilinearsystem.

As-sume that

Σ ˆ bil

isa reduedbilinearsystem of order

r

that minimizesthe

H 2

-normoftheerrorsystemamongallotherbilinearsystemsofdimension

r

. Then,

Σ ˆ bil

fulllstheonditions(5.50)(5.53).

5.5.3. Algorithmsresultingfromthe

H 2

-optimalityonditions. Now itispossibletoobtaintwodierentalgorithmsforthealulationofbilinear

optimalreduedordermodels. First,asseenin theontext oftheWilson

onditions,optimal models anbe obtainedby using

W = −Y 12 Y 22 −1

and

V = P 12 P 22 −1

(f. Theorem 5.5.1). Hene it holds

span(Y 12 ) ⊂ W

and

span(P 12 ) ⊂ V

. Itissuienttodetermine

Y 12

and

P 12

whihanbedone

bysolvingSylvesterequationsobtainedbysplittingtheequations(5.36)and

(5.38). Thisleads to thefollowingalgorithm(fora more detailedinsight

werefertothederivationofBennerandBreiten[12℄):

Algorithm2GeneralizedSylvesteriteration(f.[12℄).

Input:

E, A, N k , B, C, E, ˆ A, ˆ N ˆ k , B, ˆ C ˆ

Output:

E ˆ opt , A ˆ opt , N ˆ k opt , B ˆ opt C ˆ opt

1: whilenotonvergeddo

2: Solve

AX E ˆ T + EX A ˆ T + X m

k=1

N k X N ˆ k + B B ˆ T = 0

(5.54)

3: Solve

A T Y E ˆ + E T Y A ˆ + X m

k=1

N k Y N ˆ k − C T C ˆ = 0

(5.55)

4:

V = orth(X)

,

W = orth(Y )

%orthomputesanorthonormalbasis 5:

E ˆ = W T EV

,

A ˆ = W T AV

,

N ˆ k = W T N k V

,

B ˆ = W T B

,

6: endwhile

7:

E ˆ opt = ˆ E, A ˆ opt = ˆ A, N ˆ k opt = ˆ N k , B ˆ opt = ˆ B, C ˆ opt = ˆ C

Theorem5.5.4([12℄). IfAlgorithm2onverges,then

E ˆ opt , A ˆ opt , N ˆ k opt , B ˆ opt

and

C ˆ opt

fullltheWilsonoptimalityonditions(5.43)-(5.47).

Proof. TheproofofthisTheoremanbefoundintheAppendixA.3.

AswederivedtheoptimalityonditionsaordingtoBreitenandBenner

[12℄byusingreduedsystemsassuming

E ˆ = I r

,weobtainforthesolution

ofthebilinearSylvesterequations(5.54)and(5.55):

vec(X) = −I r ⊗ A − A ˆ ⊗ E − X m k=1

N ˆ k ⊗ N k

! − 1

vec(B B ˆ T )

= −SS 1 ⊗ A − SΛS 1 ⊗ E − X m k=1

S N ˜ T k S 1 ⊗ N k

! − 1

( ˆ B ⊗ B)vec(I m )

= (S ⊗ I n ) −I r ⊗ A − Λ ⊗ E − X m k=1

N ˜ k T ⊗ N k

! S 1 ⊗ I n

! − 1

( ˆ B ⊗ B)vec(I m )

= (S ⊗ I n ) −I r ⊗ A − Λ ⊗ E − X m k=1

N ˜ k T ⊗ N k

! − 1

( ˜ B T ⊗ B)vec(I m )

| {z }

vec(V )

,

and

vec(Y ) = I r T ⊗ A T + ˆ A T ⊗ E T + X m

k=1

N ˆ k T ⊗ N T k

! −1

( ˆ C T ⊗ C T )vec(I p )

= S −T S T ⊗ A T + S −T ΛS T ⊗ E T + X m

k=1

S −T N ˜ k S T ⊗ N k T

! −1

( ˆ C T ⊗ C T )vec(I p )

= −S −T ⊗ I n

−I r ⊗ A T − Λ ⊗ E T − X m k=1

N ˜ k ⊗ N k T

! −1

S T ⊗ I n

( ˆ C T ⊗ C T )vec(I p )

= −S −T ⊗ I n

−I r ⊗ A T − Λ ⊗ E T − X m k=1

N ˜ k ⊗ N k T

! −1

( ˜ C T ⊗ C T )vec(I p )

| {z }

vec(W)

,

Thisleadstothefatthat

span(X) ⊂ V

and

span(Y ) ⊂ W

. Insteadof

solvingtheSylvesterequationsasgivenin(5.54)and(5.55) ,weanusethe

vetorizedformoftheSylvesterequationstoalulateanoptimalredued

model,whihleadstoAlgorithm3.

5.5.

H 2

-OPTIMALBILINEARMODELORDERREDUCTION 79

Algorithm3BilinearIRKAforsystemswith

E 6= I

,

E

nonsingular(f.[12℄).

Input:

E, A, N k , B, C, A, ˆ N ˆ k , B, ˆ C ˆ

Output:

A ˆ opt , N ˆ k opt , B ˆ opt , C ˆ opt

1: whilenotonvergeddo

2:

A ˆ = SΛS −1

,

B ˜ T = S −1 B ˆ

,

C ˜ = ˆ CS N ˜ k T = S −1 N ˆ k S

3:

vec(V ) =

−I r ⊗ A − Λ ⊗ E − P m k=1 N ˜ k

T ⊗ N k

−1

( ˜ B T ⊗ B)vec(I m )

4:

vec(W ) = −I r ⊗ A T − Λ ⊗ E T − P m

k=1 N ˜ k ⊗ N k T −1

( ˜ C T ⊗ C T )vec(I p )

5:

V = orth(V )

,

W = orth(W )

%orthomputesanorthonormalbasis 6:

A ˆ = (W T EV ) −1 W T AV

,

N ˆ k = (W T EV ) −1 W T N k V

,

B ˆ =

(W T EV ) −1 W T B

,

C ˆ = CV

7: endwhile

8:

A ˆ opt = ˆ A

,

N ˆ k opt = ˆ N k

,

B ˆ opt = ˆ B

,

C ˆ opt = ˆ C

TheonvergeneofAlgorithm3willbemeasuredintermsofthehange

intheeigenvaluesofthereduedsystem. Ineveryiterationthe hangein

theeigenvaluesbetweenthelasttwoiterationsisheked. Ifitissuiently

small,thealgorithmstopsandreturnsthenalreduedordermodel.

5.5.4.

H 2

-optimalMORbyusingmethodsfromdierential geome-try. Wewillestablishanewresultforthederivationof

H 2

-optimalbilinear reduedordermodels.Foreaseofpresentationwewillassume

E = I n

. Asa

systemwith

E

invertibleisequivalenttothesystemmultipliedby

E −1

,this

ispossible. Inaddition,ageneralizationtosystemswith

E 6= I n

shouldbe

possible.

5.5.4.1. The minimizationproblem. As in the preedingsetions we

aregoingto minimizethe

H 2

-normoftheerrorsystem. However,we use adierent approah, whihwas originallygiven for linear systemsby Yan

andLam in1999 [69℄. Itis basedon minimizingthenorm on theStiefel

manifold. Thisapproahwasreentlytransferredto Grassmannmanifolds

by Xuand Zeng [68℄. We will nowdevelop the methods for the bilinear

ase. In ontrastto the methodsinthe previoussetions, thesemethods

diretlypreservetheBIBOstabilityofthemodel. Hene thereisno need

forstabilizationmethodsthat anbeusedforexampletostabilizeredued

ordermodelsobtainedbyBIRKAseeSetion6.2.

First,theobjetivefuntionfortheminimizationhastobefound. We

denethefollowingfuntion:

J (W, V ) = J (W T AV, W T N 1 V, . . . , W T N m V, W T B, CV ) := ||Σ err bil || 2 H 2

= tr(

C − C ˆ