• Keine Ergebnisse gefunden

1M. W. Matsen, “The standard gaussian model for block copolymer melts”, J. Phys:

Condens. Matter14, R21 (2001)(cit. on pp. 2 sq., 13, 25 sq.,63, 83, 86, 91, 94, 138).

2V. Abetz, “Isoporous block copolymer membranes”, Macromolecular rapid communi-cations36, 10–22 (2015)10.1002/marc.201400556 (cit. on pp.3,63,94).

3W. A. Phillip, B. O’Neill, M. Rodwogin, M. A. Hillmyer, and E. Cussler, “Self-assembled block copolymer thin films as water filtration membranes”, ACS applied materials & interfaces2, 847–853 (2010) (cit. on pp.3,94).

4A. Ley, P. Altschuh, V. Thom, M. Selzer, B. Nestler, and P. Vana, “Characterization of a macro porous polymer membrane at micron-scale by confocal-laser-scanning microscopy and 3d image analysis”, Journal of Membrane Science564, 543–551 (2018) (cit. on pp.3,179).

5M. A. Morris, “Directed self-assembly of block copolymers for nanocircuitry fabrica-tion”,Microlelctronic Engineering132, 207–217 (2015)10.1016/j.mee.2014.08.009 (cit. on pp.3,63,91).

6M. P. Stoykovich, H. Kang, K. C. Daoulas, G. Liu, C.-C. Liu, J. J. de Pablo, M. Müller, and P. F. Nealey, “Directed self-assembly of block copolymers for nanolithography:

fabrication of isolated features and essential integrated circuit geometries”, ACS Nano 1, 168–175 (2007) (cit. on pp.3,33,63).

7M. P. Stoykovich, K. C. Daoulas, M. Müller, H. M. Kang, J. J. de Pablo, and P. F.

Nealey, “Remediation of line edge roughness in chemical nanopatterns by the directed assembly of overlying block copolymer films”, Macromolecules43, 2334–2342 (2010) (cit. on pp.3,33,63).

8M. P. Stoykovich and P. F. Nealey, “Block copolymers and conventional lithography”, Materials Today 9, 20–29 (2006)10.1016/S1369-7021(06)71619-4(cit. on pp. 3, 63).

9T. A. Vilgis and G. Heinrich, “Statistische physik: die physik des autoreifens: ko-operation zwischen industrie und theoretischer physik–eine illusion?”, Physikalische Blätter57, 67–73 (2001) (cit. on pp.3,111).

10M. A. Morris, H. An, J. L. Lutkenhaus, and T. H. Epps III, “Harnessing the power of plastics: nanostructured polymer systems in lithium-ion batteries”, ACS Energy Letters2, 1919–1936 (2017) (cit. on pp.3,91,93).

11L. Leibler, “Theory of microphase separation in block copolymers”, Macromolecules 13, 1602–1617 (1980) (cit. on pp.3,26,63,83,95,142).

12W. Li and M. Müller, “Defects in the self-assembly of block copolymers and their relevance for directed self-assembly”, Annual review of chemical and biomolecular engineering6, 187–216 (2015) (cit. on pp.3,63,92,138 sq.,155).

13W. Li and M. Müller, “Thermodynamics and kinetics of defect motion and annihilation in the self-assembly of lamellar diblock copolymers”,Macromolecules49, 6126–6138 (2016) 10.1021/acs.macromol.6b01088(cit. on pp.3,63,92).

B.4. Bibliography

14Y. Ren and M. Müller, “Kinetics of pattern formation in symmetric diblock copolymer melts”, The Journal of chemical physics 148, 204908 (2018) (cit. on pp.3, 83, 92, 96, 102).

15Z.-R. Chen and J. A. Kornfield, “Flow-induced alignment of lamellar block copolymer melts”, Polymer 39, 4679–4699 (1998) (cit. on pp. 3,138).

16T. Meins, K. Hyun, N. Dingenouts, M. Fotouhi Ardakani, B. Struth, and M. Wil-helm, “New insight to the mechanism of the shear-induced macroscopic alignment of diblock copolymer melts by a unique and newly developed rheo–saxs combination”, Macromolecules 45, 455–472 (2012) 10.1021/ma201492n(cit. on pp. 3,138,145).

17T. Meins, N. Dingenouts, J. Kübel, and M. Wilhelm, “In Situ Rheodielectric, ex Situ 2d-SAXS, and Fourier Transform Rheology Investigations of the Shear-Induced Align-ment of Poly(styrene-b-1,4-isoprene) Diblock Copolymer Melts”, en, Macromolecules 45, 7206–7219 (2012) (cit. on pp.3,96,149).

18B. Struth, K. Hyun, E. Kats, T. Meins, M. Walther, M. Wilhelm, and G. Grübel,

“Observation of New States of Liquid Crystal 8cb under Nonlinear Shear Condi-tions as Observed via a Novel and Unique Rheology/Small-Angle X-ray Scattering Combination”, en, Langmuir 27, 2880–2887 (2011) (cit. on pp.3,138,145).

19B. L. Peters, A. Ramírez-Hernández, D. Q. Pike, M. Müller, and J. J. de Pablo,

“Nonequilibrium simulations of lamellae forming block copolymers under steady shear: a comparison of dissipative particle dynamics and brownian dynamics”, Macro-molecules 45, 8109–8116 (2012)10.1021/ma301541f(cit. on pp. 3,138 sq.,167).

20G. Arya, J. Rottler, A. Z. Panagiotopoulos, D. J. Srolovitz, and P. M. Chaikin, “Shear ordering in thin films of spherical block copolymer”, Langmuir21, PMID: 16285835, 11518–11527 (2005)10.1021/la0516476(cit. on pp. 3,138).

21A. P. Marencic, M. W. Wu, R. A. Register, and P. M. Chaikin, “Orientational order in sphere-forming block copolymer thin films aligned under shear”, Macromolecules 40, 7299–7305 (2007) (cit. on pp.3,138).

22M. W. Wu, R. A. Register, and P. M. Chaikin, “Shear alignment of sphere-morphology block copolymer thin films with viscous fluid flow”, Physical Review E 74, 040801 (2006) (cit. on pp.3,138).

23K. Luo and Y. Yang, “Orientational phase transitions in the hexagonal cylinder phase and kinetic pathways of lamellar phase to hexagonal phase transition of asymmetric diblock copolymers under steady shear flow”, Polymer45, 6745–6751 (2004) (cit. on pp. 3,138).

24D. E. Angelescu, J. H. Waller, D. H. Adamson, P. Deshpande, S. Y. Chou, R. A.

Register, and P. M. Chaikin, “Macroscopic orientation of block copolymer cylinders in single-layer films by shearing”, Advanced Materials 16, 1736–1740 (2004) (cit. on pp. 3 sq.,138).

25S. Ren, I. Hamley, P. Teixeira, and P. Olmsted, “Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers”, Physical Review E 63, 041503 (2001) (cit. on pp. 3,138).

26M. Langela, U. Wiesner, H. W. Spiess, and M. Wilhelm, “Microphase Reorienta-tion in Block Copolymer Melts As Detected via FT Rheology and 2d SAXS”, en, Macromolecules35, 3198–3204 (2002)(cit. on pp. 3,96,138).

27C. Liedel, C. W. Pester, M. Ruppel, V. S. Urban, and A. Böker, “Beyond Orientation:

The Impact of Electric Fields on Block Copolymers”, en, Macromol. Chem. Phys.

213, 259–269 (2012) 10.1002/macp.201100590(cit. on p. 3).

28T. Xu, Y. Zhu, S. P. Gido, and T. P. Russell, “Electric Field Alignment of Symmetric Diblock Copolymer Thin Films”, en,Macromolecules37, 2625–2629 (2004)10.1021/

ma035805g(cit. on p. 3).

29T. Grigorova, S. Pispas, N. Hadjichristidis, and T. Thurn-Albrecht, “Magnetic Field Induced Orientation in Diblock Copolymers with One Crystallizable Block”, en, Macromolecules38, 7430–7433 (2005)10.1021/ma050081p (cit. on p.3).

30Y. Tao, H. Zohar, B. D. Olsen, and R. A. Segalman, “Hierarchical Nanostructure Control in Rod-Coil Block Copolymers with Magnetic Fields”, en, Nano Lett. 7, 2742–2746 (2007)10.1021/nl0712320 (cit. on p.3).

31M. Heck, L. Schneider, M. Müller, and M. Wilhelm, “Diblock copolymers with similar glass transition temperatures in both blocks for comparing shear orientation processes with dpd computer simulations”,Macromolecular Chemistry and Physics 219, 1700559 (2018) 10.1002/macp.201700559(cit. on pp.4,30,53,93, 96,140 sqq., 149,169 sqq.,207).

32L. Schneider, M. Heck, M. Wilhelm, and M. Müller, “Transitions between lamellar orientations in shear flow”, Macromolecules 51, 4642–4659 (2018) 10 . 1021 / acs . macromol.8b00825 (cit. on pp.4,53,137 sq.,140,142,144,146,148,150,152,154, 156,158,160,162,164,166,168,207).

33K. C. Daoulas and M. Müller, “Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with monte carlo simulations”, The Journal of chemical physics 125, 184904 (2006) (cit. on pp. 4, 21 sq.,32 sq.,64,93 sq.,103).

34L. Schneider and M. Müller, “Multi-Architecture Monte-Carlo (MC) Simulation of Soft Coarse-Grained Polymeric Materials: SOft coarse grained Monte-carlo Acceleration (SOMA)”,Computer Physics Communications 235C, 463–476 (2019) 10.1016/j.

cpc.2018.08.011(cit. on pp. 4,21,32 sq.,62,64,66,68,70,72,74,76,78,80,82, 84,86,88,93,207).

35M. Rubinstein and R. Colby,Polymer physics (OUP Oxford, 2003) (cit. on pp.6 sq., 9 sq.,15 sq.,22 sqq.,93,96,111 sq.,170).

36D. J. Amit, G. Parisi, and L. Peliti, “Asymptotic behavior of the "true"self-avoiding walk”, Phys. Rev. B27, 1635–1645 (1983) (cit. on p. 7).

37S. F. Edwards, “The size of a polymer molecule in a strong solution”, Journal of Physics A: Mathematical and General 8, 1670 (1975) (cit. on p.7).

38J. Wittmer, H. Meyer, J. Baschnagel, A. Johner, S. Obukhov, L. Mattioni, M. Müller, and A. N. Semenov, “Long range bond-bond correlations in dense polymer solutions”, Physical review letters93, 147801 (2004) (cit. on p. 7).

B.4. Bibliography

39J. Wittmer, P. Beckrich, F. Crevel, C.-C. Huang, A. Cavallo, T. Kreer, and H. Meyer,

“Are polymer melts “ideal”?”, Computer physics communications177, 146–149 (2007) (cit. on p.7).

40R. Jones, Soft condensed matter, Oxford Master Series in Condensed Matter Physics (OUP Oxford, 2002) (cit. on pp.7,10).

41S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The martini force field: coarse grained model for biomolecular simulations”, The journal of physical chemistry B 111, 7812–7824 (2007) (cit. on p.8).

42S. J. Marrink and D. P. Tieleman, “Perspective on the martini model”, Chemical Society Reviews 42, 6801–6822 (2013) (cit. on p.8).

43T. Ohta and K. Kawasaki, “Equilibrium morphology of block copolymer melts”, Macromolecules 19, 2621–2632 (1986) (cit. on p.8).

44M. Müller and J. C. O. Rey, “Continuum models for directed self-assembly”, Molecular Systems Design & Engineering 3, 295–313 (2018) (cit. on pp.8,95 sq.).

45M. Doi and S. Edwards, The theory of polymer dynamics (1988) (cit. on pp. 10, 34 sqq.,111,115,117,121,127,179).

46L. Schäfer, Excluded volume effects in polymer solutions: as explained by the renor-malization group (Springer Science & Business Media, 2012) (cit. on p. 10).

47P.-G. De Gennes, Scaling concepts in polymer physics (Cornell university press, 1979) (cit. on p.10).

48W. Kuhn and F. Grün, “Beziehungen zwischen elastischen konstanten und dehnungs-doppelbrechung hochelastischer stoffe”, Colloid & Polymer Science 101, 248–271 (1942) (cit. on p.12).

49M. Kröger, “Simple, admissible, and accurate approximants of the inverse langevin and brillouin functions, relevant for strong polymer deformations and flows”, Journal of Non-Newtonian Fluid Mechanics 223, 77–87 (2015) (cit. on p. 15).

50J. Israelachvili,Intermolecular and surface forces, Intermolecular and Surface Forces (Elsevier Science, 2010) (cit. on p.18).

51V. Chappa, D. C. Morse, A. Zippelius, and M. Müller, “Translationally invariant slip-spring model for entangled polymer dynamics”, Phys. Rev. Lett. 109, 148302 (2012)10.1103/PhysRevLett.109.148302 (cit. on pp.20,35,37 sq.,44,57,60 sq., 115,117 sqq.,128,130 sq.,179).

52R. D. Groot and P. B. Warren, “Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation”, The Journal of Chemical Physics 107, 4423–4435 (1997) (cit. on pp.20,30,141).

53P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydrodynamics phenomena with dissipative particle dynamics”, EPL (Europhys. Lett.)19, 155 (1992) (cit. on pp.20,30,81).

54C. N. Likos, B. M. Mladek, D. Gottwald, and G. Kahl, “Why do ultrasoft repulsive particles cluster and crystallize? analytical results from density-functional theory”, jcp 126, 224502 (2007) (cit. on p. 20).