• Keine Ergebnisse gefunden

1. Avery, O.T., Macleod, C.M. and McCarty, M. (1944) Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med, 79, 137-158.

2. Waddington, C.H. (1940) Organisers and Genes. Cambridge Univ. Press.

3. Waddington, C.H. (1957) The Strategy of the Genes Allen & Unwin, New York.

4. Hannah, A. (1951) Localization and function of heterochromatin in Drosophila

7. Berger, S.L., Kouzarides, T., Shiekhattar, R. and Shilatifard, A. (2009) An operational definition of epigenetics. Genes Dev, 23, 781-783.

8. Felsenfeld, G. (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol, 6.

9. Crick, F.H. (1979) Thinking about the brain. Sci Am, 241, 219-232.

10. Akam, M. (1987) The molecular basis for metameric pattern in the Drosophila embryo.

Development, 101, 1-22.

11. Dottori, M., Tay, C. and Hughes, S.M. (2011) Neural development in human embryonic stem cells-applications of lentiviral vectors. J Cell Biochem, 112, 1955-1962.

12. Lee, S.K. and Pfaff, S.L. (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat Neurosci, 4 Suppl, 1183-1191.

13. Sommer, L. (2001) Context-dependent regulation of fate decisions in multipotent progenitor cells of the peripheral nervous system. Cell Tissue Res, 305, 211-216.

14. Shen, Q., Qian, X., Capela, A. and Temple, S. (1998) Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J Neurobiol, 36, 162-174.

15. Temple, S. (2001) The development of neural stem cells. Nature, 414, 112-117.

16. Gage, F.H. (2000) Mammalian neural stem cells. Science, 287, 1433-1438.

17. Conti, L. and Cattaneo, E. (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci, 11, 176-187.

18. Kokovay, E., Shen, Q. and Temple, S. (2008) The incredible elastic brain: how neural stem cells expand our minds. Neuron, 60, 420-429.

19. Kuegler, P.B., Zimmer, B., Waldmann, T., Baudis, B., Ilmjarv, S., Hescheler, J., Gaughwin, P., Brundin, P., Mundy, W., Bal-Price, A.K. et al. (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX, 27, 17-42.

20. Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA.

Science, 184, 868-871.

21. Clark, R.J. and Felsenfeld, G. (1971) Structure of chromatin. Nat New Biol, 229, 101-106.

22. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251-260.

23. Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B. and Miller, A.D. (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A, 86, 5434-5438.

24. Ridgway, P. and Almouzni, G. (2001) Chromatin assembly and organization. J Cell Sci, 114, 2711-2712.

25. Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J. et al. (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell, 143, 212-224.

26. Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications.

Nature, 403, 41-45.

27. Bogdanovic, O. and Veenstra, G.J. (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma, 118, 549-565.

28. Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693-705.

29. Clapier, C.R. and Cairns, B.R. (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem, 78, 273-304.

30. Kappes, F., Waldmann, T., Mathew, V., Yu, J., Zhang, L., Khodadoust, M.S., Chinnaiyan, A.M., Luger, K., Erhardt, S., Schneider, R. et al. (2011) The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev, 25, 673-678.

31. Della Ragione, F., Gagliardi, M., D'Esposito, M. and Matarazzo, M.R. (2014) Non-coding RNAs in chromatin disease involving neurological defects. Front Cell Neurosci, 8, 54.

32. Riggs, A.D. (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 14, 9-25.

33. Goll, M.G. and Bestor, T.H. (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74, 481-514.

34. Bird, A.P. (1978) Use of restriction enzymes to study eukaryotic DNA methylation: II.

The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol, 118, 49-60.

35. Klose, R.J. and Bird, A.P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31, 89-97.

36. Daura-Oller, E., Cabre, M., Montero, M.A., Paternain, J.L. and Romeu, A. (2009) Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation, 3, 340-343.

37. Cattanach, B.M. and Kirk, M. (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature, 315, 496-498.

38. Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33 Suppl, 245-254.

39. Jenkins, T.G. and Carrell, D.T. (2012) Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet, 3, 143.

40. Kangaspeska, S., Stride, B., Metivier, R., Polycarpou-Schwarz, M., Ibberson, D., Carmouche, R.P., Benes, V., Gannon, F. and Reid, G. (2008) Transient cyclical methylation of promoter DNA. Nature, 452, 112-115.

41. Thillainadesan, G., Chitilian, J.M., Isovic, M., Ablack, J.N., Mymryk, J.S., Tini, M. and Torchia, J. (2012) TGF-beta-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell, 46, 636-649.

42. Wu, S.C. and Zhang, Y. (2010) Active DNA demethylation: many roads lead to Rome.

Nat Rev Mol Cell Biol, 11, 607-620.

43. Mohan, K.N. and Chaillet, J.R. (2013) Cell and molecular biology of DNA methyltransferase 1. Int Rev Cell Mol Biol, 306, 1-42.

44. Chedin, F. (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci, 101, 255-285.

45. Ooi, S.K. and Bestor, T.H. (2008) The colorful history of active DNA demethylation.

Cell, 133, 1145-1148.

46. Karsy, M., Gelbman, M., Shah, P., Balumbu, O., Moy, F. and Arslan, E. (2012) Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. Folia Neuropathol, 50, 301-321.

47. Kohli, R.M. and Zhang, Y. (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472-479.

48. Stedman, E. (1950) Cell specificity of histones. Nature, 166, 780-781.

49. Allfrey, V.G., Faulkner, R. and Mirsky, A.E. (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A, 51, 786-794.

50. Sterner, D.E. and Berger, S.L. (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 64, 435-459.

51. Cheng, X. and Zhang, X. (2007) Structural dynamics of protein lysine methylation and demethylation. Mutat Res, 618, 102-115.

52. Nowak, S.J. and Corces, V.G. (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet, 20, 214-220.

53. Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination:

implications in the regulation of gene expression. Annu Rev Biochem, 75, 243-269.

54. Nathan, D., Ingvarsdottir, K., Sterner, D.E., Bylebyl, G.R., Dokmanovic, M., Dorsey, J.A., Whelan, K.A., Krsmanovic, M., Lane, W.S., Meluh, P.B. et al. (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev, 20, 966-976.

55. Hassa, P.O., Haenni, S.S., Elser, M. and Hottiger, M.O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev, 70, 789-829.

56. Dou, Y. and Gorovsky, M.A. (2000) Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol Cell, 6, 225-231.

57. Segre, C.V. and Chiocca, S. (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol, 2011, 690848.

58. Aka, J.A., Kim, G.W. and Yang, X.J. (2011) K-acetylation and its enzymes: overview and new developments. Handb Exp Pharmacol, 206, 1-12.

59. Grant, P.A., Eberharter, A., John, S., Cook, R.G., Turner, B.M. and Workman, J.L. modifications and nuclear architecture: a review. J Histochem Cytochem, 56, 711-721.

62. Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L. and Berger, S.L. (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol, 19, 86-98.

63. Xu, F., Zhang, K. and Grunstein, M. (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell, 121, 375-385.

64. Hezroni, H., Tzchori, I., Davidi, A., Mattout, A., Biran, A., Nissim-Rafinia, M., Westphal, H. and Meshorer, E. (2011) H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells. Nucleus, 2, 300-309.

65. Santos-Rosa, H., Valls, E., Kouzarides, T. and Martinez-Balbas, M. (2003) Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res, 31, 4285-4292.

66. Carrozza, M.J., John, S., Sil, A.K., Hopper, J.E. and Workman, J.L. (2002) Gal80

68. de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. and van Kuilenburg, A.B.

(2003) Histone deacetylases (HDACs): characterization of the classical HDAC family.

Biochem J, 370, 737-749.

69. Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., Serrano, L., Sternglanz, R. and Reinberg, D. (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev, 20, 1256-1261.

70. Broide, R.S., Redwine, J.M., Aftahi, N., Young, W., Bloom, F.E. and Winrow, C.J. HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol, 53, 275-289.

73. Fischer, A., Sananbenesi, F., Mungenast, A. and Tsai, L.H. (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci, 31, 605-617.

74. Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074-1080.

75. Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D. et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593-599.

76. Sims, R.J., 3rd and Reinberg, D. (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev, 20, 2779-2786.

77. Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C., Schreiber, S.L., Mellor, J. and Kouzarides, T. (2002) Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407-411.

78. Bernstein, B.E., Humphrey, E.L., Erlich, R.L., Schneider, R., Bouman, P., Liu, J.S., Kouzarides, T. and Schreiber, S.L. (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A, 99, 8695-8700.

79. Hublitz, P., Albert, M. and Peters, A.H. (2009) Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol, 53, 335-354.

80. Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W. and Cleary, M.L. (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol, 24, 5639-5649.

81. Yu, B.D., Hanson, R.D., Hess, J.L., Horning, S.E. and Korsmeyer, S.J. (1998) MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A, 95, 10632-10636.

82. van der Lugt, N.M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., te Riele, H., van der Valk, M., Deschamps, J., Sofroniew, M., van Lohuizen, M. et al.

(1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev, 8, 757-769.

83. Zhang, Y., Cao, R., Wang, L. and Jones, R.S. (2004) Mechanism of Polycomb group gene silencing. Cold Spring Harb Symp Quant Biol, 69, 309-317.

84. Bernstein, E., Duncan, E.M., Masui, O., Gil, J., Heard, E. and Allis, C.D. (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol, 26, 2560-2569.

85. Pereira, J.D., Sansom, S.N., Smith, J., Dobenecker, M.W., Tarakhovsky, A. and Livesey, F.J. (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A, 107, 15957-15962.

86. Margueron, R., Li, G., Sarma, K., Blais, A., Zavadil, J., Woodcock, C.L., Dynlacht, B.D. and Reinberg, D. (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell, 32, 503-518.

87. Wang, L., Brown, J.L., Cao, R., Zhang, Y., Kassis, J.A. and Jones, R.S. (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell, 14, 637-646.

88. Stock, J.K., Giadrossi, S., Casanova, M., Brookes, E., Vidal, M., Koseki, H., Brockdorff, N., Fisher, A.G. and Pombo, A. (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol, 9, 1428-1435.

89. Francis, N.J., Kingston, R.E. and Woodcock, C.L. (2004) Chromatin compaction by a polycomb group protein complex. Science, 306, 1574-1577.

90. Raaphorst, F.M. (2005) Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet, 14 Spec No 1, methylation in human embryonic stem cells. Cell Stem Cell, 1, 299-312.

93. Bannister, A.J. and Kouzarides, T. (2011) Regulation of chromatin by histone modifications. Cell Res, 21, 381-395.

94. Shankar, S.R., Bahirvani, A.G., Rao, V.K., Bharathy, N., Ow, J.R. and Taneja, R.

(2013) G9a, a multipotent regulator of gene expression. Epigenetics, 8, 16-22.

95. Chen, X., Skutt-Kakaria, K., Davison, J., Ou, Y.L., Choi, E., Malik, P., Loeb, K., Wood, B., Georges, G., Torok-Storb, B. et al. (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev, 26, 2499-2511.

96. Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A. and Feinberg, A.P. (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet, 41, 246-250.

97. Eskeland, R., Eberharter, A. and Imhof, A. (2007) HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol, 27, 453-465.

98. Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H.H., Whetstine, J.R., Bonni, A., Roberts, T.M. and Shi, Y. (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell, 128, 1077-1088.

99. De Santa, F., Totaro, M.G., Prosperini, E., Notarbartolo, S., Testa, G. and Natoli, G.

(2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 130, 1083-1094.

100. Klose, R.J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J. and Zhang, Y. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 442, 312-316.

101. Maze, I., Noh, K.M., Soshnev, A.A. and Allis, C.D. (2014) Every amino acid matters:

essential contributions of histone variants to mammalian development and disease. Nat Rev Genet, 15, 259-271.

102. Talbert, P.B. and Henikoff, S. (2010) Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 11, 264-275.

103. Izzo, A., Kamieniarz-Gdula, K., Ramirez, F., Noureen, N., Kind, J., Manke, T., van Steensel, B. and Schneider, R. (2013) The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep, 3, 2142-2154.

104. Filipescu, D., Szenker, E. and Almouzni, G. (2013) Developmental roles of histone H3 variants and their chaperones. Trends Genet, 29, 630-640.

105. Banaszynski, L.A., Wen, D., Dewell, S., Whitcomb, S.J., Lin, M., Diaz, N., Elsasser, S.J., Chapgier, A., Goldberg, A.D., Canaani, E. et al. (2013) Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell, 155, 107-120.

106. Chang, C.C., Ma, Y., Jacobs, S., Tian, X.C., Yang, X. and Rasmussen, T.P. (2005) A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol, 278, 367-380.

107. Akiyama, T., Suzuki, O., Matsuda, J. and Aoki, F. (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet, 7, e1002279.

108. Hake, S.B., Garcia, B.A., Duncan, E.M., Kauer, M., Dellaire, G., Shabanowitz, J., Bazett-Jones, D.P., Allis, C.D. and Hunt, D.F. (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem, 281, 559-568.

109. Lin, C.J., Conti, M. and Ramalho-Santos, M. (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.

Development, 140, 3624-3634.

110. Hu, G., Cui, K., Northrup, D., Liu, C., Wang, C., Tang, Q., Ge, K., Levens, D., Crane-Robinson, C. and Zhao, K. (2013) H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell, 12, 180-192.

111. Creyghton, M.P., Markoulaki, S., Levine, S.S., Hanna, J., Lodato, M.A., Sha, K., Young, R.A., Jaenisch, R. and Boyer, L.A. (2008) H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell, 135, 649-661.

112. Pina, B. and Suau, P. (1987) Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol, 123, 51-58.

113. Santoro, S.W. and Dulac, C. (2012) The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. Elife, 1, e00070.

114. Bassing, C.H., Chua, K.F., Sekiguchi, J., Suh, H., Whitlow, S.R., Fleming, J.C., Monroe, B.C., Ciccone, D.N., Yan, C., Vlasakova, K. et al. (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A, 99, 8173-8178.

115. Tomonaga, T., Matsushita, K., Yamaguchi, S., Oohashi, T., Shimada, H., Ochiai, T., Yoda, K. and Nomura, F. (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res, 63, 3511-3516.

116. Chen, P., Zhao, J. and Li, G. (2013) Histone variants in development and diseases. J Genet Genomics, 40, 355-365.

117. Gutierrez, J.L., Chandy, M., Carrozza, M.J. and Workman, J.L. (2007) Activation domains drive nucleosome eviction by SWI/SNF. EMBO J, 26, 730-740.

118. Sif, S. (2004) ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J Cell Biochem, 91, 1087-1098.

119. Eisen, J.A., Sweder, K.S. and Hanawalt, P.C. (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res, 23, 2715-2723.

120. Brown, E., Malakar, S. and Krebs, J.E. (2007) How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol, 85, 444-462.

121. Hargreaves, D.C. and Crabtree, G.R. (2011) ATP-dependent chromatin remodeling:

genetics, genomics and mechanisms. Cell Res, 21, 396-420.

122. Peterson, C.L. and Herskowitz, I. (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 68, 573-583.

123. Imbalzano, A.N., Kwon, H., Green, M.R. and Kingston, R.E. (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature, 370, 481-485.

124. Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B.R. and Crabtree, G.R. (1996) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev, 10, 2117-2130.

125. Kadam, S. and Emerson, B.M. (2003) Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell, 11, 377-389.

126. Matsumoto, S., Banine, F., Struve, J., Xing, R., Adams, C., Liu, Y., Metzger, D., Chambon, P., Rao, M.S. and Sherman, L.S. (2006) Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol, 289, 372-383.

127. Reyes, J.C., Barra, J., Muchardt, C., Camus, A., Babinet, C. and Yaniv, M. (1998) Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J, 17, 6979-6991.

128. Reisman, D.N., Sciarrotta, J., Bouldin, T.W., Weissman, B.E. and Funkhouser, W.K.

(2005) The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl Immunohistochem Mol Morphol, 13, 66-74.

129. Randazzo, F.M., Khavari, P., Crabtree, G., Tamkun, J. and Rossant, J. (1994) brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator.

Dev Biol, 161, 229-242.

130. Lessard, J., Wu, J.I., Ranish, J.A., Wan, M., Winslow, M.M., Staahl, B.T., Wu, H., Aebersold, R., Graef, I.A. and Crabtree, G.R. (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron, 55, 201-215.

131. Ho, L., Jothi, R., Ronan, J.L., Cui, K., Zhao, K. and Crabtree, G.R. (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci U S A, 106, 5187-5191.

132. Erdel, F. and Rippe, K. (2011) Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why? FEBS J, 278, 3608-3618.

133. de la Serna, I.L., Ohkawa, Y. and Imbalzano, A.N. (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet, 7, 461-473.

134. LeRoy, G., Loyola, A., Lane, W.S. and Reinberg, D. (2000) Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem, 275, 14787-14790.

135. Barak, O., Lazzaro, M.A., Lane, W.S., Speicher, D.W., Picketts, D.J. and Shiekhattar, R. (2003) Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J, 22, 6089-6100.

136. Wysocka, J., Swigut, T., Xiao, H., Milne, T.A., Kwon, S.Y., Landry, J., Kauer, M., Tackett, A.J., Chait, B.T., Badenhorst, P. et al. (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature, 442, 86-90.

137. Woodage, T., Basrai, M.A., Baxevanis, A.D., Hieter, P. and Collins, F.S. (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A, 94, 11472-11477.

138. Bowen, N.J., Fujita, N., Kajita, M. and Wade, P.A. (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta, 1677, 52-57.

139. Lee, J.T. (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol, 12, 815-826.

140. Pines, J. and Rieder, C.L. (2001) Re-staging mitosis: a contemporary view of mitotic

144. Yang, Y. and Herrup, K. (2007) Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta, 1772, 457-466.

145. Feddersen, R.M., Ehlenfeldt, R., Yunis, W.S., Clark, H.B. and Orr, H.T. (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron, 9, 955-966.

146. Yang, Y., Mufson, E.J. and Herrup, K. (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci, 23, 2557-2563.

147. Ranganathan, S. and Bowser, R. (2003) Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol, 162, 823-835.

148. Love, S. (2003) Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett, 353, 29-32.

149. Evan, G.I. and Vousden, K.H. (2001) Proliferation, cell cycle and apoptosis in cancer.

Nature, 411, 342-348.

150. Jacks, T., Fazeli, A., Schmitt, E.M., Bronson, R.T., Goodell, M.A. and Weinberg, R.A.

(1992) Effects of an Rb mutation in the mouse. Nature, 359, 295-300.

151. Herrup, K. and Busser, J.C. (1995) The induction of multiple cell cycle events precedes target-related neuronal death. Development, 121, 2385-2395.

152. Greene, L.A., Biswas, S.C. and Liu, D.X. (2004) Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ, 11, 49-60.

153. Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R. and Park, D.S. (1999) Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J Biol Chem, 274, 19011-19016.

154. Yang, Y., Varvel, N.H., Lamb, B.T. and Herrup, K. (2006) Ectopic cell cycle events link human Alzheimer's disease and amyloid precursor protein transgenic mouse models. J Neurosci, 26, 775-784.

155. Appert-Collin, A., Hugel, B., Levy, R., Niederhoffer, N., Coupin, G., Lombard, Y., Andre, P., Poindron, P. and Gies, J.P. (2006) Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci, 79, 484-490.

156. Yurov, Y.B., Vorsanova, S.G. and Iourov, I.Y. (2011) The DNA replication stress Lee, Y.Y. (2000) Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res, 60, 3065-3071.

159. Khorasanizadeh, S. (2004) The nucleosome: from genomic organization to genomic regulation. Cell, 116, 259-272.

160. Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C.

and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410, 120-124.

161. Daujat, S., Zeissler, U., Waldmann, T., Happel, N. and Schneider, R. (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem, 280, 38090-38095.

162. Kappes, F., Waldmann, T., Mathew, V., Yu, J., Zhang, L., Khodadoust, M.S., Chinnaiyan, A.M., Luger, K., Erhardt, S., Schneider, R. et al. (2011) The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes &

development, 25, 673-678.

163. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M. et al. (2006) Chromatin signatures of pluripotent cell lines. Nature cell biology, 8, 532-538.

164. Cheung, I., Shulha, H.P., Jiang, Y., Matevossian, A., Wang, J., Weng, Z. and Akbarian, S. (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 8824-8829.

165. Yang, Q., Tian, Y., Ostler, K.R., Chlenski, A., Guerrero, L.J., Salwen, H.R., Godley, L.A. and Cohn, S.L. (2010) Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines. BMC Cancer, 10, 286.

166. Hajkova, P., Ancelin, K., Waldmann, T., Lacoste, N., Lange, U.C., Cesari, F., Lee, C., Almouzni, G., Schneider, R. and Surani, M.A. (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 452, 877-881.

167. Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B. et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766-770.

168. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P. et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553-560.

169. Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M. and Studer, L. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol.

170. Lee, G., Chambers, S.M., Tomishima, M.J. and Studer, L. (2010) Derivation of neural crest cells from human pluripotent stem cells. Nature protocols, 5, 688-701.

171. Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., Tabar, V.

and Studer, L. (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature biotechnology, 25, 1468-1475.

172. Chambers, S.M., Mica, Y., Studer, L. and Tomishima, M.J. (2011) Converting human pluripotent stem cells to neural tissue and neurons to model neurodegeneration.

Methods in molecular biology, 793, 87-97.

173. Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S. et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell

173. Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S. et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell