• Keine Ergebnisse gefunden

Ali, S.R., Ranjbarvaziri, S., Talkhabi, M., Zhao, P., Subat, A., Hojjat, A., Kamran, P., Müller, A.M.S., Volz, K.S., Tang, Z., Red-Horse, K., Ardehali, R., 2014.

Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115, 625–635.

doi:10.1161/CIRCRESAHA.115.303794

Asch, A.S., Tepler, J., Silbiger, S., Nachman, R.L., 1991. Cellular attachment to thrombospondin: Cooperative interactions between receptor systems. J. Biol.

Chem. 266, 1740–1745.

Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K., Baudino, T.A., 2007.

Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. AJP Hear. Circ. Physiol. 293, 1883–1891.

doi:10.1152/ajpheart.00514.2007

Bergman, D., Halje, M., Nordin, M., Engström, W., 2013. Insulin-like growth factor 2 in development and disease: A mini-review. Gerontology. 59, 240-249.

doi:10.1159/000343995

Bowers, S.L.K., Banerjee, I., Baudino, T.A., 2010. The extracellular matrix: At the center of it all. J. Mol. Cell. Cardiol. 48, 474–482.

doi:10.1016/j.yjmcc.2009.08.024

Bowers, S.L.K., McFadden, W.A., Borg, T.K., Baudino, T.A., 2012. Desmoplakin is important for proper cardiac cell-cell interactions. Microsc. Microanal. 18, 107–114. doi:10.1017/S1431927611012359

Brown, R.D., Ambler, S.K., Mitchell, M.D., Long, C.S., 2005. THE CARDIAC FIBROBLAST: Therapeutic Target in Myocardial Remodeling and Failure.

Annu. Rev. Pharmacol. Toxicol. 45, 657–687.

doi:10.1146/annurev.pharmtox.45.120403.095802

Camelliti, P., Borg, T.K., Kohl, P., 2005. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res.65, 40-51.

doi:10.1016/j.cardiores.2004.08.020

Camelliti, P., Devlin, G.P., Matthews, K.G., Kohl, P., Green, C.R., 2004. Spatially and temporally distinct expression of fibroblast connexins after sheep

ventricular infarction. Cardiovasc. Res. 62, 415–425.

doi:10.1016/j.cardiores.2004.01.027

Catalucci, D., Latronico, M.V.G., Ellingsen, O., Condorelli, G., 2008. Physiological myocardial hypertrophy: how and why? Front. Biosci. 13, 312–324.

doi:10.2741/2681

Cerrato, F., Sparago, A., Verde, G., De Crescenzo, A., Citro, V., Cubellis, M.V., Rinaldi, M.M., Boccuto, L., Neri, G., Magnani, C., D’Angelo, P., Collini, P., Perotti, D., Sebastio, G., Maher, E.R., Riccio, A., 2008. Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith - Wiedemann syndrome and Wilms’ tumour. Hum. Mol. Genet. 17, 1427–1435.

doi:10.1093/hmg/ddn031

Charron, F., Paradis, P., Bronchain, O., Nemer, G., Nemer, M., 1999. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene

expression. Mol. Cell. Biol. 19, 4355–65. doi:10.1128/MCB.19.6.4355 Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y. V., 2016. The role of cardiac

fibroblasts in post-myocardial heart tissue repair. Exp. Mol. Pathol. 101, 231-240. doi:10.1016/j.yexmp.2016.09.002

Chu, L.Y., Ramakrishnan, D.P., Silverstein, R.L., 2013. Thrombospondin-1

modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood. 122, 1822–1832. doi:10.1182/blood-2013-01-482315

Cohn, J.N., Ferrari, R., Sharpe, N., 2000. Cardiac remodeling-concepts and clinical implications: A consensus paper from an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35, 569–582. doi:10.1016/S0735-1097(99)00630-0

Corda, S., Samuel, J.-L., Rappaport, L., 2000. Extracellular matrix and growth factors during heart growth. Heart Fail. Rev. 5, 119–130.

doi:10.1023/A:1009806403194

Cowie, M.R., Poole-Wilson, P., 2013. Pathophysiology of heart failure. In:

Rosendorff C, ed. Essential cardiology. 3rd edn., New York: Springer.

Dostal, D., Glaser, S., Baudino, T.A., 2015. Cardiac fibroblast physiology and pathology. Compr. Physiol. 5, 887–909. doi:10.1002/cphy.c140053 Ernst, A., Köhrle, J., Bergmann, A., 2006. Proenkephalin A 119–159, a stable

proenkephalin A precursor fragment identified in human circulation. Peptides.

27, 1835–1840. doi:10.1016/j.peptides.2006.03.008

Fan, D., Takawale, A., Lee, J., Kassiri, Z., 2012. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair.

5,15. doi:10.1186/1755-1536-5-15

Frangogiannis, N.G., Frangogiannis, G., N., 2015. Pathophysiology of Myocardial Infarction, in: Comprehensive Physiology. John Wiley & Sons, Inc., Hoboken, NJ, USA.1841–1875. doi:10.1002/cphy.c150006

Froese, N., Kattih, B., Breitbart, A., Grund, A., Geffers, R., Molkentin, J.D., Kispert, A., Wollert, K.C., Drexler, H., Heineke, J., 2011. GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine

transforming growth factor beta/activin receptor-like kinase 5 signaling. J. Biol.

Chem. 286, 5680–5690. doi:10.1074/jbc.M110.176925

Furtado, M.B., Costa, M.W., Pranoto, E.A., Salimova, E., Pinto, A.R., Lam, N.T., Park, A., Snider, P., Chandran, A., Harvey, R.P., Boyd, R., Conway, S.J., Pearson, J., Kaye, D.M., Rosenthal, N.A., 2014. Cardiogenic genes

expressed in cardiac fibroblasts contribute to heart development and repair.

Circ. Res. 114, 1422–1434. doi:10.1161/CIRCRESAHA.114.302530

Furtado, M.B., Nim, H.T., Boyd, S.E., Rosenthal, N.A., 2016. View from the heart:

cardiac fibroblasts in development, scarring and regeneration, Development.

143, 387-397. doi:10.1242/dev.120576

Garrington, T.P., Johnson, G.L., 1999. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211-218. doi:10.1016/S0955-0674(99)80028-3

Haberland, M., Montgomery, R.L., Olson, E.N., 2009. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42. doi:10.1038/nrg2485

Heineke, J., Auger-Messier, M., Xu, J., Oka, T., Sargent, M.A., York, A., Klevitsky, R., Vaikunth, S., Duncan, S.A., Aronow, B.J., Robbins, J., Cromblehol, T.M., Molkentin, J.D., 2007. Cardiomyocyte GATA4 functions as a

stress-responsive regulator of angiogenesis in the murine heart. J. Clin. Invest. 117, 3198–3210. doi:10.1172/JCI32573

Heineke, J., Molkentin, J.D., 2006. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600.

doi:10.1038/nrm1983

Herzig, T.C., Jobe, S.M., Aoki, H., Molkentin, J.D., Cowley, A.W., Izumo, S., Markham, B.E., 1997. Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload.

Proc. Natl. Acad. Sci. 94, 7543–7548. doi:10.1073/pnas.94.14.7543

Humphries, M.J., Reynolds, A., 2009. Cell-to-cell contact and extracellular matrix.

Curr. Opin. Cell Biol. 21, 613–615. doi:10.1016/j.ceb.2009.09.001

Imai, N., Kashiki, M., Woolf, P.D., Liang, C.S., 1994. Comparison of cardiovascular effects of mu- and delta-opioid receptor antagonists in dogs with congestive heart failure. Am. J. Physiol. 267, H912-H917.

doi: 10.1152/ajpheart. 1994. 267.3.H912

Izumiya, Y., Shiojima, I., Sato, K., Sawyer, D.B., Colucci, W.S., Walsh, K., 2006.

Vascular Endothelial Growth Factor Blockade Promotes the Transition From Compensatory Cardiac Hypertrophy to Failure in Response to Pressure Overload. Hypertension. 47, 887–893.

doi:10.1161/01.HYP.0000215207.54689.31

Jiménez, B., Volpert, O. V., Crawford, S.E., Febbraio, M., Silverstein, R.L., Bouck, N., 2000. Signals leading to apoptosis-dependent inhibition of

neovascularization by thrombospondin-1. Nat. Med. 6, 41–48.

doi:10.1038/71517

Kakkar, R., Lee, R.T., 2010. Intramyocardial fibroblast myocyte communication.

Circ. Res. 106, 47-57. doi:10.1161/CIRCRESAHA.109.207456

Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., Izawa, A., Takahashi, Y., Masumoto, J., Koyama, J., Hongo, M., Noda, T., Nakayama, J., Sagara, J., Taniguchi, S., Ikeda, U., 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial

ischemia/reperfusion injury. Circulation.123, 594–604.

doi:10.1161/CIRCULATIONAHA.110.982777

Kehat, I., Molkentin, J.D., 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation.122, 2727–

2735. doi:10.1161/CIRCULATIONAHA.110.942268

Kohli, S., Ahuja, S., Rani, V., 2011. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr. Cardiol. Rev. 7, 262–271.

doi:10.2174/157340311799960618

Kong, P., Christia, P., Frangogiannis, N.G., 2014. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574. doi:10.1007/s00018-013-1349-6 Lajiness, J.D., Conway, S.J., 2014. Origin, development, and differentiation of

cardiac fibroblasts. J. Mol. Cell. Cardiol. 70:2-8.

doi:10.1016/j.yjmcc.2013.11.003

Liang, Q., De Windt, L.J., Witt, S.A., Kimball, T.R., Markham, B.E., Molkentin, J.D., 2001. The Transcription Factors GATA4 and GATA6 Regulate Cardiomyocyte Hypertrophy in Vitro and in Vivo. J. Biol. Chem. 276, 30245–30253.

doi:10.1074/jbc.M102174200

Liu, H., Chen, B., Lilly, B., 2008. Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis. 11, 223–234.

doi:10.1007/s10456-008-9102-8

Matsue, Y., Ter Maaten, J.M., Struck, J., Metra, M., O ’connor, C.M., Ponikowski, P., Teerlink, J.R., Cotter, G., Davison, B., Cleland, J.G., Givertz, M.M., Bloomfield, D.M., Dittrich, H.C., Van Veldhuisen, D.J., Van Der Meer, P., Damman, K., Voors, A.A., 2016. Clinical Correlates and Prognostic Value of

Proenkephalin in Acute and Chronic Heart Failure. J. Card. Fail. 23, 231–239.

doi:10.1016/j.cardfail.2016.09.007

Mohamed, T.M.A., Abou-Leisa, R., Stafford, N., Maqsood, A., Zi, M., Prehar, S., Baudoin-Stanley, F., Wang, X., Neyses, L., Cartwright, E.J., Oceandy, D., 2016. The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy. Nat. Commun. 7, 11074.

doi:10.1038/ncomms11074

Molkentin, J.D., 2000. The zinc finger-containing transcription factors GATA-4, -5, and -6: Ubiquitously expressed regulators of tissue-specific gene expression.

J. Biol. Chem. 275,38949-38952. doi:10.1074/jbc.R000029200

Molkentin, J.D., Lu, J.R., Antos, C.L., Markham, B., Richardson, J., Robbins, J., Grant, S.R., Olson, E.N., 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93, 215–228. doi:10.1016/S0092-8674(00)81573-1

Moore-Morris, T., Guimarães-Camboa, N., Banerjee, I., Zambon, A.C., Kisseleva, T., Velayoudon, A., Stallcup, W.B., Gu, Y., Dalton, N.D., Cedenilla, M.,

Gomez-Amaro, R., Zhou, B., Brenner, D.A., Peterson, K.L., Chen, J., Evans, S.M., 2014. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124, 2921–2934. doi:10.1172/JCI74783 Morimoto, T., Hasegawa, K., Kaburagi, S., Kakita, T., Wada, H., Yanazume, T.,

Sasayama, S., 2000. Phosphorylation of GATA-4 is involved in α1-Adrenergic Agonist- responsive transcription of the endothelin-1 gene in cardiac

myocytes. J. Biol. Chem. 275, 13721–13726. doi:10.1074/jbc.275.18.13721 Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M.,

Das, S.R., De Ferranti, S., Després, J.P., Fullerton, H.J., Howard, V.J., Huffman, M.D., Isasi, C.R., Jiménez, M.C., Judd, S.E., Kissela, B.M.,

Lichtman, J.H., Lisabeth, L.D., Liu, S., MacKey, R.H., Magid, D.J., McGuire, D.K., Mohler, E.R., Moy, C.S., Muntner, P., Mussolino, M.E., Nasir, K., Neumar, R.W., Nichol, G., Palaniappan, L., Pandey, D.K., Reeves, M.J., Rodriguez, C.J., Rosamond, W., Sorlie, P.D., Stein, J., Towfighi, A., Turan, T.N., Virani, S.S., Woo, D., Yeh, R.W., Turner, M.B., 2016. Executive

summary: Heart disease and stroke statistics-2016 update: A Report from the American Heart Association. Circulation. 133, e38-360.

doi:10.1161/CIR.0000000000000366

Murakami, M., Simons, M., 2008. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 15, 215–220.

doi:10.1097/MOH.0b013e3282f97d98

Nag, A.C., 1980. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28, 41–61.

Ng, L.L., Sandhu, J.K., Narayan, H., Quinn, P.A., Squire, I.B., Davies, J.E., Bergmann, A., Maisel, A., Jones, D.J.L., 2014. Proenkephalin and prognosis after acute myocardial infarction. J. Am. Coll. Cardiol. 63, 280–289.

doi:10.1016/j.jacc.2013.09.037

Oka, T., Maillet, M., Watt, A.J., Schwartz, R.J., Aronow, B.J., Duncan, S.A., Molkentin, J.D., 2006. Cardiac-specific deletion of gata4 reveals its

requirement for hypertrophy, compensation, and myocyte viability. Circ. Res.

98, 837–845. doi:10.1161/01.RES.0000215985.18538.c4

Olsen, M.W.B., Ley, C.D., Junker, N., Hansen, A.J., Lund, E.L., Kristjansen, P.E.G., 2006. Angiopoietin-4 inhibits angiogenesis and reduces interstitial fluid pressure. Neoplasia. 8, 364–372. doi:10.1593/neo.06127

Patient, R.K., McGhee, J.D., 2002. The GATA family (vertebrates and

invertebrates). Curr. Opin. Genet. Dev. 12, 416–422. doi:10.1016/S0959-437X(02)00319-2

Peterkin, T., Gibson, A., Loose, M., Patient, R., 2005. The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin. Cell Dev. Biol. 16, 83-94.

doi:10.1016/j.semcdb.2004.10.003

Pikkarainen, S., Tokola, H., Kerkelä, R., Ruskoaho, H., 2004. GATA transcription factors in the developing and adult heart. Cardiovasc. Res. 63, 196-207.

doi:10.1016/j.cardiores.2004.03.025

Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T., D’antoni, M.L., Debuque, R., Chandran, A., Wang, L., Arora, K., Rosenthal, N.A., Tallquist, M.D., 2016.

Revisiting cardiac cellular composition. Circ. Res. 118, 400–409.

doi:10.1161/CIRCRESAHA.115.307778

Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., Falk, V., González-Juanatey, J.R., Harjola, V.-P., Jankowska, E.A., Jessup, M., Linde, C., Nihoyannopoulos, P., Parissis, J.T., Pieske, B., Riley, J.P., Rosano, G.M.C., Ruilope, L.M., Ruschitzka, F., Rutten, F.H., van der Meer, P., 2016. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 18, 891–975. doi:10.1002/ejhf.592 Porter, K.E., Turner, N.A., 2009. Cardiac fibroblasts: At the heart of myocardial

remodeling. Pharmacol. Ther. 123, 255-278.

doi:10.1016/j.pharmthera.2009.05.002

Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I., West, A.B., 1999. Myofibroblasts. I. Paracrine cells important in health and disease. Am.

J. Physiol. Physiol. 277, C1–C19. doi:10.1086/316294

Ren, B., Best, B., Ramakrishnan, D.P., Walcott, B.P., Storz, P., Silverstein, R.L., 2016. LPA/PKD-1-FoxO1 signaling axis mediates endothelial cell CD36 transcriptional repression and proangiogenic and proarteriogenic

reprogramming. Arterioscler. Thromb. Vasc. Biol. 36, 1197–1208.

doi:10.1161/ATVBAHA.116.307421

Ren, B., Yee, K.O., Lawler, J., Khosravi-Far, R., 2006. Regulation of tumor angiogenesis by thrombospondin-1. Biochim. Biophys. Acta - Rev. Cancer.

1765, 178–188. doi:10.1016/j.bbcan.2005.11.002

Rodriguez, S., 2004. Haplotypic analyses of the IGF2-INS-TH gene cluster in relation to cardiovascular risk traits. Hum. Mol. Genet. 13, 715–725.

doi:10.1093/hmg/ddh070

Samani, A.A., Yakar, S., LeRoith, D., Brodt, P., 2007. The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocr.

Rev. 28, 20–47. doi:10.1210/er.2006-0001

Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., Pagano, F., Schiavon, S., Bordin, A., Carrizzo, A., Vecchione, C., Valenti, V., Chimenti, I., Falco, E. De, Sciarretta, S., Frati, G., 2017. A Review of the Molecular

Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev. 2017. 2017,3920195

doi:10.1155/2017/3920195

Segura, A.M., Frazier, O.H., Buja, L.M., 2014. Fibrosis and heart failure. Heart Fail. Rev. 19, 173–185. doi:10.1007/s10741-012-9365-4

Shiojima, I., Sato, K., Izumiya, Y., Schiekofer, S., Ito, M., Liao, R., Colucci, W.S., Walsh, K., 2005. Disruption of coordinated cardiac hypertrophy and

angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118. doi:10.1172/JCI24682

Souders, C.A., Bowers, S.L.K., Baudino, T.A., 2009. Cardiac Fibroblast: The Renaissance Cell. Circ. Res. 105, 1164–1176.

doi:10.1161/CIRCRESAHA.109.209809

Sun, Y., Weber, K.T., 2000. Infarct scar: a dynamic tissue. Cardiovasc. Res. 46, 250–256. doi:10.1016/S0008-6363(00)00032-8

Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., Shindo, T., Sano, M., Otsu, K., Snider, P., Conway, S.J., Nagai, R., 2010.

Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J. Clin. Invest. 120, 254-65 doi:10.1172/JCI40295

Tallquist, M.D., Molkentin, J.D., 2017. Redefining the identity of cardiac fibroblasts.

Nat. Rev. Cardiol. 14, 484–491. doi:10.1038/nrcardio.2017.57

Travers, J.G., Kamal, F.A., Robbins, J., Yutzey, K.E., Blaxall, B.C., 2016. Cardiac fibrosis: The fibroblast awakens. Circ. Res. 118, 1021–1040. doi: 10.1161 /CIRCRESAHA.115.306565

Van Berlo, J.H., Aronow, B.J., Molkentin, J.D., 2013. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response. PLoS One. 8, e84591. doi:10.1371/journal.pone.0084591

Van Berlo, J.H., Elrod, J.W., Van Den Hoogenhof, M.M.G., York, A.J., Aronow, B.J., Duncan, S.A., Molkentin, J.D., 2010. The transcription factor GATA-6 regulates pathological cardiac hypertrophy. Circ. Res. 107, 1032–1040.

doi:10.1161/CIRCRESAHA.110.220764

van den Brink, O.W. V, Delbridge, L.M., Rosenfeldt, F.L., Penny, D., Esmore, D.S., Quick, D., Kaye, D.M., Pepe, S., 2003. Endogenous cardiac opioids:

Enkephalins in adaptation and protection of the heart. Hear. Lung Circ. 12, 178-187. doi:10.1046/j.1444-2892.2003.00240.x

Waldo, K., Miyagawa-Tomita, S., Kumiski, D., Kirby, M.L., 1998. Cardiac Neural Crest Cells Provide New Insight into Septation of the Cardiac Outflow Tract:

Aortic Sac to Ventricular Septal Closure. Dev. Biol. 196, 129–144.

doi:10.1006/dbio.1998.8860

Wang, K.C., Botting, K.J., Padhee, M., Zhang, S., Mcmillen, I.C., Suter, C.M., Brooks, D.A., Morrison, J.L., 2012. Early origins of heart disease: Low birth weight and the role of the insulin-like growth factor system in cardiac

hypertrophy. Clin. Exp. Pharmacol. Physiol. 39, 958–964. doi:10.1111/j.1440-1681.2012.05743.x

Wu, Q.-Q., Xiao, Y., Yuan, Y., Ma, Z.-G., Liao, H.-H., Liu, C., Zhu, J.-X., Yang, Z., Deng, W., Tang, Q.-Z., 2017. Mechanisms contributing to cardiac remodelling.

Clin. Sci. (Lond). 131, 2319–2345. doi:10.1042/CS20171167

Xin, M., Davis, C.A., Molkentin, J.D., Lien, C.-L., Duncan, S.A., Richardson, J.A., Olson, E.N., 2006. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc. Natl. Acad. Sci. U. S. A. 103, 11189– 11194. doi:10.1073/pnas.0604604103

Yao, H., Han, X., Han, X., 2014. The Cardioprotection of the Insulin-Mediated PI3K/Akt/mTOR Signaling Pathway. Am. J. Cardiovasc. Drugs. 14, 433-442.

doi:10.1007/s40256-014-0089-9

Zaina, S., Pettersson, L., Thomsen, A.B., Chai, C.M., Qi, Z., Thyberg, J., Nilsson, J., 2003. Shortened life span, bradycardia, and hypotension in mice with targeted expression of an Igf2 transgene in smooth muscle cells.

Endocrinology. 144, 2695–2703. doi:10.1210/en.2002-220944

Zhang, C.L., McKinsey, T.A., Chang, S., Antos, C.L., Hill, J.A., Olson, E.N., 2002.

Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 110, 479–488. doi:10.1016/S0092-8674(02)00861-9

Zhao, L., Eghbali-Webb, M., 2001. Release of pro- and anti-angiogenic factors by human cardiac fibroblasts: Effects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochim Biophys Acta - Mol. Cell Res.

1538, 273–282. doi:10.1016/S0167-4889(01)00078-7

Zhao, R., Watt, A.J., Battle, M.A., Li, J., Bondow, B.J., Duncan, S.A., 2008. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev. Biol. 317, 614–619. doi:10.1016/j.ydbio.2008.03.013 Zhou, H., Dickson, M.E., Kim, M.S., Bassel-Duby, R., Olson, E.N., 2015.

Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc. Natl. Acad. Sci. 112, 11864–11869.

doi:10.1073/pnas.1516237112

Ziaeian, B., Fonarow, G.C., 2016. Epidemiology and aetiology of heart failure. Nat.

Rev. Cardiol. 13, 368–378. doi:10.1038/nrcardio.2016.25

9. Erklärung § 2 Abs. 2 Nr. 6 und 7 PromO

Ich erkläre, dass ich die der Medizinischen Hochschule Hannover zur Promotion eingereichte Dissertation mit dem Titel: Specific deletion of the transcription factors GATA4 and GATA6 in fibroblasts triggers cardiac dysfunction during pressure overload

aus der Klinik für Kardiologie und Angiologie der Medizinischen Hochschule Hannover

unter Betreuung von Prof. Dr. med. Jörg Heineke mit der Unterstützung durch Dr. Natali Froese

ohne sonstige Hilfe durchgeführt und bei der Abfassung der Dissertation keine anderen als die dort aufgeführten Hilfsmittel benutzt habe.

Die Gelegenheit zum vorliegenden Promotionsverfahren ist mir nicht kommerziell vermittelt worden. Insbesondere habe ich keine Organisation eingeschaltet, die gegen Entgelt Betreuerinnen und Betreuer für die Anfertigung von Dissertationen sucht oder die mir obliegenden Pflichten hinsichtlich der Prüfungsleistungen für mich ganz oder teilweise erledigt.

Ich habe diese Dissertation bisher an keiner in- oder ausländischen Hochschule zur Promotion eingereicht. Weiterhin versichere ich, dass ich den beantragten Titel bisher noch nicht erworben habe.

Ergebnisse der Dissertation wurden in keinem Publikationsorgan veröffentlicht.

Hannover, den _______________________

_______________________

(Unterschrift)

10. Acknowledgement

First, I would like to thank Prof. Jörg Heineke for giving me the opportunity to proceed in the Department of Cardiology and Angiology, Hannover Medical School for two and a half years. I really have gained a lot during my time here. He is a good teacher who give me great patience and valuable guidance in every stage of my study here. Without his constant encouragement and guidance, this thesis could not have reached its present form.

I shall extend my thanks to Dr. Natali Froese. She gave me a lot of supports in past two years. I appreciate her careful guidance and encouragement. She provided scientific guidance, participated in the discussions and organized the mouse line and my work. During preparation of the thesis, she has spent much time reading through each draft and provided me with inspiring advice.

My special thanks to the entire laboratory team: Frau Malgorzata Szaroszyk for her great efforts of operating mice, Frau Dr. Mona Malekmohammadi and Herr Dr.

Badder Kattih for the echocardiography. I’d like to thank Frau Dr. Andrea Grund, and Frau Dr. Gesine Scharf for the many good advice and help in all areas. I would like to thank everyone in our group who contributed directly or indirectly to the development of this project.

I would also like to give my acknowledgements to the dear technicians Frau Ulrike Schramek, Frau Anna Gigina, Frau Tamara Tuchel and Frau Nicole Erns for their technique supporting.

I am grateful to Prof. Mayr Manuel for analysis of ECM proteomics. Thanks to Dr.

Robert Geffers who helped us performed RNA-deep sequencing. I am also thankful to Dr. Daniela Fraccarollo for CFs isolation and sorting.

At the same time, I would grateful thank my motherland for providing me with the government scholarship to support my study and research in Germany.

Besides, Thanks all of my friends for accompanying with me during the past years.

We shared happiness and sadness. Thanks for their great friendship.

Above all, I would like to give my deepest gratitude and love to my family. In memory of my gone father-in-law Li Wu, and without supports of my father Qinglin Wang, mother Chuanhua Wei, mother-in-law Meiping Xu, husband Zhiqun Wu, my son Yifan Wu and my little daughter Yinuo Wu, nothing is possible.