• Keine Ergebnisse gefunden

Author's personal copy

1282 H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287

Lasersseemtobeanobviouschoiceforthistask,butwere neveremployedforthispurposebefore.ThereasonisthatAAO isnearlytransparentforcommonlaserwavelengths.Asaresult effective photo-thermalheating of AAOis impossibledueto low absorptionevenfor high intensityirradiation.Wesolved thisproblembyequippingAAOwithcarbonnanotubes(CNT) asasacrificialabsorberthatenableslaser-inducedphase trans-formationofAAOto-Al2O3withcuttingedgeprecision.

2. Experimental

FabricationofAAO/CNT.Highpurityaluminumfoil (Good-FellowAl99.999)wasdegreasedin5wt% sodiumhydroxide at60Cfor1min,rinsedwithdeionizedwater,pickledin1:1 nitricacid/waterandfinallyrinsedwithdeionizedwater. AAO-membranesexaminedbyX-raypowderdiffraction(XPD)and irradiationintensitystudieswereanodizedin10vol%sulfuric acid solutionat 4C with35V.27 AAOs for dotwise pattern-ing wereanodized in0.3M oxalicacidsolution at 3Cwith 100V.17RemainingAlwasremovedbyetchingincupric chlo-ride/hydrochloricacidsolution.AspreparedAAOsampleswere rinsed with deionized water and dried at 50C for several days.

AAO-templateassistedCNTgrowthwasconductedbya ther-malCVDprocessusingconditionsdescribedbyYang.28Briefly, AAOsampleswereplacedinatubefurnaceandrampedatarate of5/min inareducingenvironmentcomprising25%H2and 75%N2.At750Cthe samplesweresubjectedtoagas mix-tureofH2/C2H2atflowratesof500sccmand150sccmfor2h.

Finallythefurnacewascooledatarateof5/minunderAr-flow.

Details concerning fabricationandhandling of AAO/CNT membranesaresuppliedintheSupplementaryInformation.

Chromiumdoped␣-Al2O3was prepared byimmersion of AAO/CNTinan aqueous solutionof 1M Cr(III)NO3 for 1h priortoirradiation.Titaniumdopingwasachievedby immer-sioninasolutioncontaining12%Ti(III)Cl3in8%hydrochloric acid(Sigma–Aldrich)for10min.Afterdraininganddryingthe substrateswereirradiatedtoproducemicropatternsofAl2O3:Cr andAl2O3:Ti,respectively.Finallythesubstrateswerepurged indistilledwatertoremovemetalsaltsfromunaffectedareas.

LaserirradiationofAAO/CNT.ANewportExplorerXP 532-5 DPSS laser emitting TEM00 (M2<1.1)at awavelength of 532nm was used for photo-thermal treatment of AAO/CNT samples. The laser beam was steered over the samples by a SCANgine14 galvanometer scanner equipped with a Roden-stockRonarF-Theta100mmlens.Largescaleirradiation for XPDsamplepreparationwasconductedat3.6Watarepetition rateof300kHz.Dopedandpure␣-Al2O3dotpatternswere gen-eratedat100mWand300kHzrepetitionrate.Dwellingtimes usedperdotrangedfrom1to100ms,dependingonthedesired dotsize.

XPD measurements were carriedout on a Philips X-Pert MPDPropowderdiffractometerequippedwithX-PerttubeCo LFFoperating at30kVand30mA. Spectrawereobtainedin therangeof2585atroomtemperature.Dataanalysis andpostprocessingwasconductedbyX-PertHighScorePlus v2.2c.

Fluorescencemicroscopyof microstructuredsamples was performedonaCarlZeissLSM5Pascalundermercurylamp illuminationapplyingfluorescencefilterF-Set25.

Topological mapping of substrate surfaceswas performed with the same microscope operating in laser-scanning mode (LSM).

PhotoluminescenceemissionofAl2O3:CrandAl2O3:Tiwere exited bycw-laserirradiation at 532nmandmeasured by an OceanOpticsUSB2000fiberspectrometer.

Scanningelectron microscopy(SEM)wasperformed ona JeolJSM7500FfieldemissionmicroscopeequippedwithSEI, LEIandBSEmultisensor-matrix.

3. Resultsanddiscussion

Likemost non-metals,alumina ceramicscanbe heatedby infraredlasersduetoresonantphononcoupling.Unfortunately typicalIR-sourceslikeCO2-lasersgivepoorspatialresolution attributedtotheirlongwavelengthof10.6␮mwhichis unfavor-ablefor micropatterningregarding theAbbe diffractionlimit.

Likewise, the attempt to use shorter wavelengths for photo-thermalheatingencountersotherproblems:alumina ceramics aretransparentinthespectralrangefromnear-IRtonear-UV;

bandgapsaresolelylocatedinthevacuum-UV.29Inshort,laser wavelengths covered by available high power lasers are not absorbedandhighpowerlasersinthevacuumultravioletspectral rangearebarelyavailable.Acceptingthefactthatthisproblem cannotbesolvedbyanappropriatechoiceoflaserwavelength thealternativeistochangethe substrateabsorption character-istics. Several modifications increasing the opticaldensity of AAOweretested:Organicdyes soakedinto thenanoporesof AAOgavegoodopticalabsorptionbutlaserirradiation experi-mentsshowedthatphasetransitionofAAOto␣-Al2O3isnot possiblebecauseorganicmoleculesdecomposebeforetransition temperatureisreached.Anobvioussolutionforthisproblemis theuseofinorganicabsorbers,whichindeedenabledfor effec-tivephoto-thermalheating.Naturally,thisapproachresultsin absorbercontaminated␣-Al2O3whichisundesiredbecausethe physicochemical properties of ␣-Al2O3 are very sensitive to contamination.Finallywetookadvantageofthecatalytic capa-bilityofAAOtogrowcarbonnanotubesinitsnanopores30(see SupplementaryInformation for details).CNTsfeature higher temperaturestabilitythanorganicdyesandsuperioroptical den-sity.Wefoundthat photo-thermalheatingof suchAAO/CNT substrates readily induces surface temperatures allowing for phaseevolutionof -Al2O3.XPDspectraofAAO/CNT sam-plesirradiatedatalaserwavelengthof532nmareillustratedin Fig.1togetherwithblankaluminum,anodizedaluminumand non-irradiatedAAO/CNTforcomparativepurposes.

AAOandAAO/CNTsamplescanbeconsideredamorphous apart from peaks ascribable to metallic aluminum, denoted bygraymillerindices.Laser treatmentofAAO/CNTwithan irradiation intensityof 100J/cm2 turns small amountsof ini-tiallyamorphousaluminainto␥-Al2O3.McQuaigandKirchner observedthistransitionto occurbetween 900 and970C by ovensinteringofanodicaluminamembranes.26,31The thresh-oldirradiation intensityfor␣-Al2O3generation wasfoundat

Author's personal copy

H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287 1283

Fig.1.Photo-thermalphaseevolutionfromAAO/CNT.Aluminumblank(a), AAO(b),AAO/CNT(c),AAO/CNTirradiatedwith100J/cm2(d),AAO/CNT irradiatedwith350J/cm2(e),andAAO/CNTirradiatedwith700J/cm2(f). Char-acteristicintensitiesoftransitionaluminaphasesaregivenatthebottom:ICDD card43-1484-Al2O3(black),ICDDcard29-1486-Al2O3(purple),ICDD card16-0394-Al2O3(blue),ICDDcard21-0010-Al2O3(pink),ICDD card35-0121-Al2O3(green),ICDDcard04-0878-Al2O3(red),ICDD card34-0493-Al2O3(orange).(Forinterpretationofthereferencestocolor inthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

350J/cm2eventhoughthepreferred␣-phaserepresentsjusta minor amount of the mixed crystalline alumina polymorphs.

This changes radically when AAO/CNT is irradiated at an intensity of 700J/cm2. Distinct ␣-Al2O3 peaks, denoted by

blackmillerindices,toweraboveallotheraluminapolymorphs.

However,pure␣-Al2O3couldnotbeachievedbyhigher irra-diationintensitiesduetolaserinducedsubstratedamage.This resultsfromthefactthattheAAO/CNTto-Al2O3transitionis thermo-dynamicallyfavoredfortemperaturesbyfarexceeding thethermalstability of CNTsinoxidizingenvironments.32,33 Consequently, CNTs act as a sacrificial absorber, which is pyrolyzedduringthephoto-thermalprocess(seeSupplementary Informationfordetails).Ontheonehandthe rateofabsorber degradationisafunctionoftemperatureontheotherhand tem-peraturedependsonirradiationintensityandabsorberactivity.

Evidentlyabreak-evenpointispresentinthesystemwhich lim-itsthemaximumtemperatureavailableforphasetransitionand thustheyieldof␣-Al2O3.Inordertolocatethispointwe con-ductedaseriesofirradiationscoveringtheintensityrangefrom 400to700J/cm2.ResultsareillustratedinFig.2.

Irradiation at 400J/cm2 left the surface unaffected from amorphological pointof view nanopores are still present.

500J/cm2changedthesurfacetoacinderymorphology, indi-catingthatthemeltingpointofaluminawasexceeded.Samples irradiatedat600J/cm2showmicrometersizedaluminagrains fusedtoamosaic-pattern.At700J/cm2the mosaic-like mor-phology is fragmented. In conclusion it can be stated, that AAO-embeddedCNTsshowgoodabsorberactivityfor irradi-ationintensitiesupto600J/cm2.Furtherincreaseinintensity causes absorber degradation and thus deeper penetration of photonsintotheAAO-matrix.Photo-thermalheatingofdeeper regionsinducesmechanicalstressresultinginsurfacewrinkling andrupture.Thepotentialtocreatespecificsurface morpholo-gies by variation of irradiation intensity may be interesting

Fig.2.Morphologicaleffectsofphoto-thermaltreatment. Dual-sensorSEMinspection(SEI+LEI)ofAAO/CNTafterphoto-thermalprocessing.Irradiation intensitiesaredenotedinyellow.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Author's personal copy

1284 H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287

Fig.3.Microstructureperformanceofphoto-thermalphasetransitionto-Al2O3.Photoluminescencespectraandmicro-patternsofAl2O3:Ti(a–c), photolumine-scencespectraandmicropatternsofAl2O3:Cr(d–f),greenarrowsindicatecw-laserexcitationat532nmwavelength.(Forinterpretationofthereferencestocolorin thisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

for, e.g., biomedical applications. However, our objective is structuraltransformationofAAOideallywithoutchangingthe nanoporousmorphology;hencewekeptirradiationintensities below500J/cm2forourstudies.

␣-Al2O3 is the host crystal for gemstones like ruby. The replacementofafewAl3+-ionsbyCr3+-ionsinvolvesarigorous changeofitsopticalproperties.Lietal.reportedstrong photolu-minescencefromCr3+-dopedAAOafterthermaltransformation to ␣-Al2O3.34 We introduced this feature to our process by soakingCr3+-ionsintothenanoporousstructureofAAO/CNT prior to photo-thermal treatment. After transformation to ␣-Al2O3thosesamplesshowasharpphotoluminescencepeakat 694.2nm as showninFig.3,the R1-lineof Ruby.35 Repeat-ingthesameexperimentwithTi3+-dopingresultedinabroad photoluminescence emission band from 600 to 950nm with

amaximum intensityat 730nm,which is inagreement with spectraofAl2O3:Ti-laser-crystals.36,37

Thephoto-thermalheatingofAAO/CNTproofedtobehighly effectivefor thegenerationof metal-iondoped␣-Al2O3.The photoluminescence of Al2O3:Cr and Al2O3:Ti presents also a convenient solution for microstructure inspection. Owing tohighphotoluminescence efficiency laserexcitation is actu-ally not necessary; instead we used fluorescencemicroscopy formicrostructure imaging.MicrodotarraysofAl2O3:Crand Al2O3:Ti, shown in Fig. 3, demonstrate that AAO/CNT to

␣-Al2O3 transformation can be achieved with cutting-edge precision.SEMinspectionoftheblackringssurroundingthe flu-orescentspotsresultedinthefindingthatCNTswerepyrolized inthisregion.Thisheataffectedrimsexpandabout10␮mfrom thefluorescentedgewhichiscomparativelylowconsideringthe

Author's personal copy

H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287 1285

Fig.4.Schematicrepresentationofpatterntransferprocessusingselectiveetching.

Fig.5.Deptheffectofphoto-thermal-Al2O3 evolution.SEM-inspectionof-Al2O3-micropatternobtainedbypointwiseheatingofAAO/CNTwith25m dot-spacing(a,c,andd).Topographicillustrationof-Al2O3-micropatternbylaser-scanning-microscopy(b).

highthermalgradient.Ontheonehandthetight confinement of photo-thermally induced heat can be explained by means oflow thermalconductivity ofAAOowingtoitsnanoporous morphology.38,39OntheotherhanditmustbenoticedthatCNTs featureextraordinarilyhighthermalconductivity.40Weassume theverycombinationofaluminananoporesandCNTstobe ben-eficialforcloselylocalizedheatconfinement.Transversalheat diffusioninAAO/CNTis suppressedbythe coaxial arrange-mentofaluminananopores,actingasheat-diffusionbarrier,and CNTs, actingas coolingpipes, whichrapidly spreaddiffused heatinlongitudinaldirection. Additionaltothat,the simulta-neousdecompositionofCNTsisanenergyconsumingprocess, thusfavoringheatconfinementaswell.41

SuperficialconversionofAAOto-Al2O3byphoto-thermal treatmentwasdemonstratedsofar.Inthefollowingsectionwe giveinsightsinstructureformationbelowthesurface.Thesketch illustratedinFig.4summarizesthe entireprocessappliedfor thisinvestigation.

IncontrasttoAAO,whichisanamphothericoxide,␣-Al2O3

can neither be etched by acids nor by bases. This advanced

chemicalstabilitywas utilizedfor selectiveetchingof photo-thermally patterned AAO/CNT. ␣-Al2O3 micropatterns were fixed by a PMMA top coating prior to AAO-dissolution in aqueousNaOH-solution.

CNTswereremovedbyultrasonicationinanaqueous solu-tionof sodiumdodecylbenzene sulfonatefollowedbyrinsing withdistilled water.42 SEM pictures of the residual ␣-Al2O3

micropatternsonPMMAareshowninFig.5.Thedistinctregular morphologyof␣-Al2O3-micropatternsdemonstratesthat photo-thermaltransformationofAAOto␣-Al2O3providesverysharp depthresolution.Pointwiselaser-heatingincloseproximity pro-ducedinterconnectedhumpswith8␮mpeak-to-valleyheight.

MoreoverthenanoporousmorphologyofAAOismaintainedas asubstructureinthesemicro-humps.

4. Conclusion

Laser controlled photo-thermal phase transformation of AAO/CNTis an efficientmethod for the generation of hier-archically structured␣-Al2O3 patterns. CNTs featureperfect

Author's personal copy

1286 H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287

absorberperformanceenablingtheAAOto␣-Al2O3 transfor-mationundermaintenanceof the nanoporousAAOstructure.

CNTs act as sacrificial absorbers providing ␣-Al2O3 free of contaminants. This is absolutely mandatory to enable spe-cific -Al2O3-doping by soakinge.g., Cr or Ti ions into the AAO/CNTprecursorandreceivingthecharacteristicruby-and Ti-sapphire photoluminescence emissions. Potential applica-tions for the presented systems encompass e.g., fluorescent imaginginbiomedicalarrays,microlasers,microlens-arraysand manymore.

Acknowledgment

FinancialsupportfromFederalMinistryofEconomicsand Technology (BMWi)throughgrantKF2307201MK9is grate-fullyacknowledged.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/

j.jeurceramsoc.2013.01.005.

References

1.MasudaH,FukudaK.Orderedmetalnanoholearrays madebya two-step replication of honeycomb structures of anodic alumina. Science 1995;268:1466–8.

2.MasudaH,YasuiK,NishioK.Fabricationoforderedarraysofmultiple nanodotsusinganodicporousaluminaasanevaporationmask.AdvMater 2000;12:1031–3.

3.GaoX,LiuL,BirajdarB,ZieseM,LeeW,AlexeM,HesseD.High-density periodicallyorderedmagneticcobaltferritenanodotarraysby template-assistedpulsedlaserdeposition.AdvFunctMater2009;19:3450–5.

4.WuM,WenL,LeiY,OstendorpS,ChenK,WildeG.Ultrathinalumina membranesforsurfacenanopatterninginfabricatingquantum-sized nan-odots.Small2010;6:695–9.

5.BanerjeeP,PerezI,Henn-LecordierL,LeeLB,RubloffGW.Nanotubular metal–insulator–metalcapacitorarraysforenergystorage.NatNanotechnol 2009;4:292–6.

6.FanZ,RazaviH,DoJ,MoriwakiA,ErgenO,ChuehY,LeuPW,HoJC, TakahashiT,ReichertzLA,NealeS,YuK,WuM,AgerJW,JaveyA.

Three-dimensionalnanopillar-arrayphotovoltaicsonlow-costandflexible substrates.NatMater2009;8:648–53.

7.HaberkornN, GutmannJS, Theato P. Template-assistedfabrication of free-standingnanorodarraysofahole-conductingcross-linked tripheny-laminederivative:towardorderedbulk-heterojunctionsolarcells.ACSNano 2009;3:1415–22.

8.MorenoiCodinachsL, BirkenstockC,GarmaT,ZieroldR,Bachmann J,Nielsch K, Schöning MJ, Fontcuberta i Morral A. A micron-sized nanoporousmultifunctionsensingdevice.PhysStatSol2009;206:435–41.

9.GuoD,FanL,WangF,HuangS,ZouX.Porousanodicaluminumoxide Braggstacksaschemicalsensors.JPhysChemC2008;46:17952–6.

10.O’CarrollDM, Hofmann CE, Atwater HA. Conjugated polymer/metal nanowireheterostructureplasmonicantennas.AdvMater2010;22:1223–7.

11.MasudaH,YamadaM,MatsumotoF,YokoyamaS,MashikoS,Nakao M,NishioK.Lasingfromtwo-dimensionalphotoniccrystalsusinganodic porousalumina.AdvMater2006;18:213–6.

12. ChenW,JinB,HuY,LuY,XiaX.Entrapmentofproteininnanotubes formedbyananochannelandion-channelhybridstructureofanodic alu-mina.Small2012;8:1001–5.

13.MatsuiY,NishioK,MasudaH.Highlyorderedanodicporousaluminawith 13-nmholeintervalsusinga2Darrayofmonodispersenanoparticlesasa template.Small2006;2:522–5.

14.ChenW,WuJ,XiaX.Porousanodicaluminawithcontinuouslymanipulated pore/cellsize.ACSNano2008;2:959–65.

15.KrishnanR, ThompsonCV.Monodomain high-aspect-ratio2Dand3D orderedporousaluminastructureswithindependentlycontrolledpore spac-inganddiameter.AdvMater2007;19:988–92.

16. MasudaH,AsohH,WatanabeM,NishioK,NakaoM,TamamurT.Adv Mater2001;13:189–92.

17. LeeW,JiR,GöseleU,NielschK.Fastfabricationoflong-rangeordered porousaluminamembranesbyhardanodization.NatMater2006;5:741–7.

18.JhaH,KikuchiT,SakairiM,TakahashiH.Lasermicromachiningofporous anodicaluminafilm.ApplPhysA2007;88:617–22.

19.JhaH,KikuchiT, SakairiM,Takahashi H.Micro-patterningin anodic oxidefilmonaluminiumbylaserirradiation.ElectrochimActa2007;52:

4724–33.

20.StumpfHC,RussellAS,NewsomeJW,TuckerCM.Thermal transforma-tionsofaluminasandaluminahydratesreactionwith44%technicalacid.

IndEngChem1950;42:1398–403.

21.SirotaNN, Shokhina GN. Kineticsofpolymorphous transformation of anodicalumina.KristTechn1974;9:913–9.

22.LeeC,KangH,ChangY,HahmY.Thermotreatmentandchemicalresistance ofporousaluminamembranepreparedbyanodicoxidation.KoreanJChem Eng2000;17:266–72.

23. Fernández-Romero L,Montero-MorenoJM,PellicerE,Peiró F,Cornet A,MoranteJR,SarretM,MüllerC.Assessmentofthethermal stabil-ityofanodicaluminamembranesathightemperatures.MaterChemPhys 2008;111:542–7.

24.Choudhari KS, Sudheendra P, Udayashankar NK. Fabrica-tion and high-temperature structural characterization study of porous anodic alumina membranes. J Porous Mater 2012, http://dx.doi.org/10.1007/s10934-012-9568-z.

25.MarsalLF,VojkuvkaL,FormentinP,PallarésJ,Ferré-BorrullJ. Fabrica-tionandopticalcharacterizationofnanoporousaluminafilmsannealedat differenttemperatures.OptMater2009;31:860–4.

26.McQuaigMK,ToroA,VanGeertruydenW,MisiolekWZ.Theeffectof hightemperatureheattreatmentonthestructureandpropertiesofanodic aluminumoxide.JMaterSci2011;46:243–53.

27.ChuS,WadaK,InoueS,IsogaiM,YasumoriA.Fabricationofideally orderednanoporousaluminafilmsandintegratedaluminananotubulearrays byhigh-fieldanodization.AdvMater2005;17:2115–9.

28.YangC,ChenC,ShiehJ.Characterizationandfield-emissionpropertiesof carbonnanotubearraysinnanoporousaluminatemplateandonblankSi substrate.JApplPhys2006;100:104302.

29.FrenchRH,MüllejansH,JonesDJ.Opticalpropertiesofaluminumoxide:

determinedfromvacuumultravioletandelectronenergy-loss spectrosco-pies.JAmCeramSoc1998;81:2549–57.

30.Kyotani T, TsaiL, Tomita A.Formation of ultrafinecarbon tubes by usingananodicaluminum-oxidefilmasatemplate.ChemMater1995;7:

1427–8.

31.KirchnerA,MacKenzieKJD,BrownIWM,KemmittT,BowdenME. Struc-turalcharacterisationofheat-treatedanodicaluminamembranesprepared usingasimplifiedfabricationprocess.JMembrSci2007;287:264–70.

32.LiewKM, WongCH,HeXQ,TanMJ. Thermalstabilityofsingleand multi-walledcarbonnanotubes.PhysRevB2005;71:075424.

33.ThostensonET,LiC,ChouT.Nanocompositesincontext.ComposSci Technol2005;65:491–516.

34.LiT,YangS,HuangL,ZhangJ,GuB,DuY.Strong photoluminesce-ncefrom Cr3+doped porousanodicalumina.J Phys:CondensMatter 2004;16:2463–9.

35.MaimanTH.Stimulatedopticalradiationinruby.Nature1960;187:493–4.

36.Moulton PF. Ti-doped sapphire: tunable solid-state laser. Opt News 1982;8:9–13.

37. MoultonPF.SpectroscopicandlasercharacteristicsofTi:Al2O3.OptSoc AmB1986;3:125–33.

38. Borca-TasciucDA,ChenGJ.Anisotropicthermalpropertiesof nanochan-neledaluminatemplates.ApplPhys2005;97:084303.

Author's personal copy

H.M.Reinhardtetal./JournaloftheEuropeanCeramicSociety33(2013)1281–1287 1287 39.CaiA,YangL,ChenJ,XiT,XinS,WuW.Thermalconductivityofanodic

aluminafilmat(220to480)Kbylaserflashtechnique.JChemEngData 2010;55:4840–3.

40.Kim P, Shi L, Majumdar A, Mc Euen PL. Thermal transport mea-surement ofindividual multiwalled nanotubes.Phys RevLett2001;87:

215502.

41. Chang C, Tseng J, Horng J, Shu C. Thermal decomposition of car-bon nanotube/Al2O3 powders by DSC testing. Compos Sci Technol 2008;68:2954–9.

42.IslamMF,RojasE,BergeyDM,JohnsonAT,YodhAG.Highweightfraction surfactantsolubilizationofsingle-wallcarbonnanotubesinwater.NanoLett 2003;3:269–73.