• Keine Ergebnisse gefunden

P. R. Adams, D. A. Brown, and A. Constanti. Pharmacological inhibition of the M-current.J Physiol, 332:

223–262, 1982.

F. Apfaltrer, C. Ly, and D. Tranchina. Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods.Network, 17:373–418, 2006.

L. Arnold.Stochastic differential equations: Theory and applications. John Wiley & Sons, 1976.

F. Aspart, J. Ladenbauer, and K. Obermayer. Extending integrate-and-fire model neurons to account for the effects of weak electric fields and input filtering mediated by the dendrite.PLOS Comput Biol, 12:

e1005206, 2016.

M. Augustin.The role of adaptation in shaping the dynamics of large recurrent networks of noisy neurons.

Master’s thesis, Technische Universität Berlin, 2012.

M. Augustin, J. Ladenbauer, and K. Obermayer. How adaptation shapes spike rate oscillations in recurrent neuronal networks.Front Comput Neurosci, 7:9, 2013.

M. Augustin, J. Ladenbauer, F. Baumann, and K. Obermayer. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.PLOS Comput Biol, 13:e1005545, 2017.

L. Badel, S. Lefort, T. K. Berger, C. C. H. Petersen, W. Gerstner, and M. Richardson. Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves.Biol Cybern, 99:361–370, 2008a.

L. Badel, S. Lefort, R. Brette, C. C. H. Petersen, W. Gerstner, and M. Richardson. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces.J Neurophysiol, 99:656–666, 2008b.

I. Bashkirtseva and L. Ryashko. Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique.Phys Rev E, 83:061109, 2011.

F. Baumann.Finite-size dynamics of integrate-and-fire neuron populations: A numerical approach based on a stochastic Fokker-Planck equation. Master’s thesis, Technische Universität Berlin, 2016.

F. Baumann, M. Augustin, J. Ladenbauer, and K. Obermayer. A stochastic Fokker-Planck equation for the dynamics of finite-sized neuronal populations. InBernstein Conf Berlin, 2016.

J. Benda, A. Longtin, and L. Maler. Spike-frequency adaptation separates transient communication signals from background oscillations.J Neurosci, 25:2312–2321, 2005.

M. Biggio, M. Storace, and M. Mattia. Equivalence between synaptic current dynamics and heterogeneous propagation delays in spiking neuron networks.arXiv preprint, 1704.02780:1, 2017.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.J Neurophysiol, 94:3637–3642, 2005.

D. A. Brown and P. R. Adams. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone.Nature, 283:673–676, 1980.

D. A. Brown and W. H. Griffith. Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig.J Physiol, 337:287–301, 1983.

N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.J Comput Neurosci, 8:183–208, 2000.

Bibliography

N. Brunel and V. Hakim. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.Neural Comput, 11:1621–1671, 1999.

N. Brunel and X.-J. Wang. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance.J Neurophysiol, 90:415–430, 2003.

N. Brunel, V. Hakim, and M. Richardson. Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance.Phys Rev E, 67:051916, 2003.

A. Buchin and A. Chizhov. Firing-rate model of a population of adaptive neurons.Biophys, 55:664–673, 2010.

M. A. Buice and C. C. Chow. Dynamic finite size effects in spiking neural networks.PLOS Comput Biol, 9:

e1002872, 2013.

G. Buzsáki, C. A. Anastassiou, and C. Koch. The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes.Nat Rev Neurosci, 13:407–420, 2012.

A. Compte, M. V. Sanchez-Vives, D. A. McCormick, and X.-J. Wang. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model.J Neurophysiol, 89:

2707–2725, 2003.

P. Dayan and L. F. Abbott.Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, 2001.

T. Deemyad, J. Kroeger, and M. J. Chacron. Sub- and suprathreshold adaptation currents have opposite effects on frequency tuning.J Physiol, 590:4839–4858, 2012.

A. Destexhe. Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci, 27:493–506, 2009.

A. Destexhe and M. Rudolph-Lilith.Neuronal noise. Springer, 2012.

S. M. Doesburg, A. B. Roggeveen, K. Kitajo, and L. M. Ward. Large-scale gamma-band phase synchroniza-tion and selective attensynchroniza-tion.Cereb Cortex, 18:386–396, 2008.

G. Dumont, A. Payeur, and A. Longtin. A stochastic-field description of finite-size spiking neural networks.

Submitted manuscript, 2017.

L. D. Ellis, W. H. Mehaffey, E. Harvey-Girard, R. W. Turner, L. Maler, and R. J. Dunn. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. J Neurosci, 27:

9491–9502, 2007.

P. Farrell and E. Gartland Jr. On the Scharfetter-Gummel discretization for drift-diffusion continutity equations. In J. Miller, editor,Computational methods for boundary and interior layers in several dimensions, pages 51–79. Boole Press, 1991.

G. N. Fournier, K. Semba, and D. D. Rasmusson. Modality- and region-specific acetylcholine release in the rat neocortex.Neuroscience, 126:257–262, 2004.

W. Frensley. Scharfetter-Gummel discretization scheme for drift-diffusion equations.Tutorial, 2004.

P. Fries, J. Reynolds, A. Rorie, and R. Desimone. Modulation of oscillatory neuronal synchronization by selective visual attention.Science, 291:1560–1563, 2001.

G. Fuhrmann, H. Markram, and M. Tsodyks. Spike frequency adaptation and neocortical rhythms. J Neurophysiol, 88:761–770, 2002.

W. Gerstner and R. Brette. Adaptive exponential integrate-and-fire model.Scholarpedia, 4:8427, 2009.

Bibliography

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski.Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014.

A. Ghazanfar, C. Chandrasekaran, and N. Logothetis. Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys.J Neurosci, 28:4457–

4469, 2008.

G. Gigante, P. Del Giudice, and M. Mattia. Frequency-dependent response properties of adapting spiking neurons.Math Biosci, 207:336–351, 2007a.

G. Gigante, M. Mattia, and P. Del Giudice. Diverse population-bursting modes of adapting spiking neurons.Phys Rev Lett, 98:148101, 2007b.

L. Golmayo, A. Nuñez, and L. Zaborszky. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosen-sory rat cortical areas.Neuroscience, 119:597–609, 2003.

D. Goodman and R. Brette. The Brian simulator.Front Neurosci, 3:192–197, 2009.

L. Gosse.Computing qualitatively correct approximations of balance laws. Springer, 2013.

K.-M. Guo and J. Jiang. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map.Phys Lett A, 378:2518–2523, 2014.

C. Hammond, H. Bergman, and P. Brown. Pathological synchronization in Parkinson’s disease: Networks, models and treatments.Trends Neurosci, 30:357–364, 2007.

K. D. Harris and A. Thiele. Cortical state and attention.Nat Rev Neurosci, 12:509–23, 2011.

J. L. Herrero, M. J. Roberts, L. S. Delicato, M. A. Gieselmann, P. Dayan, and A. Thiele. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1.Nature, 454:1110–1114, 2008.

C. Herrmann, M. Munk, and A. Engel. Cognitive functions of gamma-band activity: Memory match and utilization.Trends Cogn Sci, 8:347–355, 2004.

J. Hipp, A. Engel, and M. Siegel. Oscillatory synchronization in large-scale cortical networks predicts perception.Neuron, 69:387–396, 2011.

M. Hochbruck and A. Ostermann. Exponential integrators.Acta Numer, 19:209–286, 2010.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol, 117:500–544, 1952.

J. S. Isaacson and M. Scanziani. How inhibition shapes cortical activity.Neuron, 72:231–243, 2011.

R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto, and W. Gerstner. A benchmark test for a quantitative assessment of simple neuron models.J Neurosci Methods, 169:417–424, 2008a.

R. Jolivet, F. Schürmann, T. K. Berger, R. Naud, W. Gerstner, and A. Roth. The quantitative single-neuron modeling competition.Biol Cybern, 99:417–426, 2008b.

P. Klöden and E. Platen.The numerical solution of stochastic differential equations. Springer, 1999.

B. W. Knight, D. Manin, and L. Sirovich. Dynamical models of interacting neuron populations.Proc Symp Robot Cybern Lille-France, pages 4–8, 1996.

G. La Camera, A. Rauch, D. Thurbon, H.-R. Lüscher, W. Senn, and S. Fusi. Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons.J Neurophysiol, 96:3448–3464, 2006.

J. Ladenbauer.The collective dynamics of adaptive neurons: Insights from single cell and network models.

PhD thesis, Technische Universität Berlin, 2015.

Bibliography

J. Ladenbauer, M. Augustin, L. Shiau, and K. Obermayer. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.PLOS Comput Biol, 8:e1002478, 2012.

J. Ladenbauer, M. Augustin, and K. Obermayer. How adaptation currents change threshold, gain and variability of neuronal spiking.J Neurophysiol, 111:939–953, 2014.

J. Ladenbauer, M. Augustin, and K. Obermayer. Intrinsic control mechanisms of neuronal network dynamics. In E. Schöll, S. H. L. Klapp, and P. Hövel, editors,Control of self-organizing nonlinear systems, pages 441–460. Springer, 2016.

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based python JIT compiler.Proc Second Work LLVM Compil Infrastruct HPC - LLVM, 2015.

P. E. Latham, B. J. Richmond, P. G. Nelson, and S. Nirenberg. Intrinsic dynamics in neuronal networks. I.

Theory.J Neurophysiol, 83:808–827, 2000.

S.-H. Lee and Y. Dan. Neuromodulation of brain states.Neuron, 76:209–222, 2012.

M. Lengyel, J. Kwag, O. Paulsen, and P. Dayan. Matching storage and recall: Hippocampal spike timing-dependent plasticity and phase response curves.Nat Neurosci, 8:1677–1683, 2005.

R. LeVeque.Finite volume methods for hyperbolic problems. Cambridge University Press, 2002.

N. MacDonald.Time lags in biological models. Lecture Notes in Biomath. Springer, 1978.

D. V. Madison and R. A. Nicoll. Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro.

J Physiol, 354:319–331, 1984.

D. V. Madison, B. Lancaster, and R. A. Nicoll. Voltage clamp analysis of cholinergic action in the hip-pocampus.J Neurosci, 7:733–741, 1987.

Z. F. Mainen and T. J. Sejnowski. Influence of dendritic structure on firing pattern in model neocortical neurons.Nature, 382:363–366, 1996.

M. Mattia. Low-dimensional firing rate dynamics of spiking neuron networks.arXiv preprint, 1609.08855:

1, 2016.

M. Mattia and P. Del Giudice. Population dynamics of interacting spiking neurons.Phys Rev E, 66:051917, 2002.

M. Mattia and P. Del Giudice. Finite-size dynamics of inhibitory and excitatory interacting spiking neurons.Phys Rev E, 70:052903, 2004.

D. A. McCormick. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuro-modulation of thalamocortical activity.Progr Neurobiol, 39:337–388, 1992.

L. Melloni, C. Molina, M. Pena, D. Torres, W. Singer, and E. Rodriguez. Synchronization of neural activity across cortical areas correlates with conscious perception.J Neurosci, 27:2858–2865, 2007.

E. Montbrió, D. Pazó, and A. Roxin. Macroscopic description for networks of spiking neurons.Phys Rev X, 5:021028, 2015.

R. Naud.The dynamics of adapting neurons. PhD thesis, École Polytechnique Fédérale de Lausanne, 2011.

R. Naud and W. Gerstner. Coding and decoding with adapting neurons: A population approach to the peri-stimulus time histogram.PLOS Comput Biol, 8:e1002711, 2012.

R. Naud, N. Marcille, C. Clopath, and W. Gerstner. Firing patterns in the adaptive exponential integrate-and-fire model.Biol Cybern, 99:335–347, 2008.

W. H. Nesse, A. Borisyuk, and P. C. Bressloff. Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation.J Comput Neurosci, 25:317–333, 2008.

Bibliography

W. Nicola, C. Ly, and S. A. Campbell. One-dimensional population density approaches to recurrently coupled networks of neurons with noise.SIAM J Appl Math, 75:2333–2360, 2015.

B. Øksendal.Stochastic differential equations: An introduction with applications. Springer, 2003.

S. Ostojic. Inter-spike interval distributions of spiking neurons driven by fluctuating inputs.J Neurophysiol, 106:361–373, 2011.

S. Ostojic and N. Brunel. From spiking neuron models to linear-nonlinear models.PLOS Comput Biol, 7:

e1001056, 2011.

G. A. Pavliotis.Stochastic processes and applications. Springer, 2014.

A. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system.Phys Rev Lett, 78:

775–778, 1997.

M. Pospischil, Z. Piwkowska, T. Bal, and A. Destexhe. Comparison of different neuron models to conductance-based post-stimulus time histograms obtained in cortical pyramidal cells using dynamic-clamp in vitro.Biol Cybern, 105:167–180, 2011.

M. Richardson. Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons.Phys Rev E, 69:051918, 2004.

M. Richardson. Dynamics of populations and networks of neurons with voltage-activated and calcium-activated currents.Phys Rev E, 80(2):021928, 2009.

H. Risken.The Fokker-Planck equation: Methods of solutions and applications. Springer, 1996.

P. R. Roelfsema, A. K. Engel, and P. Konig. Visuomotor integration is associated with zero time-lag synchronization among cortical areas.Nature, 385:157–161, 1997.

M. V. Sanchez-Vives and D. A. McCormick. Cellular and network mechanisms of rhythmic recurrent activity in neocortex.Nat Neurosci, 3:1027–1034, 2000.

M. V. Sanchez-Vives, M. Massimini, and M. Mattia. Shaping the default activity pattern of the cortical network.Neuron, 94:993–1001, 2017.

E. S. Schaffer, S. Ostojic, and L. F. Abbott. A complex-valued firing-rate model that approximates the dynamics of spiking networks.PLOS Comput Biol, 9:e1003301, 2013.

D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon tead diode oscillator.IEEE Trans Electron Dev, 16:64–77, 1969.

T. Schwalger, K. Fisch, J. Benda, and B. Lindner. How noisy adaptation of neurons shapes interspike interval histograms and correlations.PLOS Comput. Biol., 6:e1001026, 2010.

T. Schwalger, M. Deger, and W. Gerstner. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.PLOS Comput Biol, 13:e1005507, 2017.

P. C. Schwindt, W. J. Spain, and W. E. Crill. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex.J Neurophysiol, 67:216–226, 1992.

W. Singer. Neuronal synchrony: A versatile code for the definition of relations?Neuron, 24:49–65, 1999.

S. Soma, S. Shimegi, H. Osaki, and H. Sato. Cholinergic modulation of response gain in the primary visual cortex of the macaque.J Neurophysiol, 107:283–291, 2012.

M. Steriade, I. Timofeev, and F. Grenier. Natural waking and sleep states: A view from inside neocortical neurons.J Neurophysiol, 85:1969–1985, 2001.

K. M. Stiefel, B. S. Gutkin, and T. J. Sejnowski. Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons.PLOS ONE, 3:e3947, 2008.

Bibliography

M. Stimberg, D. Goodman, V. Benichoux, and R. Brette. Equation-oriented specification of neural models for simulations.Front Neuroinform, 8:6, 2014.

M. Stocker. Ca(2+)-activated K+ channels: Molecular determinants and function of the SK family.Nat Rev Neurosci, 5:758–770, 2004.

P. Tiesinga and T. J. Sejnowski. Cortical enlightenment: Are attentional gamma oscillations driven by ING or PING?Neuron, 63:727–732, 2009.

J. Touboul and R. Brette. Dynamics and bifurcations of the adaptive exponential integrate-and-fire model.

Biol Cybern, 99:319–334, 2008.

H. C. Tuckwell.Introduction to theoretical neurobiology. Cambridge University Press, 1988.

P. J. Uhlhaas and W. Singer. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11:100–113, 2010.

E. Urdapilleta. Survival probability and first-passage-time statistics of a Wiener process driven by an exponential time-dependent drift.Phys Rev E, 83:021102, 2011.

X.-J. Wang. Neurophysiological and computational principles of cortical rhythms in cognition.Physiol Rev, 90:1195–1268, 2010.

X.-J. Wang, Y. Liu, M. V. Sanchez-Vives, and D. A. McCormick. Adaptation and temporal decorrelation by single neurons in the primary visual cortex.J Neurophysiol, 89:3279–3293, 2003.

H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized populations of model neurons.Biophys J, 12:1–24, 1972.

E. Wong and M. Zakai. On the convergence of ordinary integrals to stochastic integral.Ann Math Stat, 36:

1560–1564, 1965.

Y. Zerlaut and A. Destexhe. A mean-field model for conductance-based networks of adaptive exponential integrate-and-fire neurons.arXiv preprint, 1703.00698:1, 2017.

M. Zijlmans, J. Jacobs, R. Zelmann, F. Dubeau, and J. Grotman. High-frequency oscillations mirror disease activity in patients with epilepsy.Neurol, 72:979–986, 2009.

Note that this thesis contains in addition to the above 117 references from the overview part I (chs. 1.1–4.2) also the bibliographies of the original publications in part II (66 refs. in chapter 5(Augustin et al. 2013), 76 references in ch. 6(Ladenbauer et al. 2014)and 77 refs. in ch. 7(Augustin et al. 2017)).