• Keine Ergebnisse gefunden

[1] J. M. Banales, R. C. Huebert, T. Karlsen, M. Strazzabosco, N. F. LaRusso, and G. J.

Gores, “Cholangiocyte pathobiology,” Nat. Rev. Gastroenterol. Hepatol., vol. 16, no. 5, pp. 269-281, Mar. 2019.

[2] N. Razumilava and G. J. Gores, “Classification, diagnosis, and management of cholangiocarcinoma.,” Clin. Gastroenterol. Hepatol., vol. 11, no. 1, pp. 13-21, Jan.

2013.

[3] N. Razumilava and G. J. Gores, “Cholangiocarcinoma,” Lancet, vol. 383, no. 9935, pp.

2168-2179, Jun. 2014.

[4] V. Cardinale et al., “Cholangiocarcinoma: increasing burden of classifications.,”

Hepatobiliary Surg. Nutr., vol. 2, no. 5, pp. 272-80, Oct. 2013.

[5] M. Seehawer et al., “Necroptosis microenvironment directs lineage commitment in liver cancer,” Nature, vol. 562, no. 7725, pp. 69-75, Oct. 2018.

[6] A. S. J. Sayaka Sekiya, S. Sekiya, and A. Suzuki, “Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes,” J. Clin. Invest., vol. 122, no. 11, pp. 3914-3918, Nov. 2012.

[7] A. Moeini, D. Sia, N. Bardeesy, V. Mazzaferro, and J. M. Llovet, “Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma,” Clin Cancer Res, vol. 22, no. 2, pp. 1-10, Sep. 2015.

[8] J. Bridgewater et al., “Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma,” J. Hepatol., vol. 60, no. 6, pp. 1268-1289, Jun. 2014.

[9] D. Walter et al., “Cholangiocarcinoma in Germany: Epidemiologic trends and impact of misclassification,” Liver Int., vol. 39, no. 2, pp. 316-323, Feb. 2019.

[10] S. Rizvi, S. A. Khan, C. L. Hallemeier, R. K. Kelley, and G. J. Gores,

“Cholangiocarcinoma-evolving concepts and therapeutic strategies,” Nat. Rev. Clin.

Oncol., vol. 15, no. 2, pp. 95-111, Feb. 2018.

[11] S. K. Saha, A. X. Zhu, C. S. Fuchs, and G. A. Brooks, “Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise.,”

Oncologist, vol. 21, no. 5, pp. 594-599, May 2016.

[12] N. Kaewpitoon, S. J. Kaewpitoon, P. Pengsaa, and B. Sripa, “Opisthorchis viverrini: the carcinogenic human liver fluke.,” World J. Gastroenterol., vol. 14, no. 5, pp. 666-74, Feb. 2008.

[13] H. R. SHIN et al., “Hepatitis B and C Virus, Clonorchis sinensis for the Risk of Liver Cancer: A Case-Control Study in Pusan, Korea,” Int. J. Epidemiol., vol. 25, no. 5, pp.

933-940, Oct. 1996.

[14] B. Sripa et al., “Liver Fluke Induces Cholangiocarcinoma,” PLoS Med., vol. 4, no. 7, p.

e201, Jul. 2007.

[15] M. C. Bragazzi et al., “New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin,” Ann. Gastroenterol, vol. 31, no.1, 42–55, Jan. 2018.

[16] L. Schapira et al., “Bile Duct Cancer (Cholangiocarcinoma): Statistics,” 2020. [Online].

Available: https://www.cancer.net/cancer-types/bile-duct-cancer-cholangiocarcinoma/

statistics. [Accessed: 01-Sep-2019].

[17] J. Y. Liau, J. H. Tsai, R. H. Yuan, C. N. Chang, H. J. Lee, and Y. M. Jeng,

“Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features,” Mod. Pathol., vol. 27, no. 8, pp. 1163-1173, Aug. 2014.

[18] S. Aishima and Y. Oda, “Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type,” J. Hepatobiliary. Pancreat. Sci., vol. 22, no. 2, pp. 94-100, Feb. 2015.

[19] S. Yamasaki, “Intrahepatic cholangiocarcinoma: macroscopic type and stage classification,” J. Hepatobiliary. Pancreat. Surg., vol. 10, no. 4, pp. 288-291, Aug. 2003.

[20] B. Blechacz, M. Komuta, T. Roskams, and G. J. Gores, “Clinical diagnosis and staging of cholangiocarcinoma,” Nat. Rev. Gastroenterol. Hepatol., vol. 8, no. 9, pp. 512-522, Sep. 2011.

[21] P. Charatcharoenwitthaya, F. B. Enders, K. C. Halling, and K. D. Lindor, “Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis,” Hepatology, vol. 48, no. 4, pp. 1106-1117, Oct. 2008.

[22] T. Patel, “Cholangiocarcinoma: controversies and challenges.,” Nat. Rev. Gastroenterol.

Hepatol., vol. 8, no. 4, pp. 189-200, Apr. 2011.

[23] J. Valle et al., “Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract

Cancer,” N. Engl. J. Med., vol. 362, no. 14, pp. 1273-1281, Apr. 2010.

[26] C. K. Ong et al., “Exome sequencing of liver fluke–associated cholangiocarcinoma,”

Nat. Genet., vol. 44, no. 6, pp. 690-693, 2012.

[27] Y. Jiao et al., “Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas,” Nat. Genet., vol. 45, no.

12, pp. 1470-1473, 2013.

[28] H. Nakamura et al., “Genomic spectra of biliary tract cancer,” Nat. Genet., vol. 47, no.

9, pp. 1003-1010, Sep. 2015.

[29] Q. Gao et al., “Activating Mutations in PTPN3 Promote Cholangiocarcinoma Cell Proliferation and Migration and Are Associated With Tumor Recurrence in Patients,”

Gastroenterology, vol. 146, no. 5, pp. 1397-1407, May 2014.

[30] L. Boulter et al., “WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited,” J. Clin. Invest., vol. 125, no. 3, pp. 1269-1285, Mar. 2015.

[31] J. B. Andersen et al., “Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.,” Gastroenterology, vol. 142, no. 4, pp. 1021-1031.e15, Apr. 2012.

[32] N. S. Latysheva and M. M. Babu, “Discovering and understanding oncogenic gene fusions through data intensive computational approaches.,” Nucleic Acids Res., vol. 44, no. 10, pp. 4487-503, Jun. 2016.

[33] P. Nowell, D. A. Hungerford, and P. Nowell, “A minute chromosome in human chronic granulocytic leukemia,” Science, (80), 1960.

[34] F. Mitelman, B. Johansson, and F. Mertens, “The impact of translocations and gene fusions on cancer causation,” Nat. Rev. Cancer, vol. 7, no. 4, pp. 233-245, Apr. 2007.

[35] J. Guarnerio et al., “Erratum: Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations,” Cell, vol. 166, no. 4, pp. 1055-1056, 2016.

[36] B. J. Haas et al., “STAR-Fusion: Fast and Accurate Fusion Transcript Detection from RNA-Seq,” bioRxiv, p. 120295, Mar. 2017.

[37] M. Benelli, C. Pescucci, G. Marseglia, M. Severgnini, F. Torricelli, and A. Magi,

“Sequence analysis Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript,” vol. 28, no. 24, pp. 3232-3239, 2012.

[38] Gao Q et al., “Driver Fusions and Their Implications in the Development and Treatment of Human Cancers,” Cell Rep., vol. 23, no. 1, pp. 227-238.e3, Apr. 2018.

[39] M. Tuna, C. I. Amos, and G. B. Mills, “Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors,” Oncotarget, vol. 10, no. 21, pp. 2095-2111, 2019.

[40] I. S. Babina and N. C. Turner, “Advances and challenges in targeting FGFR signalling in cancer,” Nat. Rev. Cancer, vol. 17, no. 5, pp. 318-332, Mar. 2017.

[41] R. Dienstmann et al., “Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors,” Annals of Oncology, vol. 25, no. 3. pp. 552-563, Mar. 2014.

[42] N. Itoh and D. M. Ornitz, “Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease,” J. Biochem., vol. 149, no. 2, pp. 121-130, Feb. 2011.

[43] Y. R. Hadari, H. Kouhara, I. Lax, and J. Schlessinger, “Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation.,” Mol. Cell. Biol., vol. 18, no. 7, pp. 3966-73, Jul. 1998.

[44] C. Y. Li, J. Prochazka, A. F. Goodwin, and O. D. Klein, “Fibroblast growth factor signaling in mammalian tooth development,” Odontology, vol. 102, no. 1. pp. 1–13, 2014.

[45] W. Wang, S. Xu, M. Yin, and Z. G. Jin, “Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis,” International Journal of Cardiology, vol. 181, pp. 180-184, Feb. 2015.

[46] P. Klint and L. C. Welsh, “Signal transduction by fibroblast growth factor receptors,” in Frontiers in Bioscience, vol. 4, pp. 165-177, Feb. 1999

[47] N. Turner and R. Grose, “Fibroblast growth factor signalling: From development to cancer,” Nat. Rev. Cancer, vol. 10, no. 2, pp. 116-129, Feb. 2010.

[48] A. Qin et al., “Detection of Known and Novel FGFR Fusions in Non-Small Cell Lung Cancer by Comprehensive Genomic Profiling,” J. Thorac. Oncol., vol. 14, no. 1, pp. 54-62, 2019.

[49] R. P. Graham et al., “Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma,” Hum. Pathol., vol. 45, no. 8, pp. 1630-1638, Aug. 2014.

[50] D. Sia et al., “Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma,” Nat. Commun., vol. 6, no. 1, Jan. 2015.

[51] Y. Arai et al., “Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma,” Hepatology, vol. 59, no. 4, pp. 1427-1434, Apr. 2014.

[52] J. W. Valle, A. Lamarca, L. Goyal, J. Barriuso, and A. X. Zhu, “New horizons for precision medicine in biliary tract cancers,” Cancer Discovery, vol. 7, no. 9, pp. 943-962, Sep. 2017.

[53] C. Casadei et al., “Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors,” Therapeutic Advances in Medical Oncology, vol. 11, Nov. 2019.

[54] I. M. Silverman et al., “Comprehensive genomic profiling in FIGHT-202 reveals the landscape of actionable alterations in advanced cholangiocarcinoma.,” J. Clin. Oncol., vol. 37, no. 15_suppl, pp. 4080-4080, May 2019.

[55] M. J. Borad, G. J. Gores, and L. R. Roberts, “Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma.,” Curr. Opin. Gastroenterol., vol. 31, no. 3, pp. 264-8, May 2015.

[56] F. Farshidfar, S. Zheng, M.-C. Gingras, Newton, and L. N. Kwong, “Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles,” Cell Rep., vol. 18, no. 11, pp. 2780-2794, Mar. 2017.

[57] L. Goyal et al., “Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma Running Title: Acquired FGFR2 resistance mutations in cholangiocarcinoma,” Cancer Discov., vol. 7, no. 3, pp. 252-263, 2017.

[58] B. C. Parker, M. Engels, M. Annala, and W. Zhang, “Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours,” J. Pathol., vol. 232, no. 1, pp. 4-15, Jan. 2014.

[59] M. Javle et al., “Phase II study of BGJ398 in patients with FGFR-Altered advanced cholangiocarcinoma,” J. Clin. Oncol., vol. 36, no. 3, pp. 276-282, Jan. 2018.

[60] M. A. Krook et al., “Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma,” Mol. Cancer Ther., p.

molcanther.0631.2019, Jan. 2020.

[61] L. Goyal et al., “TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma,” Cancer Discov., vol. 9, no. 8, pp. 1064-1079, Aug. 2019.

[62] J. Datta et al., “Small Molecule Therapeutics Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398,” Mol. Cancer Ther., vol. 16, no. 4, pp. 614-624, Apr. 2017.

[63] Y. M. Wu et al., “Identification of targetable FGFR gene fusions in diverse cancers,”

Cancer Discov., vol. 3, no. 6, pp. 636-647, Jun. 2013.

[64] Y. Wang et al., “Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein,” Cancer Lett., vol. 380, no. 1, pp. 163-173, Sep. 2016.

[65] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next generation,” Cell, vol.

144, no. 5, pp. 646–674, Mar. 2011.

[66] Y. Liang, S. McDonnell, and M. Clynes, “Examining the Relationship between Cancer Invasion / Metastasis and Drug Resistance,” Curr. Cancer Drug Targets, vol. 2, no. 3, pp. 257-277, Mar. 2005.

[67] B. Al-Lazikani, U. Banerji, and P. Workman, “Combinatorial drug therapy for cancer in the post-genomic era,” Nature Biotechnology, vol. 30, no. 7, pp. 679–692, Jul. 2012.

[68] D. Lamberti et al., “HSP90 Inhibition Drives Degradation of FGFR2 Fusion Proteins:

Implications for Treatment of Cholangiocarcinoma,” Hepatology, vol. 69, no. 1, p.

hep.30127, Jan. 2018.

[69] V. Mazzaferro et al., “Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma,” Br. J. Cancer, vol. 120, no. 2, pp.

165-171, Jan. 2019.

[70] G. K. Abou-Alfa et al., “ClarIDHy: A global, phase III, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with

an isocitrate dehydrogenase 1 (IDH1) mutation,” Ann. Oncol., vol. 30, no. 16, pp. 872-873, Oct. 2019.

[71] P. G. Wainberg ZA, Lassen UN, Elez E, Italiano A, Curigliano G, Braud FGD, “Efficacy and safety of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E–

mutated biliary tract cancer (BTC): A cohort of the ROAR basket trial,” J. Clin. Oncol.

2019, vol. 37:187-187, Feb. 2019.

[72] E. Gürlevik et al., “Adjuvant gemcitabine therapy improves survival in a locally induced, R0-resectable model of metastatic intrahepatic cholangiocarcinoma,”

Hepatology, vol. 58, no. 3, pp. 1031-1041, Sep. 2013.

[73] S. Borowicz et al., “The Soft Agar Colony Formation Assay,” J. Vis. Exp., no. 92, p.

e51998, Oct. 2014.

[74] N. Jochim, R. Gerhard, I. Just, and A. Pich, “Impact of clostridial glucosylating toxins on the proteome of colonic cells determined by isotope-coded protein labeling and LC-MALDI,” Proteome Sci., vol. 9, p. 48, Aug. 2011.

[75] J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,”

Nat. Biotechnol., vol. 26, no. 12, pp. 1367-1372, Dec. 2008.

[76] J. Cox and M. Mann, “1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data.,” BMC Bioinformatics, vol. 13, no. S16, p. S12, Nov. 2012.

[77] F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, and F. Zhang, “Genome engineering using the CRISPR-Cas9 system,” Nat. Protoc., vol. 8, no. 11, pp. 2281-2308, Oct. 2013.

[78] J. Tanizaki et al., “Identification of Oncogenic and Drug-Sensitizing Mutations in the Extracellular Domain of FGFR2,” Cancer Res., vol. 75, no. 15, Aug. 2015.

[79] Z. Zheng et al., “Anchored multiplex PCR for targeted next-generation sequencing,”

Nat. Med., vol. 20, no. 12, pp. 1479-1484, Dec. 2014.

[80] E. L. Jackson et al., “Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras,” Genes Dev., vol. 15, no. 24, pp. 3243-3248, Dec. 2001.

[81] X. Li et al., “Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver,” Oncotarget, vol. 6, no. 12, pp.

10102-10115, Apr. 2015.

[82] G. Zimmermann et al., “Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling,” Nature, vol. 497, no. 7451, pp. 638-642, May 2013.

[83] J. Zuber et al., “Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi,” Nat. Biotechnol., vol. 29, no. 1, pp. 79-85, Jan. 2011.

[84] G. K. Abou-Alfa et al., “Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study,” Lancet Oncol., vol. 21, no. 5, pp. 671-684, May 2020.

[85] F. Li, A. N. Meyer, M. N. Peiris, K. N. Nelson, and D. J. Donoghue, “Oncogenic fusion protein FGFR2-PPHLN1: Requirements for biological activation, and efficacy of inhibitors,” Transl. Oncol., vol. 13, no. 12, p. 100853, Dec. 2020.

[86] Y. Nakamura et al., “Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone H4,” J. Biol. Chem., vol. 282, no. 6, pp. 4193-4201, Jan. 2007.

[87] B. C. Parker et al., “The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma,” J. Clin. Invest., vol. 123, no. 2, pp. 855-865, Feb. 2013.

[88] S. V. Williams, C. D. Hurst, and M. A. Knowles, “Oncogenic FGFR3 gene fusions in bladder cancer,” Hum. Mol. Genet., vol. 22, no. 4, pp. 795-803, Feb. 2013.

[89] D. Singh et al., “Transforming fusions of FGFR and TACC genes in human glioblastoma,” Science, vol. 337, no. 6099, pp. 1231-1235, Sep. 2012.

[90] T. Fujisawa and P. Filippakopoulos, “Functions of bromodomain-containing proteins and their roles in homeostasis and cancer,” Nature Reviews Molecular Cell Biology, vol.

18, no. 4, pp. 246-262, 01-Apr-2017.

[91] J. Y. Cha, Q. T. Lambert, G. W. Reuther, and C. J. Der, “Involvement of fibroblast growth factor receptor 2 isoform switching in mammary oncogenesis,” Mol. Cancer Res., vol. 6, no. 3, pp. 435-445, Mar. 2008.

[92] S. Manier, K. Z. Salem, J. Park, D. A. Landau, G. Getz, and I. M. Ghobrial, “Genomic complexity of multiple myeloma and its clinical implications,” Nat. Rev. Clin. Oncol., vol. 14, no. 2, pp. 100-113, Feb. 2017.

[93] Qingsong Gao, “Driver Fusions and Their Implications in the Development and

Treatment of Human Cancers,” CellReports, vol. 23, pp. 227-238, Apr. 2018.

[94] S. Kongpetch et al., “Lack of Targetable FGFR2 Fusions in Endemic Fluke-Associated Cholangiocarcinoma,” JCO Glob. Oncol., no. 6, pp. 628-638, Sep. 2020.

[95] M. Dong et al., “Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model,” Cell Death Dis., vol. 9, no. 2, p. 31, Feb. 2018.

[96] M. A. Lowery et al., “Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention,” Clin. Cancer Res., vol. 24, no. 17, pp. 4154-4161, Sep. 2018.

[97] M. R. O’Dell et al., “Kras G12Dand p53 mutation cause primary intrahepatic cholangiocarcinoma,” Cancer Res., vol. 72, no. 6, pp. 1557-1567, Mar. 2012.

[98] A. Saborowski et al., “Murine Liver Organoids as a Genetically Flexible System to Study Liver Cancer In Vivo and In Vitro,” Hepatol. Commun., vol. 3, no. 3, pp. 423-436, Mar. 2019.

[99] C. Nepal et al., “Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma,” Hepatology, vol. 68, no. 3, pp. 949-963, Sep. 2018.

[100] M. A. Krook et al., “Tumor heterogeneity and acquired drug resistance in FGFR2 -fusion-positive cholangiocarcinoma through rapid research autopsy,” Cold Spring Harb.

Mol. case Stud., vol. 5, no. 4, p. a004002, Aug. 2019.

[101] D. Jiao and S. Yang, “Overcoming Resistance to Drugs Targeting KRAS Mutation,”

Innov., vol. 1, no. 2, p. 100035, Aug. 2020.

[102] S. Misale et al., “Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer,” Nature, vol. 486, no. 7404, pp. 532-536, Jun. 2012.

[103] V. E. Wang et al., “Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation,” Clin. Cancer Res., vol.

25, no. 23, pp. 7202-7217, Dec. 2019.

[104] E. Manchado et al., “A combinatorial strategy for treating KRAS-mutant lung cancer,”

Nature, vol. 534, no. 7609, pp. 647-651, Jun. 2016.

[105] D. K. Lau et al., “Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets,” iScience, vol. 21, pp. 624-637, Nov.

2019.

[106] J. Gao et al., “Integrative analysis of complex cancer genomics and clinical profiles

using the cBioPortal,” Sci. Signal., vol. 6, no. 269, Apr. 2013.

[107] E. Cerami et al., “The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data,” Cancer Discov., vol. 2, no. 5, pp. 401-404, May 2012.

[108] N. McGranahan and C. Swanton, “Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future,” Cell, vol. 168, no. 4, pp. 613-628, Feb. 2017.

[109] B. C. Parker and W. Zhang, “Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment,” Chin. J. Cancer, vol. 32, no. 11, pp. 594-603, Nov. 2013.

Erklärung

Hiermit erkläre ich, dass ich die Dissertation “A murine model of FGFR2 fusion driven iCCA to delineate mechanism of therapeutic response and resistance to FGFR inhibitors” selbstständig verfasst habe.

Ich habe keine entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar entgeltliche Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Ich habe die Dissertation an folgenden Institutionen angefertigt: Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover

Die Dissertation wurde bisher nicht für eine Prüfung oder Promotion oder für einen ähnlichen Zweck zur Beurteilung eingereicht. (Ist die Dissertation in einer auswärtigen Institution angefertigt worden, so ist zugleich eine Erklärung der betr. Leiterin oder des Leiters beizufügen, dass sie oder er mit der Einreichung der Arbeit als Dissertation an der Medizinischen Hochschule Hannover einverstanden ist.) Ich versichere, dass ich die vorstehenden Angaben nach bestem Wissen vollständig und der Wahrheit entsprechend gemacht habe.

Hannover 6/10/2020

Ort, Datum (eigenhändige Unterschrift)

Einverständniserklärung: Überprüfung mithilfe einer Plagiatssoftware

Hiermit erkläre ich mein Einverständnis zu einer Überprüfung meiner Dissertation mithilfe einer Plagiatssoftware und einer stichprobenartigen Prüfung der Primärdaten. Mir ist bewusst, dass im Verdachtsfall ein Ombudsverfahren gemäß § 9 der Richtlinien „Grundsätze der Medizinischen Hochschule Hannover zur Sicherung guter wissenschaftlicher Praxis und Verfahrensregeln für den Umgang mit wissenschaftlichem Fehlverhalten“ eingeleitet werden kann. Während der Dauer eines solchen Ombudsverfahrens ruht das Promotionsverfahren.

Hannover 6/10/2020

______________________________________ ______________________________

Ort, Datum Unterschrift

Verfügbarkeit der promotionsrelevanten Originaldaten und –aufzeichnungen

Hiermit erkläre ich die Verfügbarkeit der promotionsrelevanten Originaldaten und aufzeichnungen einschließlich der elektronischen Daten zum Erlangen des Grades eines Doktors der Naturwissenschaften (Doctor rerum naturalium). Nach §6 Abschnitt 8 der Promotionsordnung der Medizinischen Hochschule Hannover erkläre ich mich mit deren Einsicht einverstanden.

Hannover 6/10/2020

______________________________________ ______________________________

Ort, Datum Unterschrift

Verfügbarkeit der promotionsrelevanten Originaldaten und –aufzeichnungen

Hiermit erkläre ich die Verfügbarkeit der für die Promotion relevanten Originaldaten und -aufzeichnungen, einschließlich der für die Promotion in Naturwissenschaften erforderlichen elektronischen Daten zum Erlangen des Grades eines Doktors der Naturwissenschaften (Doctor rerum naturalium). Alle Daten finden Sie in der Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (Geb. J11, Ebene 1, Raum 1370) und die elektronischen Daten auf Servergas (\\ gas.mh-hannover.local) P. : \ AG-Saborowski.

Nach §6 Abs. 8 der Promotionsordnung der Medizinischen Hochschule Hannover stimme ich deren Einsicht zu.

Hannover 6/10/2020

______________________________________ ______________________________

Ort, Datum Unterschrift

Acknowledgments

The last four years have been an incredible journey, which has helped me grow personally and professionally. I would like to extend my gratitude to everyone who has supported me during the process.

First of all, I would like to thanks my Ph.D. supervisor, Dr med. Anna Saborowski and Prof.

Arndt Vogel for the opportunity and their continuous support and mentorship, and I hope to continue our collaboration in the future as well.

Many thanks, Dr. med Michale Saborowski and Dr. Norman Woller, for the insightful discussions. I would like to thank my co-supervisors, Prof. Dr. rer. nat. Ulrich Lehmann for his guidance and support. I also thank my thesis reviewers for their suggestions.

I would like to thank my friends and labmates Silke, Amrendra, Zul, Katharina, Steve, Steffi Yashmin, Barbara, Georgina, Simon, Hanna, and Denise for creating a fun working environment in the lab and great time outside the lab. Thanks for making my time here a memorable one, which I will cherish for life. Cheers everyone!

Many thanks to Meriame Nassiri, Eric Jende, and Sandra Rohrmoserfor the excellent technical support. My sincere thanks to Dr. Andreas Pich, Hannover Medical School, Core Unit Mass Spectrometry and Proteomics, for his help and insights in LCMS analysis.

Thanks to all the present and past members of the Gastro-labor for their help and support.

Special thanks to all the friends who are always there to support me.

Finally, I would like to extend my gratitude to my family, particularly my parents, for their unconditional love and continuous support.

Gajanan