• Keine Ergebnisse gefunden

Further analysis of tdc-1-expressing neurons function in RIS regulation

5.6 Perspectives

5.6.3 Further analysis of tdc-1-expressing neurons function in RIS regulation

larvae 61 (M. Turek, Mei Zhen, personal communication). Amongst all presynaptic neurons, SDQL forms the highest amount of chemical synapses (3) with RIS 68,124.

5.6.3 Further analysis of tdc-1-expressing neurons function in RIS regulation

Because RIM and RIC neurons behave differently when they are separately stimulated, we can conclude that it is their simultaneous activation, which produces an inhibitory input on RIS. To test for that, the optogenetic lines for the single neurons should be crossed together to resemble the situation in which the tdc-1 promoter was used. However, the expression levels of the single ReaChR lines differ.

That means, even if the same amount of light is used to perform the optogenetic experiments, the magnitude of activation would be different for the RIM and RIC neurons. Because activation levels would not be comparable, RIM-induced effects and RIC-induced effects might overlay each other and therefore results would not be conclusive.

Nevertheless, the optogenetic depolarization of tdc-1-expressing neurons, was the only condition in which upstream neurons induced a robust RIS inhibition outside of and in lethargus. To understand more about the regulatory pathways, the analysis of RIM and RIC upstream circuits would be required. Thereby, an important question would be which natural behavior can induce the simultaneous activation of RIC and RIM with regard to sleep.

85

6 Abbreviations

ArchT: archaerhodopsin ATR: all-trans retinal

bp: base pair

C. elegans: Caenorhabditis elegans

cGMP: cyclic guanosine monophosphate Clock: circadian locomotor output cycles kaput COM: completely out of molt

DIC: differential interference contrast DNA: deoxyribonucleic acid

E. coli: Escherichia coli

EEG: electroencephalography EGF: epidermal growth factor

EMCCD: electron multiplying charge-coupled device EMS: ethyl methanesulfonate

eVLPO: extended ventrolateral preoptic nucleus FLP: FMRFamide-related peptides

GABA: γ-aminobutyric acid

GCaMP: genetically-encoded calcium sensor gf: gain-of-function

GFP: green fluorescent protein GOI: gene of interest

ICE: interleukin-1-converting enzyme

INDEL: insertion and/ or deletion of base pairs in DNA L1-L4 stage: first, second, third and fourth C. elegans larval stage LC: locus coeruleus

LED: light-emitting diode lf: loss-of-function

mRNA: messenger ribonucleic acid NGM: nematode growth medium

NLP: non-insulin and non-FMRFamide-related peptides NMDA: N-methyl-D-aspartic acid

86 NREM: non-rapid eye movement ORX: orexinergic neurons PCR: polymerase chain reaction PKG: cGMP-dependent protein kinase ReaChR: red-shifted Channelrhodopsin REM: rapid (or random) eye movement SCN: suprachiasmatic nucleus

SEM: standard error of the mean SNP: single nucleotide polymorphism SWS: slow wave sleep

TGF: transforming growth factor  TMN: tuberomammillary nucleus UMG: Universitätsmedizin Göttingen UTR: untranslated region

VLPO: ventrolateral preoptic nucleus WGS: whole genome sequencing

YA: young adult

87

7 List of figures

Figure 1. Sleep in mammals is regulated by a flip-flop switch... 3 Figure 2. C. elegans reproducing life cycle. ... 7 file:///Z:/Elisabeth/Elisabeth/PhD

thesis/Writing/Thesis_All_190220.docx..docx - _Toc1576870Figure 3. Wiring diagram of RIS and presynaptic neurons. ... 11 Figure 4. RIS activates at sleep bout onsets. ... 29 Figure 5. RIS activity is homeostatically regulated. ... 31 Figure 6. RIS rebound activation represents acute sleep homeostasis. ... 33 Figure 7. Presynaptic neurons can activate RIS. ... 36 Figure 8. RIM can activate and inactivate RIS. ... 38 Figure 9. Identification of RIS activators in lethargus. ... 40 Figure 10. RIM hyperpolarization can induce a drop in RIS activity. ... 42 Figure 11. nmr-1::ICE mutants display a low quiescence phenotype in L1 lethargus.

... 44 Figure 12. Optogenetic RIS hyperpolarization activates RIM. ... 46 Figure 13.Command interneuron activities are dampened in lethargus... 48 Figure 14. RIM activity is dampened in lethargus in Wild-type worms and aptf-1 mutants. ... 50 Figure 15. RIM peak frequency is not reduced in lethargus in aptf-1 mutants... 51 Figure 16. Command interneuron activities are more strongly reduced in lethargus in nmr-1 mutants. ... 53 Figure 17. nmr-1 mutants show reduced RIS transients in sleep bouts. ... 55 Figure 18. eat-4 mutants display strongly reduced quiescence and RIS transients in L1 lethargus. ... 56 Figure 19. Optogenetic depolarization of tdc-1 expressing neurons inactivates RIS. 58 Figure 20. Tyramine and/or octopamine and FLP-18 mediate the RIS hyperpolarization by tdc-1-expressing neurons. ... 60 Figure 21. RIC optogenetic depolarization can activate RIS. ... 63 Figure 22. Worms of the mutagenesis candidate 1 immobilize in L1 lethargus. ... 65 Figure 23. Mutagenesis candidate 9 worms immobilize in L1 lethargus. ... 66

88

Figure 24. Distribution of mutations among all chromosomes of mutagenesis candidates 1 and 9. ... 68 Figure 25. Codon optimization of the DNA sequence, which was inserted in the rod-1 gene in candidate 1... 70 Figure 26. aptf-1, rod-1 double mutants display an aptf-1-like lethargus behavior. .. 71

89

8 List of tables

Table 1: List of used C. elegans strains throughout this work. ... 15 Table 2: List of generated constructs. ... 18 Table 3: List of used primers. ... 20 Table 4: List of possible GOIs in candidate 1 after filtering of Hot spot mutations. . 69

90

9 References

1. Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–

138 (2000).

2. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

3. Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).

4. Raizen, D. M. et al. Lethargus is a Caenorhabditis elegans sleep-like state.

Nature 451, 569–572 (2008).

5. Kayser, M. S. & Biron, D. Sleep and development in genetically tractable model organisms. Genetics 203, 21–33 (2016).

6. Trojanowski, N. F. & Raizen, D. M. Call it Worm Sleep. Trends Neurosci. 39, 54–62 (2016).

7. Artiushin, G. & Sehgal, A. The Drosophila circuitry of sleep – wake regulation.

Curr. Opin. Neurobiol. 44, 243–250 (2017).

8. Oikonomou, G. & Prober, D. A. Attacking sleep from a new angle:

contributions from zebrafish. Curr. Opin. Neurobiol. 44, 80–88 (2017).

9. Loomis, A. L., Harvey, E. N. & Hobart, G. A. CEREBRAL STATES DURING SLEEP, AS STUDIED BY HUMAN BRAIN POTENTIALS. J.

Exp. Psychol. 21, 1–16 (1937).

10. Bringmann, H. Sleep-active neurons: Conserved motors of sleep. Genetics 208, 1279–1289 (2018).

11. Silber, M. H. et al. The visual scoring of sleep in adults. J. Clin. Sleep Med. 3, 121–131 (2007).

12. Dijk, D.-J. Regulation and functional correlates of slow wave sleep. J. Clin.

sleep Med. 5, S6-15 (2009).

13. Campbell, S. S. & Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).

14. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol. 6, 1605–1611 (2008).

15. Allada, R. & Siegel, J. M. Unearthing the Phylogenetic Roots of Sleep. Curr.

Biol. 18, 670–679 (2008).

16. Weaver, D. R. The Suprachiasmatic Nucleus: A 25-Year Retrospective. J. Biol.

91 circadian control of behavioural state. Neuroscience 130, 165–183 (2005).

19. Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

20. Sherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science (80-. ). 271, 216–219 (1996).

21. Gaus, S. E., Strecker, R. E., Tate, B. A., Parker, R. A. & Saper, C. B.

Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115, 285–294 (2002).

22. Porkka-Heiskanen, T. Sleep homeostasis. Curr. Opin. Neurobiol. 23, 799–805 (2013).

25. Vyazovskiy, V. V., Cirelli, C. & Tononi, G. Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog. Brain Res. 193, 17–38 (2011).

26. Vyazovskiy, V. V. et al. Local sleep in awake rats.pdf. Nature 472, 443–447 (2011).

27. Finelli, L. A., Baumann, H. & Borbe, A. A. Dual Electroencephalogram Markers of Human Sleep Homeostasis : Correlation Between Theta Activity in Waking and Slow-Wave Activity in Sleep. 101, 523–529 (2000).

28. Schwierin, B. et al. Regional differences in the dynamics of the cortical EEG in the rat after sleep deprivation. Clin. Neurophysiol. 110, 869–875 (1999).

29. Hu, J. et al. Sleep-deprived mice show altered cytokine production manifest by perturbations in serum IL-1ra, TNFa, and IL-6 levels. Brain. Behav. Immun.

17, 498–504 (2003).

92

30. Taishi, P. et al. TNFα siRNA Reduces Brain TNF and EEG Delta Wave Activity in Rats. Brain Res. 1156, 125–132 (2007).

31. Takahashi, S., Kapa ́s, L., Fang, J. & Krueger, J. M. An anti-tumor necrosis factor antibody suppresses sleep in rats and rabbits. Brain Res. 690, 241–244 (1995).

32. Cirelli, C. Functional Genomics of Sleep and Circadian Rhythm Invited Review: How sleep deprivation affects gene expression in the brain: a review of recent findings. J. Appl. Physiol. 92, 394–400 (2002).

33. Colten, H. R., Altevogt, B. M. & Editors. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. (2006).

34. Krueger, J. M., Frank, M. G., Wisor, J. P. & Roy, S. Sleep function: Toward elucidating an enigma. Sleep Med. Rev. 28, 42–50 (2016).

35. Rechtschaffen, A. & Bergmann, B. M. Sleep deprivation in the rat by the disk-over-water method. Behav. Brain Res. 69, 55–63 (1995).

36. Braun, A. Regional cerebral blood flow throughout the sleep– wake cycle.

Brain 120, 1–25 (1997).

37. Kang, J. et al. Amyloid-β Dynamics are Regulated by Orexin and the Sleep-Wake Cycle. Science (80-. ). 326, 1005–1007 (2009).

38. Vorster, A. P. & Born, J. Sleep and memory in mammals, birds and invertebrates. Neurosci. Biobehav. Rev. 50, 103–119 (2015).

39. Frank, M. G. & Cantera, R. Sleep, Clocks and Synaptic Plasticity. Trends Neurosci. 37, 491–501 (2014).

40. Wang, G., Grone, B., Colas, D., Appelbaum, L. & Mourrain, P. Synaptic plasticity in sleep: Learning, homeostasis and disease. Trends Neurosci. 34, 452–463 (2011).

41. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med.

Rev. 10, 49–62 (2006).

42. Zager, A. & Andersen, M. Effects of acute and chronic sleep loss on immune modulation of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R504–

R509 (2007).

43. Hakim, F. et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling Fahed. Cancer Res. 74, 1329–1337 (2014).

44. Besedovsky, L., Lange, T. & Born, J. Sleep and immune function. Pflugers

93 Arch. Eur. J. Physiol. 463, 121–137 (2012).

45. Nath, R. D. et al. The Jellyfish Cassiopea Exhibits a Sleep-like State. Curr.

Biol. 27, 2984–2990.e3 (2017).

46. Joiner, W. J. Unraveling the Evolutionary Determinants of Sleep. Curr. Biol.

26, R1073–R1087 (2016).

47. Sehgal, A. & Mignot, E. Genetics of Sleep and Sleep disorders. Cell 146, 194–

204 (2011).

48. Singh, K., Ju, J. Y., Walsh, M. B., DiIorio, M. A. & Hart, A. C. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling.

Sleep 37, 1439–1451 (2014).

49. Zimmerman, J. E., Naidoo, N., Raizen, D. M. & Pack, A. Conservation of Sleep: Insights from Non-Mammalian Model Systems. Trends Neurosci. 31, 371–376 (2008).

50. Van Buskirk, C. & Sternberg, P. W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat. Neurosci. 10, 1300–

1307 (2007).

51. Singh, K. et al. C. elegans notch signaling regulates adult chemosensory response and larval molting quiescence. Curr. Biol. 21, 825–834 (2011).

52. Choi, S., Chatzigeorgiou, M., Taylor, K. P., Schafer, W. R. & Kaplan, J. M.

Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C.

elegans. Neuron 78, 869–880 (2013).

53. Nelson, M. et al. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nat. Commun. 4, (2013).

54. Nelson, M. D. et al. FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr. Biol. 24, 2406–2410 (2014).

55. Turek, M., Besseling, J., Spies, J. P., König, S. & Bringmann, H. Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. Elife 5, 1–18 (2016).

56. Richter, C., Woods, I. G. & Schier, A. F. Neuropeptidergic Control of Sleep and Wakefulness. Annu. Rev. Neurosci. 37, 503–531 (2014).

57. Turek, M., Lewandrowski, I. & Bringmann, H. An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans.

94 haploinsufficient TFAP2B mutations and identification of a linked sleep disorder. Proc. Natl. Acad. Sci. U. S. A. 102, 2975–2979 (2005).

60. Félix, M. A. & Braendle, C. The natural history of Caenorhabditis elegans.

Curr. Biol. 20, R965–R969 (2010).

61. Sulston, J. & Horvitz, H. Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev.Biol. 56, 110 (1977).

62. Sulston, J. E. et al. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

63. Brenner, S. Caenorhabditis elegans. Methods 77, 71–94 (1974).

64. Altun, Z. F. & Hall, D. H. Introduction. WormAtlas (2009).

65. Baugh, L. R. To grow or not to grow: Nutritional control of development during Caenorhabditis elegans L1 Arrest. Genetics 194, 539–555 (2013).

66. Cassada, R. C. & Russell, R. L. The Dauerlarva , a Post-Embryonic Nematode Developmental elegans Variant of the Caenorhabditis. Wild 342, 326–342 (1975).

67. Hu, P. J. Dauer. WormBook (2007). doi:10.1895/wormbook.1.144.1

68. White, J. G., Southgate, E., Thomsom, J. N. & Brenner, S. THE STRUCTURE OF THE NERVOUS SYSTEM OF THE NEMATODE CAENORHABDITIS ELEGANS. Philos. Trans. R. Soc. B 314, 1–340 (1986).

69. Jarrell, T. A. et al. The Connectome of a Decision Making Neural Network.

Science 337, 437–444 (2012).

70. Altun, Z. F. & Hall, D. H. Nervous system, general description. WormAtlas (2011).

71. Pereira, L. et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife 4, 1–46 (2015).

72. Bendena, W. G., Campbell, J., Zara, L., Tobe, S. S. & Chin-Sang, S. S. T.

Select neuropeptides and their G-protein coupled receptors in Caenorhabditis elegans and Drosophila melanogaster. Front. Endocrinol. (Lausanne). 3, 1–12 (2012).

95

73. Pierce, S. B. et al. Regulation of DAF-2 receptor signaling by human insulin and. Genes Dev. 672–686 (2001). doi:10.1101/gad.867301.4

74. Li, W., Kennedy, S. G. & Ruvkun, G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 17, 844–858 (2003).

75. Li, C., Kim, K. & Nelson, L. S. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res. 848, 26–34 (1999).

76. Li, C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131, (2005).

77. Nathoo, A. N., Moeller, R. A., Westlund, B. A. & Hart, A. C. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc. Natl. Acad. Sci. 98, 14000–14005 (2001).

78. Li, C. & Kim, K. Neuropeptides. WormBook 1–36 (2009).

doi:10.1895/wormbook.1.142.1.Neuropeptides

79. Geffeney, S. L. et al. DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor. Neuron 71, 845–857 (2011).

80. Goodman, M. B., Hall, D. H., Avery, L. & Lockery, S. R. Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons. Neuron 20, 763–772 (1998).

81. Lindsay, T. H., Thiele, T. R. & Lockery, S. R. Optogenetic analysis of synaptic transmission in the central nervous system of the nematode C. elegans. Nat.

Commun. 2, (2011).

82. Liu, P., Chen, B., Mailler, R. & Wang, Z. W. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat. Commun. 8, 1–16 (2017).

83. Liu, P., Chen, B. & Wang, Z.-W. SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat. Commun.

5, (2014).

84. Liu, Q., Hollopeter, G. & Jorgensen, E. M. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc. Natl. Acad. Sci. 106, 10823–10828 (2009).

85. Mellem, J. E., Brockie, P. J., Madsen, D. M. & Maricq, A. V. Action Potentials Contribute to Neuronal Signaling in C. elegans. Nat. Neurosci. 11, 865–867

96 (2008).

86. O’Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).

87. Ramot, D., MacInnis, B. L. & Goodman, M. B. Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat. Neurosci. 11, 908–915 (2008).

88. Liu, Q., Kidd, P. B., Dobosiewicz, M. & Bargmann, C. The C. elegans AWA Olfactory Neuron Fires Calcium-Mediated All-or-None Action Potentials.

bioRxiv 175, 359935 (2018).

89. Iwanir, S. et al. The microarchitecture of C. elegans behavior during lethargus:

homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 36, 385–95 (2013).

90. Nagy, S., Raizen, D. M. & Biron, D. Measurements of behavioral quiescence in Caenorhabditis elegans. Methods 68, 500–507 (2014).

91. Trojanowski, N. F., Nelson, M. D., Flavell, S. W., Fang-Yen, C. & Raizen, D.

M. Distinct Mechanisms Underlie Quiescence during Two Caenorhabditis elegans Sleep-Like States. J. Neurosci. 35, 14571–14584 (2015).

92. Driver, R. J., Lamb, A. L., Wyner, A. J. & Raizen, D. M. DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Curr. Biol. 23, 501–506 (2013).

93. Schwarz, J., Lewandrowski, I. & Bringmann, H. Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans. Curr. Biol. 21, R983–R984 (2011).

94. Schwarz, J., Spies, J.-P. & Bringmann, H. Reduced muscle contraction and a relaxed posture during sleep-like Lethargus. Worm 1, 12–14 (2012).

95. Cho, J. Y. & Sternberg, P. W. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cell 156, 249–260 (2014).

96. Nagy, S. et al. Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. Elife 3, e04380 (2014).

97. Hendriks, G. J., Gaidatzis, D., Aeschimann, F. & Großhans, H. Extensive Oscillatory Gene Expression during C.elegans Larval Development. Mol. Cell 53, 380–392 (2014).

98. Jeon, M., Gardner, H. F., Miller, E. A., Deshler, J. & Rougvie, A. E. Similarity

97

of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286, 1141–6 (1999).

99. Huang, H., Zhu, C.-T., Skuja, L. L., Hayden, D. J. & Hart, A. C. Genome-Wide Screen for Genes Involved in Caenorhabditis elegans Developmentally Timed Sleep. G3 Genes, Genomes, Genet. 7, 2907–2917 (2017).

100. Huang, H. et al. Gap junctions and NCA cation channels are critical for developmentally-timed sleep and arousal in Caenorhabditis elegans. (2018).

101. Wu, Y., Masurat, F., Preis, J. & Bringmann, H. Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans.

Curr. Biol. 28, 1–14 (2018).

102. Gaglia, M. M. & Kenyon, C. Stimulation of Movement in a Quiescent, Hibernation-like Form of C. elegans by Dopamine Signaling. J. Neurosci. 29, 7302–7314 (2009).

103. You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-β Signals Regulate Food Intake and Quiescence in C. elegans: A Model for Satiety. Cell Metab. 7, 249–257 (2008).

104. Invitrogen. Gateway ® Technology A universal technology to clone DNA sequences for functional analysis and expression in multiple systems - User Manual. (2003).

105. Wilm, T., Demel, P., Koop, H. U., Schnabel, H. & Schnabel, R. Ballistic transformation of Caenorhabditis elegans. Gene 229, 31–35 (1999).

106. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

107. Turek, M., Besseling, J. & Bringmann, H. Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans, J. Vis. Exp. 1–8 (2015).

doi:10.3791/52742

108. Bringmann, H. Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae. J. Neurosci. Methods 201, 78–88 (2011).

109. Singh, K. et al. Response and Larval Molting Quiescence. 21, 825–834 (2012).

110. Nagy, S. et al. A longitudinal study of caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by gαs signaling. Elife 2013, 1–15 (2013).

111. Schwarz, J. & Bringmann, H. Reduced Sleep-Like Quiescence in Both Hyperactive and Hypoactive Mutants of the Galphaq Gene egl-30 during

98

lethargus in Caenorhabditis elegans. PLoS One 8, 1–16 (2013).

112. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

113. Han, X. et al. A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex. Front.

Syst. Neurosci. 5, 1–8 (2011).

114. WormBook. (2006). Available at: www.wormbook.org.

115. Zheng, Y., Brockie, P. J., Mellem, J. E., Madsen, D. M. & Maricq, A. V.

Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24, 347–361 (1999).

116. Brockie, P. J., Madsen, D. M., Zheng, Y., Mellem, J. E. & Maricq, A. V.

Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J. Neurosci. 21, 1510–1522 (2001).

117. Brockie, P. J. & Maricq, A. V. Ionotropic glutamate receptors in caenorhabditis elegans. NeuroSignals 12, 108–125 (2003).

118. Brockie, P. & Maricq, A. V. Ionotropic glutamate receptors: genetics, behavior and electrophysiology. WormBook 1–16 (2006). doi:10.1895/wormbook.1.61.1 119. Brockie, Mellem, J., Hills, T., Madsen, D. & Maricq, A. The C. elegans

glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that …. Neuron 31, 617–630 (2001).

120. Bellocchio, E. E., Reimer, R. J., Fremeau, J. & Edwards, R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science (80-. ). 289, 957–960 (2000).

121. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R. & Avery, L. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in caenorhabditis elegans. J. Neurosci. 19, 159–167 (1999).

122. Rankin, C. H. & Wicks, S. R. Mutations of the caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. J. Neurosci. 20, 4337–4344 (2000).

99

123. Alkema, M. J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H. R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260 (2005).

124. Wormatlas. (2012). Available at: http::\\www.wormatlas.org

125. Flibotte, S. et al. Whole-Genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 185, 431–441 (2010).

126. Gengyo-Ando, K. & Mitani, S. Characterization of mutations induced by ethyl methanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 269, 64–69 (2000).

127. Urmersbach, B., Besseling, J., Spies, J. P. & Bringmann, H. Automated analysis of sleep control via a single neuron active at sleep onset in C. elegans.

Genesis 54, 212–219 (2016).

128. Zuryn, S. & Jarriault, S. Deep sequencing strategies for mapping and identifying mutations from genetic screens. Worm 2, e25081 (2013).

129. Zuryn, S., Le Gras, S., Jamet, K. & Jarriault, S. A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186, 427–430 (2010).

130. Gassmann, R. et al. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components:

SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385–2399 (2008).

131. Shaye, D. D. & Greenwald, I. Ortholist: A compendium of C. elegans genes with human orthologs. PLoS One 6, (2011).

132. Cheerambathur, D. K., Gassmann, R., Cook, B., Oegema, K. & Desai, A.

Crosstalk Between Microtubule Attachment Complexes Ensures Accurate Chromosome Segregation. Science (80-. ). 342, 1239–1242 (2013).

133. WormBase. (2000). Available at: http://www.wormbase.org.

134. S, R. et al. C. elegans Codon Adapter. (2011). Available at: https://worm.mpi-cbg.de.

135. Spies, J.-P. Analysis of the sleep homeostat of the nematode Caenorhabditis elegans. (Georg-August-Universität Göttingen, 2014).

136. Rogers, C. et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat. Neurosci. 6, 1178–1185 (2003).

100

137. Serrano-Saiz, E. et al. XModular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155, 659–673 (2013).

138. Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identifcation of a vesicular glutamate transporter that defnes a glutamatergic phenotype in neurons. Lett. to Nat. 407, 189–194 (2000).

139. Kawano, T. et al. An imbalancing act: Gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron 72, 572–586 (2011).

140. Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

141. Rakowski, F. & Karbowski, J. Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS Comput. Biol. 13, 1–28 (2017).

142. Nichols, A. L. A., Eichler, T., Latham, R. & Zimmer, M. A global brain state underlies C. Elegans sleep behavior. Science (80-. ). 356, 1247–1256 (2017).

143. Ben Arous, J., Tanizawa, Y., Rabinowitch, I., Chatenay, D. & Schafer, W. R.

Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. J. Neurosci. Methods 187, 229–234 (2010).

144. Zheng, M., Cao, P., Yang, J., Xu, X. Z. S. & Feng, Z. Calcium imaging of multiple neurons in freely-behaving C. elegans. J. Neurosci. Methods 206, 78–

82 (2012).

145. Faumont, S. et al. An Image-Free Opto-Mechanical system for creating virtual environments and imaging neuronal activity in freely moving caenorhabditis elegans. PLoS One 6, (2011).

146. Pirri, J. K. & Alkema, M. J. The Neuroethology of C. elegans Escape. Curr.

Opin. Neurobiol. 22, 187–193 (2012).

147. Masurat, F. Control of sleep through sleep-active neurons. (Georg-August-Universität Göttingen, 2018).

148. Guo, Z. V, Hart, A. C. & Ramanathan, S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6, 891–896 (2009).

149. Conradt, B. & Horvitz, R. The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9. Cell 93, 519–529 (1998).

150. Sawin, E. R., Ranganathan, R. & Horvitz, R. C. elegans locomotory rate is

101

modulated by the environment through a dopaminergic pathway and by

modulated by the environment through a dopaminergic pathway and by