• Keine Ergebnisse gefunden

Table A.2.1: Relative RMSFEs - full sample

hor.: h=0 h=1 h=3 h=6 h=12

comb. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av.

scheme: 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all

Industrial production

AR 0.98 0.96 0.96 0.96 0.97 0.92 0.92 0.92 0.95 0.91 0.91 0.91 0.99 0.99 0.98 0.99 1.00 1.04 1.03 1.04 BVAR 0.90 0.94 0.94 0.94 0.75 0.73 0.73 0.73 0.64 0.64 0.64 0.64 0.73 0.74 0.73 0.74 0.85 0.86 0.84 0.86 DFM 0.84 0.84 0.84 0.84 0.70 0.76 0.74 0.76 0.68 0.77 0.75 0.78 0.81 0.91 0.88 0.92 0.92 1.03 1.00 1.04 MULT 0.89 0.93 0.93 0.86 0.75 0.73 0.73 0.71 0.64 0.64 0.64 0.69 0.73 0.75 0.73 0.81 0.85 0.87 0.85 0.94 BIV 0.90 0.92 0.92 0.93 0.81 0.88 0.87 0.88 0.78 0.86 0.85 0.87 0.88 0.95 0.94 0.95 0.94 1.01 0.99 1.01 ALL 0.90 0.91 0.91 0.87 0.72 0.84 0.83 0.78 0.64 0.81 0.80 0.76 0.75 0.91 0.88 0.87 0.87 0.97 0.95 0.96

Unemployment rate

AR 0.95 0.91 0.91 0.91 0.90 0.86 0.85 0.86 0.86 0.85 0.84 0.85 0.92 0.87 0.87 0.87 0.99 0.96 0.96 0.96 BVAR 0.86 0.87 0.87 0.87 0.75 0.74 0.73 0.74 0.63 0.63 0.62 0.63 0.59 0.61 0.60 0.62 0.71 0.74 0.73 0.75 DFM 0.82 0.83 0.83 0.83 0.69 0.71 0.70 0.71 0.61 0.67 0.66 0.68 0.62 0.71 0.70 0.72 0.77 0.86 0.85 0.87 MULT 0.83 0.86 0.86 0.84 0.73 0.73 0.73 0.72 0.62 0.63 0.62 0.65 0.59 0.62 0.60 0.66 0.71 0.75 0.73 0.80 BIV 0.88 0.88 0.88 0.88 0.76 0.81 0.80 0.82 0.71 0.78 0.77 0.80 0.73 0.81 0.79 0.82 0.83 0.91 0.90 0.92 ALL 0.87 0.88 0.87 0.85 0.74 0.80 0.78 0.76 0.64 0.76 0.74 0.71 0.62 0.78 0.76 0.73 0.75 0.89 0.87 0.85

Consumer price index

AR 0.95 0.95 0.95 0.95 0.98 1.00 1.00 1.00 1.00 1.01 1.01 1.01 0.99 1.01 1.01 1.01 1.00 1.00 1.00 1.01 BVAR 0.72 0.73 0.73 0.73 0.87 0.87 0.87 0.87 0.96 0.99 0.99 1.00 1.00 1.07 1.07 1.07 1.00 1.11 1.11 1.12 DFM 0.96 0.94 0.94 0.94 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1.01 1.02 1.02 1.02 0.98 0.99 0.99 0.99 MULT 0.72 0.73 0.73 0.80 0.87 0.87 0.87 0.91 0.96 0.99 0.99 0.99 1.00 1.07 1.07 1.04 1.00 1.10 1.10 1.05 BIV 0.86 0.93 0.93 0.93 0.94 0.99 0.98 0.98 0.98 1.01 1.01 1.00 0.99 1.02 1.02 1.01 0.95 1.00 0.99 0.99 ALL 0.73 0.88 0.89 0.85 0.87 0.96 0.96 0.93 0.97 1.01 1.00 0.99 0.99 1.02 1.02 1.02 0.96 1.00 0.99 1.00

Personal consumption expenditures price index

AR 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.01 1.02 1.02 1.02 1.01 1.03 1.03 1.03 BVAR 0.76 0.77 0.77 0.77 0.90 0.88 0.88 0.88 0.95 0.97 0.97 0.97 1.00 1.07 1.07 1.07 1.01 1.16 1.15 1.17 DFM 0.93 0.91 0.91 0.91 0.99 0.97 0.97 0.97 1.00 0.99 0.99 0.99 1.01 1.02 1.01 1.02 1.00 1.00 0.99 1.00 MULT 0.76 0.77 0.77 0.80 0.90 0.88 0.88 0.90 0.95 0.97 0.97 0.97 1.00 1.07 1.06 1.04 1.00 1.15 1.14 1.08 BIV 0.86 0.96 0.96 0.96 0.93 0.99 0.98 0.98 0.97 1.02 1.02 1.01 0.98 1.03 1.02 1.02 0.99 1.05 1.04 1.03 ALL 0.77 0.90 0.90 0.85 0.88 0.96 0.96 0.93 0.96 1.01 1.00 0.98 0.99 1.03 1.02 1.02 0.99 1.05 1.05 1.05 Notes: The table displays the relative RMSFEs for each model and combination scheme over the RW benchmark. The full evaluation sample runs from December 2003 to December 2011. Numbers below one are put in bold and are further shaded if the relative RMSFE is lower than that of the best AR model for the corresponding forecast horizon.

29

Table A.2.2: Relative RMSFEs - sub-samples

hor.: h=0 h=1 h=3 h=6 h=12

comb. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av. av.

scheme: 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all 10% mse d-mse all

Industrial production Precrisis subsample

-AR 1.05 1.06 1.06 1.06 1.08 1.11 1.11 1.11 1.08 1.13 1.13 1.13 1.09 1.25 1.25 1.27 1.22 1.42 1.40 1.45

BVAR 1.02 1.05 1.05 1.05 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.08 1.16 1.13 1.13 1.14 1.50 1.40 1.33 1.41

DFM 1.02 0.98 0.99 0.98 1.02 1.00 1.00 1.00 1.08 1.06 1.06 1.07 1.16 1.22 1.21 1.23 1.37 1.43 1.39 1.47

MULT 1.02 1.04 1.05 0.99 1.04 1.04 1.04 1.00 1.03 1.08 1.07 1.04 1.16 1.13 1.12 1.14 1.49 1.39 1.33 1.33

BIV 1.02 1.04 1.04 1.05 1.05 1.08 1.08 1.09 1.07 1.10 1.10 1.11 1.13 1.25 1.23 1.24 1.13 1.43 1.38 1.41

ALL 1.03 1.03 1.04 1.01 1.05 1.06 1.06 1.03 1.06 1.08 1.08 1.06 1.09 1.21 1.20 1.17 1.27 1.38 1.35 1.34

Crisis subsample

-AR 0.96 0.92 0.93 0.92 0.96 0.89 0.89 0.89 0.94 0.89 0.89 0.89 0.98 0.97 0.97 0.97 1.00 1.03 1.02 1.03

BVAR 0.86 0.91 0.91 0.91 0.70 0.67 0.67 0.67 0.60 0.60 0.59 0.60 0.70 0.72 0.71 0.72 0.83 0.85 0.83 0.84

DFM 0.79 0.80 0.79 0.80 0.64 0.71 0.70 0.72 0.64 0.75 0.72 0.76 0.79 0.89 0.86 0.90 0.91 1.02 0.99 1.02

MULT 0.84 0.90 0.89 0.82 0.70 0.67 0.67 0.66 0.60 0.60 0.59 0.66 0.70 0.72 0.71 0.79 0.83 0.85 0.83 0.93

BIV 0.85 0.89 0.88 0.89 0.77 0.84 0.84 0.85 0.76 0.84 0.83 0.85 0.87 0.93 0.92 0.93 0.93 0.99 0.98 1.00

ALL 0.86 0.87 0.87 0.83 0.66 0.80 0.79 0.73 0.60 0.79 0.77 0.73 0.73 0.89 0.86 0.85 0.85 0.96 0.93 0.95

Unemployment rate Precrisis subsample

-AR 0.99 1.00 1.01 1.01 1.02 1.05 1.05 1.05 1.06 1.05 1.05 1.05 1.17 1.20 1.19 1.21 1.25 1.28 1.27 1.28

BVAR 1.12 1.17 1.17 1.17 1.06 1.13 1.12 1.14 0.96 1.02 1.02 1.02 0.96 1.02 1.01 1.03 1.01 1.21 1.16 1.23

DFM 0.97 0.95 0.95 0.95 1.00 0.96 0.96 0.95 1.08 0.98 0.98 0.98 1.03 1.09 1.09 1.09 1.11 1.14 1.12 1.15

MULT 1.03 1.15 1.15 1.04 1.05 1.12 1.11 1.03 0.96 1.01 1.01 0.98 0.97 1.02 1.01 1.03 1.02 1.20 1.15 1.13

BIV 0.98 0.99 0.99 1.00 0.96 1.02 1.02 1.02 0.95 1.01 1.01 1.01 0.96 1.14 1.12 1.12 1.07 1.24 1.20 1.18

ALL 0.97 1.00 1.00 1.01 0.98 1.02 1.02 1.01 0.96 1.00 1.00 0.97 0.96 1.11 1.10 1.05 1.05 1.22 1.19 1.12

Crisis subsample

-AR 0.94 0.90 0.89 0.89 0.89 0.84 0.83 0.84 0.85 0.84 0.83 0.83 0.90 0.86 0.85 0.85 0.98 0.95 0.95 0.95

BVAR 0.80 0.81 0.81 0.81 0.71 0.69 0.69 0.69 0.60 0.60 0.60 0.61 0.58 0.59 0.58 0.60 0.70 0.73 0.72 0.73

DFM 0.80 0.81 0.81 0.81 0.65 0.68 0.67 0.69 0.57 0.65 0.63 0.66 0.60 0.69 0.68 0.71 0.76 0.85 0.84 0.86

MULT 0.79 0.81 0.81 0.80 0.70 0.69 0.69 0.68 0.60 0.60 0.60 0.62 0.58 0.59 0.58 0.64 0.70 0.73 0.72 0.79

BIV 0.86 0.86 0.86 0.87 0.74 0.79 0.77 0.80 0.69 0.77 0.75 0.79 0.72 0.79 0.78 0.81 0.82 0.90 0.89 0.92

ALL 0.85 0.86 0.85 0.82 0.71 0.77 0.76 0.73 0.62 0.74 0.72 0.70 0.60 0.76 0.74 0.72 0.74 0.88 0.86 0.84

Consumer price index Precrisis subsample

-AR 0.93 0.94 0.94 0.94 0.98 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

BVAR 0.73 0.72 0.72 0.72 0.89 0.88 0.88 0.88 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.92 0.93 0.93 0.94

DFM 0.95 0.95 0.95 0.95 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.95 0.96 0.91 0.92 0.90 0.91

MULT 0.73 0.72 0.72 0.79 0.89 0.88 0.88 0.91 1.00 0.99 0.99 0.98 1.00 0.99 0.99 0.97 0.92 0.92 0.92 0.92

BIV 0.88 0.93 0.93 0.93 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.95 0.97 0.96 0.96 0.94 0.98 0.97 0.98

ALL 0.72 0.88 0.88 0.85 0.88 0.96 0.96 0.94 0.98 0.99 0.98 0.97 0.95 0.97 0.96 0.96 0.93 0.97 0.96 0.95

Crisis subsample

-AR 0.95 0.95 0.95 0.95 0.99 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.00 1.02 1.02 1.02 0.99 1.01 1.01 1.01

BVAR 0.72 0.74 0.74 0.74 0.86 0.87 0.87 0.87 0.94 0.99 0.99 1.00 1.00 1.09 1.09 1.09 1.02 1.14 1.14 1.15

DFM 0.96 0.94 0.94 0.94 0.99 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.01 1.03 1.03 1.03 0.99 1.00 1.00 1.00

MULT 0.72 0.74 0.74 0.80 0.86 0.87 0.87 0.90 0.94 0.99 0.99 0.99 1.00 1.08 1.08 1.05 1.01 1.13 1.13 1.07

BIV 0.86 0.93 0.93 0.93 0.93 0.99 0.99 0.98 0.97 1.02 1.02 1.01 1.00 1.03 1.03 1.02 0.96 1.00 1.00 1.00

ALL 0.73 0.89 0.89 0.85 0.86 0.97 0.97 0.93 0.97 1.01 1.01 0.99 1.00 1.03 1.03 1.03 0.96 1.00 1.00 1.01

Personal consumption expenditures price index Precrisis subsample

-AR 1.00 0.99 0.99 0.99 1.03 1.01 1.01 1.01 1.00 1.02 1.02 1.02 1.01 1.00 1.00 1.00 1.03 1.02 1.02 1.02

BVAR 0.74 0.74 0.74 0.74 0.89 0.87 0.87 0.87 0.95 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.94 0.97 0.97 0.99

DFM 0.99 0.93 0.93 0.93 0.99 0.95 0.95 0.94 0.99 0.95 0.95 0.95 0.98 0.93 0.92 0.92 1.00 0.93 0.92 0.93

MULT 0.74 0.74 0.74 0.80 0.89 0.87 0.87 0.89 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.94 0.94 0.97 0.97 0.95

BIV 0.90 0.96 0.96 0.97 0.97 0.99 0.99 0.99 0.98 1.01 1.00 1.00 0.94 0.98 0.97 0.97 0.96 1.01 1.01 1.00

ALL 0.75 0.92 0.92 0.87 0.92 0.97 0.97 0.93 0.98 1.00 1.00 0.97 0.94 0.97 0.97 0.95 0.96 1.00 1.00 0.97

Crisis subsample

-AR 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.00 1.03 1.03 1.03 1.00 1.03 1.03 1.04

BVAR 0.77 0.78 0.78 0.78 0.91 0.89 0.89 0.89 0.95 0.97 0.97 0.97 1.02 1.11 1.11 1.11 1.03 1.21 1.21 1.23

DFM 0.90 0.90 0.90 0.90 0.99 0.98 0.98 0.98 1.01 1.01 1.01 1.01 1.02 1.05 1.04 1.05 1.00 1.02 1.01 1.02

MULT 0.77 0.78 0.78 0.80 0.91 0.89 0.88 0.91 0.95 0.97 0.97 0.98 1.01 1.10 1.10 1.07 1.02 1.20 1.19 1.12

BIV 0.84 0.96 0.95 0.96 0.91 0.98 0.98 0.98 0.96 1.02 1.02 1.02 1.00 1.05 1.04 1.03 1.00 1.06 1.06 1.04

ALL 0.77 0.89 0.88 0.83 0.86 0.95 0.95 0.92 0.96 1.01 1.01 0.98 1.00 1.05 1.04 1.04 1.00 1.07 1.06 1.07

30

Figure A.2.1: Relative RMSFEs of the different panels for industrial production- Pre-crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2003 - Nov. 2007). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

31

Figure A.2.2: Relative RMSFEs of the different panels for industrial production- Crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2007 - Dec. 2011). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

32

Figure A.2.3: Relative RMSFEs of the different panels for the unemployment rate - Pre-crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2003 - Nov. 2007). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

33

Figure A.2.4: Relative RMSFEs of the different panels for the unemployment rate - Crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2007 - Dec. 2011). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

34

Figure A.2.5: Relative RMSFEs of the different panels for theconsumer price index - Pre-crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2003 - Nov. 2007). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

35

Figure A.2.6: Relative RMSFEs of the different panels for theconsumer price index- Crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2007 - Dec. 2011). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

36

Figure A.2.7: Relative RMSFEs of the different panels for thepers. cons. expend. price index- Pre-crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the pre-crisis sample (Dec. 2003 - Nov. 2007). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e.

av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

37

Figure A.2.8: Relative RMSFEs of the different panels for thepers. cons. expend. price index- Crisis sample

Notes: The Figure shows the relative (versus the RW) RMSFEs for each model over the crisis sample (Dec. 2007 - Dec. 2011). For each model, the forecasts are computed using five different data sets as displayed on the x-axis:allis the full data set, whereasSD,S,FandCare the data sets obtained by excluding all the soft data, the surveys, the financials and the commodity prices respectively. In each sub-figure the four consecutive (same coloured) bars for a given model and data set display the results for the forecasts combination schemes used, i.e. av.10%, av.msfe, av.d-msfe and av.all. The dashed red line is the relative RMSFEs of the best AR model for the corresponding horizon and the black line is drawn at one (relative RMSFEs of RW).

38

Figure A.2.9: Marginal predictive ability of soft data for industrial production (a) Pre-crisis sample

−20%

(b) Crisis sample

−20%

Notes: The figure shows for each model the percentage change in RMSFEs from including the different respective block(s) of soft data. In each sub-figure the four consecutive bars for a given horizon displays the results for the forecasts combination schemes used, i.e. av.10%, av.mse, av.d-mse and av.all. The dashed and dashed dotted lines are drawn at the +/5% and +/10% threshold respectively.

Figure A.2.10: Marginal predictive ability of soft data for the unemployment rate (a) Pre-crisis sample

−20%

(b) Crisis sample

−20%

Notes: The figure shows for each model the percentage change in RMSFEs from including the different respective block(s) of soft data. In each sub-figure the four consecutive bars for a given horizon displays the results for the forecasts combination schemes used, i.e. av.10%, av.mse, av.d-mse and av.all. The dashed and dashed dotted lines are drawn at the +/5% and +/10% threshold respectively.

Figure A.2.11: Marginal predictive ability of soft data for the consumer price index (a) Pre-crisis sample

−20%

(b) Crisis sample

−20%

Notes: The figure shows for each model the percentage change in RMSFEs from including the different respective block(s) of soft data. In each sub-figure the four consecutive bars for a given horizon displays the results for the forecasts combination schemes used, i.e. av.10%, av.mse, av.d-mse and av.all. The dashed and dashed dotted lines are drawn at the +/5% and +/10% threshold respectively.

Figure A.2.12: Marginal predictive ability of soft data for the pers. consumption expenditures price index

(a) Pre-crisis sample

−20%

(b) Crisis sample

−20%

Notes: The figure shows for each model the percentage change in RMSFEs from including the different respective block(s) of soft data. In each sub-figure the four consecutive bars for a given horizon displays the results for the forecasts combination schemes used, i.e. av.10%, av.mse, av.d-mse and av.all. The dashed and dashed dotted lines are drawn at the +/5% and +/10% threshold respectively.

References

[1] Aiolfi, M. and Timmermann, A. (2006): “Persistence in forecasting performance and conditional combination strategies”,Journal of Econometrics, 135, pp.31-53.

[2] Andreou, E., Ghysels, E. and Kourtellos, A. (2010): Should macroeconomic forecasters use daily financial data and how?, Working paper series 10-42, The Rimini centre for Economic Analysis .

[3] Ba´nbura, M. and Modugno, M. (2010): Maximum likelihood estimation of large factor model on datasets with arbitrary pattern of missing data, Working paper series 1189, European Central Bank.

[4] Ba´nbura, M., Giannone, D. and Reichlin, L. (2010): “Large Bayesian VARs”, Journal of Applied Econometrics, 25(1), pp.71-92.

[5] Ba´nbura, M., Giannone, D. and Reichlin, L. (2011): “Nowcasting”, inOxford Handbook on Economic Forecasting, ed. by M.P. Clements and D.F. Hendry, part II, pp.193-224.

Oxford University press.

[6] Ba´nbura, M. and R¨unstler, G. (2011): “A look into the factor model black box. Pub-lication lags and the role of hard and soft data in forecasting GDP”, International Journal of Forecasting, 27(2), pp.333-346.

[7] Banternghansa, C. and McCracken, M.W. (2011): “Real-time forecast averaging with ALFRED”,Federal Reserve bank of St.Louis Review, January/February 2011.

[8] Bernanke, B.S., and Boivin, J.(2003): “Monetary policy in a data-rich Environment”, Journal of Monetary Economics, 50(3), pp.525-546.

[9] Clark, T.E. and McCracken, M.W. (2010): “Averaging forecasts from VARs with un-certain instabilities”, Journal of Applied Econometrics, 25(1), pp.5-29.

[10] Croushore, D. (2010): “An evaluation of inflation forecasts from surveys using real-time data”,The B.E. Journal of Macroeconomics, 10(1), pp..

[11] Croushore, D. (2011): “Frontiers in real-time data analysis”, Journal of Economic Literature, 49(1), pp.72-100.

[12] Croushore, D., and Stark, T. (2002a): “Forecasting with a real-time data set for macroe-conomists?”,Journal of Macroeconomics, 24(4), pp.507-531.

[13] Croushore, D., and Stark, T. (2002b): Is macroeconomic research robust to alternative data sets?, Working paper 02-3, Philadelphia Federal Reserve Bank.

[14] D’Agostino, A., Giannone, D., and Surico, P. (2006): (Un)predictability and macroeco-nomic stability,Working paper series 605, European Central Bank.

[15] D’Agostino, A. and Giannone, D. (2012): “Comparing alternative predictors based on large-panel factor models stability”,Oxford Bulletin of Economics and Statistics, 74(2), pp.306-322.

[16] D’Agostino, A. and Whelan, K. (2010): “Federal reserve information during the great moderation”,Journal of the European Economics Association of Economics and Statis-tics, 6, pp.609-620.

[17] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977): “Maximum likelihood from incomplete data via the EM algorithm”,Journal of the Royal Statistical Society, 39(B), pp.1-38.

[18] Doan, T., Litterman, R. and Sims, C. (1984): “Forecasting and conditional projection using realistic prior distributions ”, Econometric Reviews, 3(1), pp.1-100.

[19] Doz, C., Giannone, D. and Reichlin, L. (2011a): “A two-step estimator for large ap-proximate dynamic factor models based on Kalman filtering”,Journal of Econometrics, 164(1), pp.188-205.

[20] Doz, C., Giannone, D. and Reichlin, L. (2011b): “A quasi maximum likelihood ap-proach for large approximate dynamic factor models”,Review of Economics and Statis-tics, forthcoming.

[21] Durbin, J. and Koopman, S.J. (2001): Time series analysis by state space methods, Oxford University Press.

[22] Faust, J., and Wright, J.H. (2011): Forecasting inflation, mimeo.

[23] Faust, J., Gilchrist, S., Wright J.H. and Zakrajsek, E. (2011): Credit spreads as pre-dictors of real-time economic activity: a bayesian model-averaging approach, NBER Working paper series, 16725.

[24] Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000): “The generalized dynamic factor model: identification and estimation”,Review of Economics and Statistics, 82(4), pp.540-554.

[25] Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2003): “Do financial variables help forecasting inflation and real activity in the euro area?”, Journal of Monetary Eco-nomics, 50(6), pp.1243-1255.

[26] Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2005): “The generalized dynamic factor model: one-sided estimation and forecasting”,Journal of the American Statistical Association, 100(471), pp.830-840.

[27] Giannone, D., Reichlin, L. and Small, D. (2008): “Nowcasting: the real-time informa-tion content of macroeconomic data releases”,Journal of Monetary Economics, 55(4), pp.665-676.

[28] Giannone, D., Lenza, M., Momferatou, D. and Onorante, L. (2010): Short-term infla-tion projecinfla-tions: a Bayesian vector autoregressive approach, CEPR Discussion paper series 7746.

[29] Jungbacker, B. and Koopman, S.J. (2008): Likelihood-based analysis for dynamic fac-tor facfac-tor models, Tinbergen Institute Discussion paper series, 08-007/4.

[30] Jungbacker, B., Koopman, S.J. and van der Wel, M. (2011): “Maximum likelihood es-timation for dynamic factor models with missing data”,Journal of Economic Dynamic and Control, 35, pp.1358-1368.

[31] Kadiyala, K.R. and Karlsson, S. (1997): “Numerical methods for estimation and infer-ence in Bayesian VAR-Models”,Journal of Applied Econometrics, 12(2), pp.99-132.

[32] Liebermann, J. (2011): Real-time nowcasting of GDP: factor model versus professional forecasters, Technical paper series 03/11, Central Bank of Ireland.

[33] Litterman R. (1986): “Forecasting with Bayesian Vector Autoregressions - five years of experience”,Journal of Business and Economics Statistics, 4(1), pp.25-38.

[34] Marcellino, M., Stock, J. and Watson, M. (2006): “A comparison of direct and iterated AR methods for forecasting macroeconomic series”,Journal of Econometrics, 135(1-2), pp.499-526.

[35] Reis, R. and Watson, M.W. (2010): “Relative goods’ prices and pure infla-tion,“Americcan Economic Journal: Macroeconomics, 2(3), pp.128-157.

[36] Rossi, B. and Sekhposyan, T. (2010): “Have economic models’ forecasting performance for US output growth and inflation changed over time, and when?”, International Journal of Forecasting, 26(4), pp.808-835.

[37] Rudebusch, G.D. and Williams, J.C. (2009): “Forecasting recessions: the puzzle of the enduring power of the yield curve”,Journal of Business & Economic Statistics, 27(4), pp.492-503.

[38] Shumway, R. and Stoffer, D. (1982): “An approach to time series smoothing and forecasting using the EM algorithm”,Journal of Time Series Analysis, 3, pp.253-264.

[39] Stark, T. (2010): Realistic evaluation of real-time forecasts in the survey of professional forecasters’., Research rap - special report, Philadelphia Federal Reserve Bank.

[40] Stock, J.H., and Watson, M.W. (2002a): “Forecasting Using Principal Components From a Large Number of Predictors”,Journal of the American Statistical Association, 97(460), pp.147-162.

[41] Stock, J.H., and Watson, M.W. (2002b): “Macroeconomic forecasting using diffu-sion”Journal of Business and Economic Statistics, 20(2), pp.147-162.

[42] Stock, J.H. and Watson, M.W. (2003a): “Forecasting output and inflation: The role of asset prices”,Journal of Economic Literature, 41(3), pp.788-829.

[43] Stock, J.H. and Watson, M.W. (2008): Phillips curve inflation forecasts, NBER Work-ing paper series 14322.

[44] Stock, J.H. and Watson, M.W. (2010): Modeling inflation after the crisis,manuscript.

[45] Waggoner, D.F. and Zha, T. (1999): “Conditional forecasts in dynamic multivariate models”, The Review of Economics and Statistics, 81(4), pp.639-651.

[46] Watson, M.W. and Engle, R.F. (1983): “Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression”, Journal of Econometrics, 23(3), pp.385-400.

[47] West, K.D. (2006): “Forecast evaluation”, inHandbook of Economic Forecasting, ed. by G. Elliot, C.W.J. Granger and A.G. Timmermann, Vol. 1, pp.99-134. North-Holland, Elsevier.

[48] Wheelock, D.C. and Wohar, M.E. (2009): “Can the term spread predict output growth and recessions? A survey of the literature”, Federal Reserve Bank of St.Louis Review, September/October 2009.