• Keine Ergebnisse gefunden

This study will give an overview on the susceptibility situation of porcine B.

bronchiseptica isolates in Germany [chapter 2] and will provide details on the occurrence and the localization of selected resistance genes in B. bronchiseptica isolates [chapters 3-6].

Based on the data from the susceptibility testing, isolates with high MICs to trimethoprim/sulfamethoxazole were investigated for the corresponding resistance genes. As trimethoprim resistance genes are often located on gene cassettes and the sulphonamide resistance gene sul1 have been described to be part of class 1 integrons this part of the study focussed on the occurrence of integrons conferring resistance to trimethoprim and sulphonamides [chapter 3].

Two isolates carrying different plasmids were chosen to identify tetracycline resistance genes on mobile genetic elements [chapter 4].

Florfenicol is the only antimicrobial agent for which the CLSI gives veterinary-specific breakpoints to classify B. bronchiseptica isolates as susceptible, intermediate or resistant.

Resistant isolates were also investigated for chloramphenicol resistance genes, because all so far known florfenicol resistance genes also confer chloramphenicol resistance. In addition, chloramphenicol-resistant, but florfenicol-susceptible isolates were tested for the presence of chloramphenicol resistance genes [chapter 5].

Transferable β-lactam resistance has been described earlier in B. bronchiseptica,43,138 so the aim of this part of the study was to detect genes conferring resistance to β-lactams. For this purpose isolates with high MIC values to ampicillin were chosen [chapter 6].

Introduction chapter 1

References

1. Altrock A von. [Occurrence of bacterial agents in lungs of pigs and evaluation of their resistance to antibiotics]. Berl Münch Tierärztl Wochenschr 1998; 111: 164-72.

2. Antoine R, Locht C. Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol Microbiol 1992; 6: 1785-99.

3. Antunes P, Machado J, Sousa JC, Peixe L. Dissemination amongst humans and food products of animal origin of a Salmonella typhimurium clone expressing an integron-borne OXA-30 β-lactamase. J Antimicrob Chemother 2004; 54: 429-34.

4. Appelbaum PC, Tamim J, Pankuch GA, Aber RC. Susceptibility of 324 nonfermentative gram-negative rods to 6 cephalosporins and azthreonam. Chemotherapy 1983; 29: 337-44.

5. Appelbaum PC, Tamim J, Stavitz J, Aber RC, Pankuch GA. Sensitivity of 341 non-fermentative gram-negative bacteria to seven beta-lactam antibiotics. Eur J Clin Microbiol 1982; 1: 159-65.

6. Bemis DA, Shek WR, Clifford CB. Bordetella bronchiseptica infection of rats and mice. Comp Med 2003;

53: 11-20.

7. Bemis DA. Bordetella and Mycoplasma respiratory infections in dogs and cats. Vet Clin North Am Small Anim Pract 1992; 22: 1173-86.

8. Bennett P. Genome plasticity. In: Woodford N, Johnson A, eds. Methods in molecular microbiology, vol.

266: Genomics, proteomics, and clinical bacteriology: Methods and reviews. Totowa,: Humana Press, 2004; 71-113.

9. Bennett P. The spread of drug resistance. In: Baumberg S, Young JPW, Wellington EMH, Saunders JR, eds. Population genetics of bacteria. Symposium 52 of the Society for General Microbiology. Cambridge:

Cambridge University Press, 1995; 317-44.

10. Bergeron MG, Ouellette M. Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. J Clin Microbiol 1998; 36: 2169-72.

11. Binns SH, Dawson S, Speakman AJ, Cuevas LE, Gaskell CJ, Hart CA, Morgan KL, Gaskell RM.

Prevalence and risk factors for feline Bordetella bronchiseptica infection. Vet Rec 1999; 144: 575-80.

12. Borges-Walmsley MI, Walmsley AR. The structure and function of drug pumps. Trends Microbiol 2001; 9:

71-9.

13. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-51.

14. Brockmeier SL, Halbur PG, Thacker EL. Porcine respiratory Disease Complex. In: Brogden KA, Guthmiller JM, eds. Polymicrobial Diseases. Washington DC: ASM Press, 2002; 231-58.

15. Brockmeier SL, Lager KM. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica. Vet Microbiol 2002; 89: 267-75.

16. Bush K, Jacoby GA. Nomenclature of TEM β-lactamases. J Antimicrob Chemother 1997; 39: 1-3.

17. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-33.

18. Butaye P, Cloeckaert A, Schwarz S. Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents 2003; 22: 205-10.

19. Carattoli A. Importance of integrons in the diffusion of resistance. Vet Res 2001; 32: 243-59.

20. Chanter N, Magyar T, Rutter JM. Interactions between Bordetella bronchiseptica and toxigenic Pasteurella multocida in atrophic rhinitis of pigs. Res Vet Sci 1989; 47: 48-53.

21. Chopra I, Roberts MC. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65: 232-60.

22. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals - Second edition: Approved Standard M31-A2. CLSI, Wayne, PA, USA, 2002.

23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; informational supplement M31-S31. CLSI, Wayne, PA, USA, 2002.

24. Cloeckaert A, Baucheron S, Chaslus-Dancla E. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. Antimicrob Agents Chemother 2001; 45: 2381-2.

25. Cookson BT, Vandamme P, Carlson LC, Larson AM, Sheffield JV, Kersters K, Spach DH. Bacteremia caused by a novel Bordetella species, "B. hinzii". J Clin Microbiol 1994; 32: 2569-71.

26. Courvalin P. Genotypic approach to the study of bacterial resistance to antibiotics. Antimicrob Agents Chemother 1991; 35: 1019-23.

27. Coutts AJ, Dawson S, Binns S, Hart CA, Gaskell CJ, Gaskell RM. Studies on natural transmission of Bordetella bronchiseptica in cats. Vet Microbiol 1996; 48: 19-27.

28. Craig N. Tn7. In: Craig N, Craigie R, Gellert M, Lambowitz A, eds. Mobile DNA II. Washington DC: ASM Press, 2002; 423-56.

29. Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol 2004; 186: 1484-92.

30. de la Fuente J, Albo C, Rodriguez A, Sopena B, Martinez C. Bordetella bronchiseptica pneumonia in a patient with AIDS. Thorax 1994; 49: 719-20.

31. Deeb BJ, DiGiacomo RF, Bernard BL, Silbernagel SM. Pasteurella multocida and Bordetella bronchiseptica infections in rabbits. J Clin Microbiol 1990; 28: 70-5.

32. del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62: 434-64.

33. Deutsches Institut für Normung e.V. Medizinische Mikrobiologie und Immunologie: diagnostische Verfahren. DIN Taschenbücher, 2000; Band 222: 241-442.

34. Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B.

bronchiseptica. PLoS Pathog 2005; 1: e45.

35. Doublet B, Schwarz S, Kehrenberg C, Cloeckaert A. Florfenicol resistance gene floR is part of a novel transposon. Antimicrob Agents Chemother 2005; 49: 2106-8.

36. Dugal F, Belanger M, Jacques M. Enhanced adherence of Pasteurella multocida to porcine tracheal rings preinfected with Bordetella bronchiseptica. Can J Vet Res 1992; 56: 260-4.

37. Elias B, Albert M, Tuboly S, Rafai P. Interaction between Bordetella bronchiseptica and toxigenic Pasteurella multocida on the nasal mucosa of SPF piglets. J Vet Med Sci 1992; 54: 1105-10.

38. Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. Global distribution of TEM-1 and ROB-1 β-lactamases in Haemophilus influenzae. J Antimicrob Chemother 2005; 56: 773-6.

39. Flensburg J, Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem 1987; 162: 473-6.

40. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14: 836-71.

41. Flynn CM, Kelley CM, Barrett MS, Jones RN. Application of the Etest to the antimicrobial susceptibility testing of Mycobacterium marinum clinical isolates. J Clin Microbiol 1997; 35: 2083-6.

Introduction chapter 1

42. Fry NK, Duncan J, Malnick H, Warner M, Smith AJ, Jackson MS, Ayoub A. Bordetella petrii clinical isolate. Emerg Infect Dis 2005; 11: 1131-3.

43. Graham AC, Abruzzo GK. Occurrence and characterization of plasmids in field isolates of Bordetella bronchiseptica. Am J Vet Res 1982; 43: 1852-5.

44. Grindley NDF. The movement of Tn3-like elements: Transposition and Cointegrate resolution. In: Craig N, Craigie R, Gellert M, Lambowitz A, eds. Mobile DNA II. Washington DC: ASM Press, 2002; 272-302.

45. Guillaume G, Ledent V, Moens W, Collard JM. Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb Drug Resist 2004; 10: 11-26.

46. Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 1995; 15: 593-600.

47. Haniford D. Transposon Tn10. In: Craig N, Craigie R, Gellert M, Lambowitz A, eds. Mobile DNA II.

Washington DC: ASM Press, 2002; 457-483.

48. Hill BC, Baker CN, Tenover FC. A simplified method for testing Bordetella pertussis for resistance to erythromycin and other antimicrobial agents. J Clin Microbiol 2000; 38: 1151-5.

49. Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, Saenger W. 'Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 1994; 264: 418-20.

50. Hinz KH, Glünder G. [Occurrence of Bordetella avium sp. nov. and Bordetella bronchiseptica in birds].

Berl Münch Tierärztl Wochenschr. 1985; 98: 369-73.

51. Hinz KH, Glünder G, Lüders H. Acute respiratory disease in turkey poults caused by Bordetella bronchiseptica-like bacteria. Vet Rec 1978; 103: 262-3.

52. Hoy S. Zu den Auswirkungen von Atemwegserkrankungen auf die Mast- und Fruchtbarkeitsleistungen der Schweine. Prakt Tierarzt 1994; 75: 121-7.

53. Huebner ES, Christman B, Dummer S, Tang YW, Goodman S. Hospital-acquired Bordetella bronchiseptica infection following hematopoietic stem cell transplantation. J Clin Microbiol 2006; 44:

2581-3.

54. Huovinen P, Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 1995; 39: 279-89.

55. Huovinen P. Trimethoprim resistance. Antimicrob Agents Chemother 1987; 31: 1451-6.

56. Jackson GG, Finland M. Comparison of methods for determining sensitivity of bacteria to antibiotics in vitro. AMA Arch Intern Med 1951; 88: 446-60.

57. Jacoby G, Bush K. ß-Lactam resistance in the 21st century. In: White DG, Alekshun MN, McDermott PF, eds. Frontiers in antimicrobial resistance. Washington DC: ASM Press, 2005; 53-65.

58. Juteau JM, Sirois M, Medeiros AA, Levesque RC.. Molecular distribution of ROB-1 β-lactamase in Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother 1991; 35: 1397-402.

59. Kaczmarek FS, Gootz TD, Dib-Hajj F, Shang W, Hallowell S, Cronan M. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48: 1630-9.

60. Katzenstein DA, Ciofalo L, Jordan MC. Bordetella bronchiseptica bacteremia. West J Med 1984; 140: 96-8.

61. Kehrenberg C, Meunier D, Targant H, Cloeckaert A, Schwarz S, Madec JY. Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. J Antimicrob Chemother 2006; 58: 13-7.

62. Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 2006; 50: 1156-63.

63. Kehrenberg C, Walker R, Wu C, Schwarz S. Antimicrobial resistance in Pasteurellaceae. In: Aarestrup FM, ed. Antimicrobial resistance in bacteria of animal origin. Washington DC: ASM Press, 2006; 167-86.

64. Kehrenberg C, Schwarz S. dfrA20, A novel trimethoprim resistance gene from Pasteurella multocida.

Antimicrob Agents Chemother 2005; 49: 414-7.

65. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 2005;

57: 1064-73.

66. Kehrenberg C, Mumme J, Wallmann J, Verspohl J, Tegeler R, Kühn T, Schwarz S. Monitoring of florfenicol susceptibility among bovine and porcine respiratory tract pathogens collected in Germany during the years 2002 and 2003. J Antimicrob Chemother 2004; 54: 572-4.

67. Kehrenberg C, Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 2004; 48: 615-8.

68. Kehrenberg C, Salmon SA, Watts JL, Schwarz S. Tetracycline resistance genes in isolates of Pasteurella multocida, Mannheimia haemolytica, Mannheimia glucosida and Mannheimia varigena from bovine and swine respiratory disease: intergeneric spread of the tet(H) plasmid pMHT1. J Antimicrob Chemother 2001;

48: 631-40.

69. Kehrenberg C, Schulze-Tanzil G, Martel JL, Chaslus-Dancla E, Schwarz S. Antimicrobial resistance in Pasteurella and Mannheimia: epidemiology and genetic basis. Vet Res 2001; 32: 323-39.

70. Keil DJ, Fenwick B. Role of Bordetella bronchiseptica in infectious tracheobronchitis in dogs. J Am Vet Med Assoc 1998; 212: 200-7.

71. King A, Brown DF. Quality assurance of antimicrobial susceptibility testing by disc diffusion. J Antimicrob Chemother 2001; 48 Suppl 1: 71-6.

72. Kiralj R, Ferreira MM. Molecular graphics approach to bacterial AcrB protein-β-lactam antibiotic molecular recognition in drug efflux mechanism. J Mol Graph Model 2006; 25: 126-45.

73. Ko KS, Peck KR, Oh WS, Lee NY, Lee JH, Song JH. New species of Bordetella, Bordetella ansorpii sp.

nov., isolated from the purulent exudate of an epidermal cyst. J Clin Microbiol 2005; 43: 2516-9.

74. Köfer J, Hinterdorfer F, Awad-Masalmeh M. [Occurrence and drug resistance of bacteria pathogenic to the lungs from autopsy material of swine]. Tierärztl Prax 1992; 20: 600-4.

75. Kues U, Stahl U. Replication of plasmids in gram-negative bacteria. Microbiol Rev 1989; 53: 491-516.

76. Lancashire JF, Terry TD, Blackall PJ, Jennings MP. Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. Antimicrob Agents Chemother 2005; 49: 1927-31.

77. Lartigue MF, Poirel L, Fortineau N, Nordmann P. Chromosome-borne class A BOR-1 beta-Lactamase of Bordetella bronchiseptica and Bordetella parapertussis. Antimicrob Agents Chemother 2005; 49: 2565-7.

78. Li XH, Shi L, Cao YC, Li L. Accession no. AB214531. 2005. not published.

79. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64: 159-204.

80. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 1999; 63: 507-22.

81. Livermore DM, Winstanley TG, Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother 2001; 48 Suppl 1: 87-102.

82. Lo Re V, 3rd, Brennan PJ, Wadlin J, Weaver R, Nachamkin I. Infected branchial cleft cyst due to Bordetella bronchiseptica in an immunocompetent patient. J Clin Microbiol 2001; 39: 4210-2.

83. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.

Antimicrob Agents Chemother 2006; 50: 2500-5.

84. Lorenzo-Pajuelo B, Villanueva JL, Rodriguez-Cuesta J, Vergara-Irigaray N, Bernabeu-Wittel M, Garcia-Curiel A, Martinez de Tejada G. Cavitary pneumonia in an AIDS patient caused by an unusual Bordetella bronchiseptica variant producing reduced amounts of pertactin and other major antigens. J Clin Microbiol 2002; 40: 3146-54.

Introduction chapter 1

85. Lund SJ, Rowe HA, Parton R, Donachie W. Adherence of ovine and human Bordetella parapertussis to continuous cell lines and ovine tracheal organ culture. FEMS Microbiol Lett 2001; 194: 197-200.

86. MacGowan AP, Wise R. Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests.

J Antimicrob Chemother 2001; 48 Suppl 1: 17-28.

87. Magyar T, Chanter N, Lax AJ, Rutter JM, Hall GA. The pathogenesis of turbinate atrophy in pigs caused by Bordetella bronchiseptica. Vet Microbiol 1988; 18: 135-46.

88. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 1998; 62: 725-74.

89. Maiden MC. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin Infect Dis 1998; 27 Suppl 1: S12-20.

90. Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18: 326-82.

91. McCandlish IA, Thompson H, Cornwell HJ, Wright NG. A study of dogs with kennel cough. Vet Rec 1978;

102: 293-301.

92. Medeiros AA, Levesque R, Jacoby GA. An animal source for the ROB-1 β-lactamase of Haemophilus influenzae Type b. Antimicrob Agents Chemother 1986; 29: 212-5.

93. Michael GB, Cardoso M, Schwarz S. Class 1 integron-associated gene cassettes in Salmonella enterica subsp. enterica serovar Agona isolated from pig carcasses in Brazil. J Antimicrob Chemother 2005; 55:

776-9.

94. Myllykallio H, Leduc D, Filee J, Liebl U. Life without dihydrofolate reductase FolA. Trends Microbiol 2003; 11: 220-3.

95. Nelson M, Projan S. Discovery and instrumentalization of theurapeutically important tetracyclines. In:

White DG, Alekshun MN, McDermott PF, eds. Frontiers in antimicrobial resistance. Washington DC:

ASM Press, 2005;: 29-40.

96. Nikaido H. Role of permeability barriers in resistance to β-lactam antibiotics. Pharmacol Ther 1985; 27:

197-231.

97. Overgoor GH. [Bacteria and their antibiograms (author's transl)]. Tijdschr Diergeneeskd 1981; 106: 868-72.

98. Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2001; 45: 480-4.

99. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ.

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003; 35: 32-40.

100. Pasquali F, Kehrenberg C, Manfreda G, Schwarz S. Physical linkage of Tn3 and part of Tn1721 in a tetracycline and ampicillin resistance plasmid from Salmonella Typhimurium. J Antimicrob Chemother 2005; 55: 562-5.

101. Perreten V, Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 2003; 47: 1169-72.

102. Petrocheilou-Paschou V, Georgilis K, Kostis E, Prifti H, Zakopoulos N, Stamatelopoulos S. Bronchitis caused by Bordetella bronchiseptica in an elderly woman. Clin Microbiol Infect 2000; 6: 147-8.

103. Philippon A, Joly B, Reynaud D, Paul G, Martel JL, Sirot D, Cluzel R, Nevot P. Characterization of a β-lactamase from Pasteurella multocida. Ann Inst Pasteur Microbiol 1986; 137A: 153-8.

104. Pijpers A, Van Klingeren B, Schoevers EJ, Verheijden JH, Van Miert AS. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens. J Vet Pharmacol Ther 1989; 12: 267-76.

105. Ploy MC, Lambert T, Couty JP, Denis F. Integrons: an antibiotic resistance gene capture and expression system. Clin Chem Lab Med 2000; 38: 483-7.

106. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae.

Antimicrob Agents Chemother 2000; 44: 622-32.

107. Poole K. Resistance to β-lactam antibiotics. Cell Mol Life Sci 2004; 61: 2200-23.

108. Porter JF, Connor K, Donachie W. Differentiation between human and ovine isolates of Bordetella parapertussis using pulsed-field gel electrophoresis. FEMS Microbiol Lett 1996; 135: 131-5.

109. Preston A. Bordetella pertussis: the intersection of genomics and pathobiology. Cmaj 2005; 173: 55-62.

110. Preston A, Parkhill J, Maskell DJ. The bordetellae: lessons from genomics. Nat Rev Microbiol 2004; 2:

379-90.

111. Priebe S, Schwarz S. In vitro activities of florfenicol against bovine and porcine respiratory tract pathogens.

Antimicrob Agents Chemother 2003; 47: 2703-5.

112. Pumbwe L, Chang A, Smith RL, Wexler HM. Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 2006; 58: 543-8.

113. Reznikoff W. Tn5 Transposition. In: Craig N, Craigie R, Gellert M, Lambowitz A, eds. Mobile DNA II.

Washington DC: ASM Press, 2002.403-22.

114. Roberts MC. Tetracycline resistance due to ribosomal protection proteins. In: White DG, Alekshun MN, McDermott PF, eds. Frontiers in antimicrobial resistance. Washington DC: ASM Press, 2005.19-28.

115. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245: 195-203.

116. Roberts MC. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 2002; 20: 261-83.

117. Roberts MC. http://faculty.washington.edu/marilynr/ (31 August 2006, date last accessed ).

118. Rocksin A. Untersuchungen zur Implementierung des Bouillon-Mikrodilutionsverfahrens zur Empfindlichkeitsprüfung von Bakterien gegenüber antimikrobiellen Wirkstoffen. Mikrobiologie.

Tierärztliche Hochschule Hannover. 2005.

119. Sakano T, Okada M, Taneda A, Ono M, Sato S. Experimental atrophic rhinitis in 2 and 4 month old pigs infected sequentially with Bordetella bronchiseptica and toxigenic type D Pasteurella multocida. Vet Microbiol 1992; 31: 197-206.

120. Salyers AA, Shoemaker NB. Conjugative transposons. Genet Eng (N Y) 1997; 19: 89-100.

121. Sapuranic F, Aldema-Ramos M, McMurry L. Tetracycline resistance: Efflux, mutation, and other mechanisms. In: White DG, Alekshun MN, McDermott PF, eds. Frontiers in antimicrobial reistance.

Washington DC: ASM Press, 2005; 3-18.

122. Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996; 165: 359-69.

123. Schöss P. [Diagnosis and control of progressive atrophic rhinitis]. Altex 1994; 11: 55-8.

124. Schöss P, Thiel CP, Schimmelpfennig H. [Atrophic rhinitis in swine: studies on the occurrence of toxin-producing strains of Pasteurella multocida and Bordetella bronchiseptica]. Dtsch Tierärztl Wochenschr 1985; 92: 316-9.

125. Schwarz S, White D. Phenicol resistance. In: White DG, Alekshun MN, McDermott PF, eds. Frontiers in antimicrobial resistance. (Washington DC; ASM Press, 2005; 124-48.

Introduction chapter 1

126. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2004; 28: 519-42.

127. Schwarz S, Böttner A, Hafez HM, Kehrenberg C, Kietzmann M, Klarmann D, Klein G, Krabisch P, Kühn T, Luhofer G, Richter A, Traeder W, Waldmann KH, Wallmann J, Werckenthin C. [Antimicrobial susceptibility testing of bacteria isolated from animals: methods for in-vitro susceptibility testing and their suitability with regard to the generation of the most useful data for therapeutic applications]. Berl Münch Tierärztl Wochenschr 2003; 116: 353-61.

128. Schwarz S, Chaslus-Dancla E. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

Vet Res 2001; 32: 201-25.

129. Schwarz S, Kehrenberg C, Walsh TR. Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 2001; 17: 431-7.

130. Schwarz S, Spies U, Reitz B, Seyfert HM, Lämmler C, Blobel H. Detection and interspecies-transformation of a β-lactamase-encoding plasmid from Pasteurella haemolytica. Zentralbl Bakteriol Mikrobiol Hyg [A]

1989; 270: 462-9.

131. Scully R, Mark E, McNeely W, Ebeling S, Phillips L, Ellender S. Case 14-2000. N Engl J Med 2000; 342:

1430-1.

132. Shimizu M, Kuninori K, Inoue M, Mitsuhashi S. Drug resistance and R plasmids in Bordetella bronchiseptica isolates from pigs. Microbiol Immunol 1981; 25: 773-86.

133. Silveira D, Edington N, Smith IM. Ultrastructural changes in the nasal turbinate bones of pigs in early infection with Bordetella bronchiseptica. Res Vet Sci 1982; 33: 37-42.

134. Sköld O. Resistance to trimethoprim and sulfonamides. Vet Res 2001; 32: 261-73.

135. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 2005; 3: 700-10.

136. Speakman AJ, Dawson S, Binns SH, Gaskell CJ, Hart CA, Gaskell RM. Bordetella bronchiseptica infection in the cat. J Small Anim Pract 1999; 40: 252-6.

137. Speakman AJ, Binns SH, Dawson S, Hart CA, Gaskell RM. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol 1997 54: 63-72.

138. Speakman AJ, Binns SH, Osborn AM, Corkill JE, Kariuki S, Saunders JR, Dawson S, Gaskell RM, Hart CA. Characterization of antibiotic resistance plasmids from Bordetella bronchiseptica. J Antimicrob Chemother 1997; 40: 811-6.

139. Spears PA, Temple LM, Miyamoto DM, Maskell DJ, Orndorff PE. Unexpected similarities between Bordetella avium and other pathogenic Bordetellae. Infect Immun 2003; 71: 2591-7.

140. Sunde M, Sørum H. Characterization of integrons in Escherichia coli of the normal intestinal flora of swine. Microb Drug Resist 1999; 5: 279-87.

141. Terakado N, Araki S, Mori Y, Sekizaki T, Hashimoto K. Non-conjugative R plasmid with five drug resistance from Bordetella bronchiseptica of pig origin. Nippon Juigaku Zasshi 1981; 43: 971-4.

142. Terakado N, Azechi H, Ninomiya K, Shimizu T. Demonstration of R factors in Bordetella bronchiseptica isolated from pigs. Antimicrob Agents Chemother 1973; 3: 555-8.

143. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat

143. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat