• Keine Ergebnisse gefunden

[10] Sky and S. G. Ltd. Introducing The Pearls – SAS Constellation Nanosatellies.url: https://www.investi.com.au/api/announcements/

sas/68a4d249-4f4.pdf (visited on 04/12/2018).

[11] K. Communications.Kepler’s first Ku-band satellite is in orbit.url:

http://www.keplercommunications.com/blog/item/first- launch (visited on 04/15/2018).

[12] SpaceNews.com.Kepler Communications: a Toronto startup’s quest to connect all things, everywhere. url: http://spacenews.com/kepler-communications- a- toronto- startups- quest- to- connect- all- things-everywhere/ (visited on 04/15/2018).

[13] Astrocast.Astrocast – Global M2M connectivity for global businesses at the lowest cost. url: http : / / www . astrocast . com (visited on 04/14/2018).

[14] GOMspace.GOMspace | Aerial & Maritime.url: https://gomspace.

com/aerial-maritime.aspx (visited on 04/14/2018).

[15] S. M. S. plc.OCEAN-SCAN Satellite System.

[16] W. Blackwell et al. “The NASA TROPICS CubeSat Constellation Mission: Overview and Science Objectives”. In:31st Annual AIAA/USU Conference on Small Satellites. 2017.

[17] W. Blackwell et al. “MicroMAS: A First Step Towards a Nanosatel-lite Constellation for Global Storm Observation”. In: 27th Annual AIAA/USU Conference on Small Satellites. 2012.

[18] NASA.NanoRacks-QB50. url: https://www.nasa.gov/mission_page s/station/research/experiments/2539.html (visited on 04/15/2018).

[19] nasaspaceflight.com.PSLV rocket launches Cartosat 2E and 30 small sats.url: https://www.nasaspaceflight.com/2017/06/pslv-rocket-cartosat-2e-30-small-sats/ (visited on 04/15/2018).

[20] J. Thoemel et al. “Status of the QB50 CubeSat constellation mission”.

In:Proceedings of the 65th International Astronautical Congress. IAC-14-B4.2.11. Toronto, Canada, 2014.

[21] F. Singarayar et al.QB50 System Requirements. issue 3. Feb. 2013.

[22] M. Swartwout and C. Jane. “University-Class Spacecraft by the Num-bers: Success, Failure, Debris (But Mostly Success)”. In:30th Annual AIAA/USU Conference on Small Satellites (Logan, USA). 2016.

[23] P. T. Berlin.Ingenieurskunst aus Berlin-Charlottenburg im All. Feb. 1, 2018. url: http://www .pressestelle.tu- berlin.de/menue/tub_

medien/publikationen/medieninformationen/2018/februar_2018/

medieninformation_nr_202018/ (visited on 04/16/2018).

[24] M. F. Barschke et al. “Nanosatellite Activities at TU Berlin”. In:

2nd IAA Conference on University Satellite Missions and CubeSat Workshop. Rome, Italy, 2013.

[25] CubeSat Design Specification Rev. 13. The CubeSat Program, Cal Poly SLO. 2014.

[26] F. Baumann et al. “A Picosatellite Swarm for Technology Demonstra-tion”. In:Proceedings of the 68th International Astronautical Congress (IAC). Adelaide, Australia, Sept. 28, 2017.

[27] N. Korn et al. “Multifunctional Optical Attitude Determination Sensor for Picosatellites”. In:Proceedings of the 68th International Astronau-tical Congress (IAC). Adelaide, Australia, Sept. 28, 2017.

[28] R. Wolf et al. “TUPEX-5: Untersuchung des 9arationsverhaltens eines Picosatellitenschwarms im Rahmen einer Parabelflugkampagne”. Ger-man. In:Deutscher Luft- und Raumfahrtkongress 2015. 2015.

[29] S. Bandyopadhyay et al. “Review of Formation Flying and Constellation Missions Using Nanosatellites”. In:Journal of Spacecraft and Rockets 53.3 (2016), pp. 567–578.issn: 0022-4650.doi: 10.2514/1.bhandyop adhyay.2016.

[30] R. Shimmin et al. Small Spacecraft Technology State of the Art. Technical Publication. NASA Mission Design Division, 2016.

[31] B. Ostrove. Clyde Space Remains at Forefront of Small Satellite Industry. url: https://blog.forecastinternational.com/wordpress/

clyde-space-remains-at-forefront-of-small-satellite-industry/ (visited on 04/17/2016).

[32] GomSpace ApS. Advanced Features. 2017.url: https://gomspace.

com/advanced-features.aspx (visited on 10/17/2017).

[33] Clyde Space Ltd. Platforms. 2017. url: https://www.clyde.space/

what-we-do/platforms (visited on 10/19/2017).

[34] D. Gerhardt, M. Bisgaard, and L. Alminde. “GOMX-3: Mission Results from the Inaugural ESA In-Orbit Demonstration CubeSat”. In: Pro-ceedings of the 30th Annual AIAA/USU Conference on Small Satellites (Logan, USA). 2016.

[35] W. Swartz et al.The RAVAN CubeSat Mission: On-Orbit Demonstra-tion. June 15, 2017.

[36] B. C. Technologies. Blue Canyon Technologies launches first XB3 spacecraft into orbit for Earth climate science mission. Nov. 22, 2016.

url: http://bluecanyontech.com/blue-canyon-technologies-launches-first-xb3-spacecraft-into-orbit-for-earth-climate-science-mission/

(visited on 11/08/2017).

[37] W. Swartz et al. “RAVAN CubeSat Results: Technologies and Sci-ence Demonstrated on Orbit”. In: Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites (Logan, Utah). 2017.

[38] J. Bouwmeester, M. Langer, and E. Gill. “Survey on the implementation and reliability of CubeSat electrical bus interfaces”. In:CEAS Space Journal 9.2 (June 2017), pp. 163–173.issn: 1868-2510.doi: 10.1007/

s12567-016-0138-0.

[39] GomSpace ApS.NanoCam C1U. 2017.url: https://gomspace.com/

UserFiles/Subsystems/datasheet/gs-ds-nanocam-c1u-17.pdf (visited on 11/01/2017).

[40] Space Inventor ApS. Microsatellite in a CubeSat. 2017.url: http:

//space-inventor.com/portfolio-item/microsatellite-in-a-cubesat/

(visited on 11/10/2017).

[41] Space Inventor ApS.Powerplant 3U. 2017.url: http://space-inventor.

com/portfolio-item/powerplant3u/ (visited on 11/10/2017).

[42] Blue Canyon Technologies. XB Spacecraft. 2017. url: http://bl uecanyontech . com / wp - content / uploads / 2017 / 07 / DataSheet _ XBSpacecraft_09.pdf (visited on 11/01/2017).

[43] Innovative Solutions in Space B.V.ISIS 3U CubeSat. Modular platform for turn-key solutions. 2017. url: https://www.isispace.nl/wp-conte nt/uploads/2015/12/ISIS-3U-CubeSat-Bus-Brochure-compressed-v1.1.pdf (visited on 10/19/2017).

[44] Surrey Space Technologies Ltd.UNISEC Global Meeting. Presented during the Pre-workshop for the 4th Mission Idea Contest for Micro/-Nano Satellite Utilisation, Tokyo, Japan. July 2015.

[45] Tyvak International. Endeavour Platform. 2017. url: http://tyvak.

eu/endeavourplatform.html (visited on 11/01/2017).

[46] G. D. Krebs.RAVAN. Dec. 11, 2017.url: http://space.skyrocket.de/

doc_sdat/ravan.htm (visited on 04/18/2018).

[47] J. Bouwmeester and J. Guo. “Survey of worldwide pico- and nanosatel-lite missions, distributions and subsystem technology”. In:Acta Astro-nautica67.7 (2010), pp. 854–862.issn: 0094-5765.doi: 10.1016/j.

actaastro.2010.06.004.

[48] T. Funke et al. “Eigenschaften und Entwicklung von Kleinstsatelliten”.

German. In:Deutscher Luft- und Raumfahrtkongress. Sept. 2016.

[49] S. Weiß, S. Kapitola, and K. Brieß. “BEESAT-4: 3-Axis attitude control and GPS based positioning and orbit determination”. In:Proceedings of the 56th International Astronautical Congress (IAC). Guadalajara, Mexico, Sept. 2016.

[50] G. D. Krebs.TechnoSat (Tubsat 12).url: http://space.skyrocket.de/

doc_sdat/technosat.htm (visited on 04/19/2018).

[51] J. Grosshans and M. F. Barschke. In: AIAA SPACE Forum. 0. American Institute of Aeronautics and Astronautics, Sept. 2017. Chap. Mission concept of a nanosatellite constellation for global wildfire monitoring.

doi: 10.2514/6.2017-5267.

[52] M. Markgraf. Phoenix GPS Data Sheet – Issue 1.1. Jan. 2, 2007.

url: http://www.dlr.de/rb/en/Portaldata/%0B38/Resources/

dokumente/GSOC_dokumente/RB-RFT/Phoenix_DataSheet_v11.

pdf (visited on 04/20/2018).

[53] S. Weiß and S. Kapitola. “One Year of BEESAT-4 Operation: Long-Term Analysis of Housekeepings, GPS and Attitude Control Data”. In:

Proceedings of the 68th International Astronautical Congress. Adelaide, Australia, Sept. 2017.

[54] F. Baumann.BEESAT-4 – Abschlussbericht Phase B. BEESAT-4-1200-FR01. June 28, 2013.

[55] F. Baumann et al.Energiebilanz BEESAT-4. BEESAT-4-3300-TN01.

Mar. 19, 2013.

[56] S. Busch. “Robust, Flexible and Efficient Design for Miniature Satellite Systems”. PhD thesis. 2016.

[57] S. Busch.CubeSat Subsystem Interface Definition. CSID (Proposal). Version 1.0. UNISEC Europe.

[58] R. Alavi and J. Rießelmann.HISPICO. Hochintegrierter S-Bandsender für Pico-Satelliten. Abschlussbericht. July 15, 2008.

[59] Highly Integrated S Band Transmitter for Pico and Nano Satellites.

400115-01–90. Data Sheet. IQ wireless GmbH. June 21, 2016.

[60] M. F. Barschke, K. Gordon, and S. Junk. “Modular Architecture and Rapid Technology Update for a Flexible Nanosatellite Platform”. In:

11th IAA Symposium on Small Satellites for Earth Observation(Berlin, Germany). IAA-B11-1004. Apr. 2017.

[61] R. Alavi et al. “In Space Verification of the Pico-Satellite S-Band Transmitter HISPICO on a Sounding Rocket”. In:Proceedings of the 60th International Astronautical Congress (Daejeon, South Korea).

2009.

[62] C. Kakoyiannis and P. Constantinou. “Electrically Small Microstrip Antennas Targeting Miniaturized Satellites: the CubeSat Paradigm”.

In:Microstrip Antennas. Ed. by P. N. Nasimuddin. InTech, 2011.doi:

10.5772/14947.

[63] S. Grau et al. “Multifunktionale Integration von Komponenten für Pikosatelliten - Ein Schritt auf dem Weg zu Mikrosystemen im Satel-litenbereich”. In:62. Deutscher Luft- und Raumfahrtkongress. Stuttgart:

DGLR, Sept. 2013.

[64] S. Grau, D. Noack, and K. Brieß. “An angular momentum ring storage device prototype for CubeSats based on a liquid metal actuator”. In:

Proceedings of the 66th International Astronautical Congress (IAC).

Jerusalem, Israel, Oct. 15, 2015.

[65] S. Grau et al. “Highly Integrated Communications, Power Management, and Attitude Determination and Control Side Panel for CubeSats”. In:

Proceedings of the 68th International Astronautical Congress (IAC). Adelaide, Australia, Sept. 28, 2017.

[66] M. Tanaka et al. “Microstrip antenna with solar cells for microsatellites”.

In:Antennas and Propagation Society International Symposium, 1994.

AP-S. Digest. Vol. 2. 1994, pp. 786–789. doi: 10.1109/APS.1994.

407974.

[67] N. Henze et al. “GPS patch antenna with photovoltaic solar cells for vehicular applications”. In:58th Vehicular Technology Conference.

Vol. 1. 2003, pp. 50–54. doi: 10.1109/VETECF.2003.1284976.

[68] N. Henze et al. “Application of photovoltaic solar cells in planar antenna structures”. In:Twelfth International Conference on Antennas and Propagation (ICAP). Vol. 2. 2003, 731–734 vol.2.doi: 10.1049/cp:

20030180.

[69] N. Henze et al. “Investigation of planar antennas with photovoltaic solar cells for mobile communications”. In:15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Vol. 1. 2004, 622–626 Vol.1. doi: 10.1109/PIMRC.2004.

1370945.

[70] S. Vaccaro, J. R. Mosig, and P. de Maagt. “Two advanced solar antenna

"SOLANT" designs for satellite and terrestrial communications”. In:

IEEE Transactions on Antennas and Propagation51.8 (Aug. 2003), pp. 2028–2034.issn: 0018-926X. doi: 10.1109/TAP.2003.815424.

[71] M. Markgraf et al. “The Asolant/Rubin-5 Technology Demonstration Mission - System Description and First Flight Results”. In: Small Satellite Systems and Services - The 4S Symposium. 2006.

[72] S. Vaccaro et al. “In-flight experiment for combined planar antennas and solar cells (SOLANT)”. In: Microwaves, Antennas Propagation, IET 3.8 (2009), pp. 1279–1287.issn: 1751-8725.doi: 10.1049/iet-map.2008.0410.

[73] T. Turpin and R. Baktur. “Meshed Patch Antennas Integrated on Solar Cells”. In:Antennas and Wireless Propagation Letters, IEEE 8 (2009), pp. 693–696.issn: 1536-1225.doi: 10.1109/LAWP.2009.2025522.

[74] T. Yasin and R. Baktur. “Circularly Polarized Meshed Patch Antenna for Small Satellite Application”. In:IEEE Antennas and Wireless Prop-agation Letters 12 (2013), pp. 1057–1060. issn: 1536-1225. doi:

10.1109/LAWP.2013.2280131.

[75] S. Grau, I. Suchantke, and K. Brieß. “A comprehensive study on magnetic actuator design for CubeSat missions”. In:Proceedings of the 68th International Astronautical Congress (IAC). Adelaide, Australia, Sept. 26, 2017.

[76] I. Suchantke. “A Comprehensive Numerical Study on Magnetic Torquer Design for CubeSat Missions”. Bachelor’s thesis. Technische Universität Berlin, Mar. 8, 2017.

[77] Z. Yoon. “Drei-Achsen-Stabilisierung eines Pico-Satelliten mit Mag-netspulen”. German. MA thesis. Berlin, 2006.

[78] P. Shinde et al.Design of FIU FUNSAT System: Attitude Control for the 3U CubeSat. 2016.

[79] D. Miller.Design optimization of the CADRE Magnetorquers. Tech.

rep. May 2, 2013.

[80] NanoPower P110. P110 Solar Panel Datasheet. gs-ds-nanopower-p110-2.7. Rev gs-ds-nanopower-p110-2.7. GomSpace ApS. Feb. 16, 2018.

[81] Solar Panel 1U. User Manual. Endurosat. Nov. 23, 2017.

[82] Z. Yoon. “Magnetspulen”. German. e-mail conversation. 2007.

[83] Munich Orbital Verification Experiment II Team. Attitude control actuators (ADCS). 2016.

[84] J. Wells, L. Stras, and T. Jeans. Canada’s Smalles Satellite. The Canadian Advanced Nanospace eXperiment (CanX-1). Unknown. Space Flight Laboratory, University of Toronto, Institute for Aerospace Studies, 2002.

[85] V. Francois-Lavet. “Study of passive and active attitude control systems for the OUFTI nanosatellites”. MA thesis. University of Liège, 2010.

[86] GomSpace ApS.NanoTorque Ztorque Internal Datasheet: Datasheet Internal magnetorquer for nano-satillites. Ed. by GomSpace ApS. Den-mark, 2016.

[87] F. Reichel. “Attitude Control System of UWE-3: Design, Testing and Verification”. MA thesis. Julius-Maximilians-Universität Würzburg, 2012.

[88] S. Busch et al. “UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations”.

In:Acta Astronautica 117 (2015), pp. 73–89.issn: 0094-5765.doi:

10.1016/j.actaastro.2015.08.002.

[89] J. Gießelmann. “Development of an Active Magnetic Attitude Determi-nation and Control System for Picosatellites on highly inclined circular Low Earth Orbits”. MA thesis. Royal Melbourne School of Technology, 2006.

[90] N. Bellini. “Magnetic actuators for nanosatellite attitude control”.

PhD thesis. Universita’ di Bologna, 2014.

[91] M. M. A. Dildar et al. “Embedded Magnetorquer Coil Design for Micro-Satellite”. In:3rd International Conference on Engineering &

Emerging Technologees (ICEET)(Lahore, PK). Apr. 2006.

[92] A. Ali et al. “Reconfigurable Magnetorquer for the CubePMT Mod-ule of CubeSat Satellites”. In:15th International Multitopic Confer-ence (INMIC). Piscataway, NJ: IEEE, Dec. 2012, pp. 178–183.isbn:

9781467322508.doi: 10.1109/INMIC.2012.6511478.

[93] A. Ali et al. “Innovative Power Management, Attitude Determination and Control Tile for CubeSat Standard NanoSatellites”. In: Acta Astronautica96 (2014), pp. 116–127.issn: 0094-5765.doi: 10.1016/

j.actaastro.2013.11.013.

[94] A. Ali et al. “Design, implementation, and thermal modeling of embed-ded reconfigurable magnetorquer system for nanosatellites”. In: IEEE Transactions on Aerospace and Electronic Systems 51.4 (Oct. 2015), pp. 2669–2679.issn: 0018-9251.doi: 10.1109/TAES.2015.130621.

[95] J. W. Eaton et al. GNU Octave version 4.2.1 manual: a high-level interactive language for numerical computations. 2017.

[96] H. W. Oelze. Magnetic Torquers for Micro-Satellites: Improve Your Attitude! 2010. url: http://www.zarm- technik.org/downloadfil es/ZARMTechnikAG_CubeSatTorquers_web2010.pdf (visited on 02/25/2017).

[97] R. P. Haviland. “Orientation control for a space vehicle”. US Patent 2 856 142. Oct. 1958.

[98] T. Yeadon. “Fluid mass gyroscope”. US Patent 2 953 925. Sept. 1960.

[99] R. S. Maynard. “Fluidic momentum controller”. US Patent 4 776 541.

Oct. 1988.

[100] T. C. Iskenderian. “Liquid angular-momentum compensator”. In:NASA Tech Briefs 13.5 (1989), p. 80.

[101] B. J. Lurie and A. J. Schier. “Liquid-Ring Attitude-Control System For Spacecraft”. In:NASA Tech Briefs 14.9 (1990), p. 82.

[102] B. J. Lurie, J. A. Schier, and T. C. Iskenderian. “Fluid-loop reaction system”. US Patent 5 026 008. June 1991.

[103] A. Kelly et al. “A performance test of a fluidic momentum controller in three axes”. In: Final Report ASE Q463 (2004).

[104] K. D. Kumar. “Satellite attitude stabilization using fluid rings”. In:

Acta Mechanica 208.1 (Nov. 2009), pp. 117–131. issn: 1619-6937.

doi: 10.1007/s00707-008-0132-5.

[105] N. Nobari.Attitude Dynamics and Control of Satellites with Fluid Ring Actuators. McGill theses. McGill University Libraries, 2013.

[106] D. Noack. “Fluiddynamischer Aktuator”. DE Patent App. DE 10 2009 036 327 A1. Feb. 2011.

[107] D. Noack, J. Ludwig, and K. Brieß. “Fluid-Dynamic Actuators - An Alternative Attitude Control System for Small Satellites”. In: The ESA/CNES Small Satellites Systems and Services (4S) Symposium.

Valletta, Malta, 2016.

[108] D. Noack, J. Ludwig, and K. Brieß. “Laboratory investigation of a fluid-dynamic actuator designed for CubeSats”. In:Acta Astronautica 96 (Mar. 2014), pp. 78–82.issn: 0094-5765.

[109] S. Grau, D. Noack, and K. Brieß. “Rapid prototyping of a combined channel/pump structure for liquid metal actuators used as angular momentum storage device for picosatellites”. In:Proceedings of the 66th International Astronautical Congress (IAC). Jerusalem, Israel, 2015.

[110] F. C. Gross. Problems Associated with Nylon Usage on Spacecraft. Tech. rep. 77. National Aeronautic and Space Administration, June 1986.

[111] J. Watzinger. “Untersuchungen zur Glättung der Innenwände laser-gesinterter Kanalstrukturen aus Polyamid”. German. Bachelor’s Thesis.

Apr. 15, 2016.

[112] S. Grau et al. “Labormuster eines fluiddynamischen Aktuators für Satelliten der CubeSat-Klasse”. In:64. Deutscher Luft- und Raum-fahrtkongress. Rostock: DGLR, Sept. 2015.

[113] Reaction Wheel RW 1 for Pico and Nano Satellites. Astro- und Fein-werktechnik Adlershof GmbH.

[114] D. A. Sullivan et al. “Development of an Ejectable CubeSat Onboard a Sounding Rocket”. In:Proceedings of the 2nd Symposium on Space Educational Activities. paper accepted. Budapest, Hungary, Apr. 2018.

[115] M. F. Barschke and K. Gordon. “Enabling Flexible Payload Manage-ment through Modularity”. In:Proceedings of the 66th International Astronautical Congress (IAC)(Jerusalem, Israel). IAC-15-B4.7.1. Oct.

2015.

[116] S. Busch and K. Schilling. “UWE-3: A Modular System Design for the Next Generation of Very Small Satellites”. In: Proceedings of Small Satellites Systems and Services - The 4S Symposium, Portorož (Slovenia). June 2012.

[117] M. F. Barschke and K. Gordon. “A Generic System Architecture for a Single-Failure Tolerant Nanosatellite Platform”. In: Proceedings of the 65th International Astronautical Congress (IAC) (Toronto, Canada).

IAC-14-B4.6A. Sept. 2014.

[118] Clyde Space Ltd. 1U Solar Panel. 2017. url: https://www.clyde.

space/products/17-1u-solar-panel (visited on 10/23/2017).

[119] Solar Panels for Aerospace Applications. dhv technology. July 2017.

[120] Innovative Solutions in Space B.V. Single CubeSat solar panels. 2017.

url: https://www.isispace.nl/product/isis-cubesat-solar-panels/

(visited on 04/03/2018).

[121] GaAs Solar Arrays. Datasheet. User Manual. nano avionics. Oct. 5, 2016.

[122] P. Bangert, S. Busch, and K. Schilling. “Performance Characteristics of the UWE-3 Miniature Attitude Determination and Control System”.

In:Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems (DYCOSS).

[123] S. Speretta et al. “Modular Architecture for Satellites”. In:Proceedings of the 58th International Astronautical Congress. Hyderabad, India, Sept. 2007.

[124] P. Karuza, G. Maul, and D. Hinkley. Flat Flexible Cables in Picosatel-lites. Los Angeles, USA: The Aerospace Corporation, 2012.

[125] S. Grau et al. Multifunktionale Integration miniaturisierter Satel-litenkomponenten zur Erhöhung der Nutzlastkapazität für Kleinst-satelliten. Internal Documentation.

[126] C. Avsar et al. “Verification of a New Two-Dimensional Sun-Sensor with Digital Interface on a Sounding Rocket”. In: REXUS/BEXUS Results Symposium. Bremen, Germany, Aug. 2010.

[127] NewSpace Systems.Cubesat Magnetorquer Rod. 2016.url: http://w ww.newspacesystems.com/wp-content/uploads/2016/05/NewSpace-DS-Cubesat-Magnetorquer-Rod-1.pdf (visited on 02/26/2017).

[128] CubeSpace.CubeTorquer & CubeCoil: Magnetorquers for CubeSats.

2017.url: https://www.cubesatshop.com/wp-content/uploads/

2016/06/CubeTorquer-CubeCoil-Brochure-8-2016.pdf (visited on 03/03/2017).

[129] V. Lappas.QB50 ADCS + GPS. 2012.

[130] CubeSpace. CubeTorquer. 2018. url: https ://cubespace.co.za/

cubetorquer/ (visited on 02/23/2018).

[131] T. Lorentzen.Attitude Control and Determination System for DTUsat1. 2002.

[132] K. Monakhova et al. Fabrication and Testing of Magnetic Satellite Actuators: UB Nanosatellite Program. 2002.

[133] A. Aydinlioglu and M. Hammer. “COMPASS-1 pico satellite: magnetic coils for attitude control”. In:Proceedings of 2nd International Con-ference on Recent Advances in Space Technologies, 2005. RAST 2005.

June 2005, pp. 90–93. doi: 10.1109/RAST.2005.1512541.

[134] Stras Space.Nanosatellite Magnetic Torque Coils. 2017.

[135] K. Rensel. “An Attitude Detumbling System for the CubeSTAR Nano Satellite”. MA thesis. University of Oslo, Aug. 15, 2011.