• Keine Ergebnisse gefunden

This work had two requirements; firstly the synthesis of novel electrolytes that exhibit gel-like behaviours and secondly to investigate the synthesised materials with electrochemical impedance spectroscopy (EIS) in order to understand the ion-ion interactions. The presented work is divided into to two parts. The first part of the investigations concerns the polymerisation of H-siloxane60 with different pre-synthesised (oligo)ethylenglycol side chain units to form gel-like materials. These gels are mixed with different newly synthesised lithium salts that have a minimum radii of 4.2 Å and who have large charge delocalisation and dissociation influences. In parallel to the synthesis, the investigations are intended to increase the mobility of the side chain units and to reduce the glass transition (Tg). By means of EIS, the author intends to develop the most app priate circuit model to explain their ionic transport properties.

The second part of the investigation concerns the combination of the best aspects of e imidazolium cation header group with the newly synthesised lithium salts to form ionic liquid polymer or polymer-in-salt systems. Such salts are potentially of great interest. It appears that the geometric packing constraints of the planar imidazolium ring, plus its dangling alkyl side groups coupled with the delocalisation of the charge over the N-C-N moiety in the ring all serve to decrease ion-ion interactions and lower melting points. The aforementioned lithium salts with large anions should give an insight into the structure and some of the fundamental features of the imidazolium cation header groups. The author hopes to reduce the crystallisation point below ambient temperatures and to identify molten salts with a wide window of stability. Therefore, similary to the above a greater understanding is required concerning the nature of the ions, which promote high conductivity within most molten salts. EIS studies were performed with the intention of developing the most appropriate circuit model to explain their ionic transport properties.

ro

th

References:

O. Dag, A. Verma, G. A. Ozin and C. T. Kresge, J. Mater. Chem., 9, 2715 (1999).

. R. M. Dell and D. A. J. Rand, Understanding Batteries, No. p. 223, Springer, (2001).

3. P. V.

pierala, D. L. Olmeijer, C. G. Cameron, S. E. Kuharcik, C. S. Reed and S. J. M.

him. Acta, 43, 1145 (1998).

16. Y. G. Andreev and P. G. Bruce, Electrochim. Acta, 45, 1417 (2000).

17. C. M.

18. P. G

).

35. G. S. McHattie, C. T. Imrie and M. D. Ingram, Electrochim. Acta, 43, 1151 (1998).

36. N. A. Hamill, K. R. Seddon, A. Stark and M. J. Torres, Abstr. Pap. - Am. Chem. Soc., 221st, IEC (2001).

37. H. Every, A. G. Bishop, M. Forsyth and D. R. MacFarlane, Electrochim. Acta., 45, 1279 (2000).

38. K. Ito, N. Nishina and H. Ohno, Electrochim. Acta, 45, 1295 (2000).

39. H. Ohno, Electrochim. Acta, 46, 1407 (2001).

40. D. R. McFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, Electrochim. Acta., 45, 1271 (2000).

41. Y. S. Fung and R. Q. Zhou, J. Power Sources, 81-82, 891 (1999).

42. M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, 1391 (2000).

43. M. J. Earle, K. R. Seddon, C. J. Adams and G. Roberts, Chem. Commun. (Cambridge), 2097 (1998).

1.

2

Wright, British Polymer Journal, 7, 319 (1975).

4. M. B. Armand, J. M. Chabagno and M. Duclot, Solid Electrolytes Meeting - Extended Abstracts, (1978).

5. G. Pristoia, Lithium Batteries - New Materials, Developments and Perspective, 5, No. p. 482, Elsevier, London, (1994).

6. J. P. Gabano, Lithium Batteries, No. p. 455, Academic Press, London, (1983).

7. P. G. Bruce, Section: Polymer Electrolytes II, Chemistry of Solid State Materials - Solid State Electrochemistry, 5, 141-163, Ed. Bruce, P.G., Cambridge University Press, (1997).

8. C. Svanberg, R. Bergman, L. Borjesson and P. Jacobsson, Electrochim. Acta, 46, 1447 (2001).

9. Y. Saito, H. Kataoka, T. Sakai and S. Deki, Electrochim. Acta, 46, 1747 (2001).

10. H. Dai and T. A. Zawodzinski, Jr., J. Electrochem. Soc., 143, L107 (1996).

11. S. S. Zhang and C. A. Angell, J. Electrochem. Soc., 143, 4047 (1996).

12. J. B. Kerr, G. Liu, L. A. Curtiss and P. C. Redfern, Electrochimica Acta, 48, 2305 (2003).

13. H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda and Y. Aihara, Journal of the Electrochemical Society, 150, A695 (2003).

14. K. Murata, S. Izuchi and Y. Yoshihisa, Electrochim. Acta, 45, 1501 (2000).

15. H. R. Allcock, M. E. Na O'Connor, Electroc

Gordon, Applied Catalysis, A: General, 222, 101 (2001).

. Bruce and C. A. Vincent, J. Chem. Soc., Faraday Trans., 89, 3187 (1993).

19. C. A. Angell, Molten Salt Forum, 5-6, 39 (1998).

20. J. Barthel, H. J. Gores, R. Neueder and A. Schmid, Pure and Applied Chemistry, 71, 1705 (1999).

21. Y. G. Andreev and P. G. Bruce, Electrochim. Acta, 45, 1417 (2000).

22. A. Killis, J. F. Le Nest, H. Cheradame and A. Gandini, Macromolecules, 183, 2835 (1982).

23. P. G. Hall, J. E. Davies, J. M. McIntyre, I. M. Wards, D. J. Bannister and K. M. F. Le Brocqu, Polymer Communications, 27, 98 (1986).

24. T. Michot, A. Nishimoto and M. Watanabe, Electrochim. Acta, 45, 1347 (2000).

25. M. Watanabe and T. Mizumura, Solid State Ionics, 86-88, 353 (1996).

26. J. Barthel, R. Buestrich, H. J. Gores, M. Schmidt and M. Wuhr, J. Electrochem. Soc., 144, 3866 (1997).

27. J. Barthel, R. Buestrich, E. Carl and H. J. Gores, J. Electrochem. Soc., 143, 3572 (1996).

28. J. Barthel, H. J. Gores, K. Gross and M. Utz, J. Solution Chem., 25, 515 (1996).

29. J. Barthel, H. J. Gores and L. Kraml, J. Phys. Chem., 100, 1283 (1996).

30. J. Barthel, M. Wuhr, R. Buestrich and H. J. Gores, J. Electrochem. Soc., 142, 2527 (1995).

31. R. A. M. Hikmet and M. P. J. Peeters, Solid State Ionics, 126, 25 (1999).

32. M. Forsyth, J. Sun, F. Zhou and D. R. MacFarlane, Electrochimica Acta, 48, 2129 (2003).

33. M. Morita, F. Araki, N. Yoshimoto, M. Ishikawa and H. Tsutsumi, Solid State Ionics, 136-137, 1167 (2000).

34. C. T. Imrie, M. D. Ingram and G. S. McHattie, J. Phys. Chem. B, 103, 4132 (1999

44. K. R. Seddon, 45. M. Hirao, H. Sug

Molten Salt Forum, 5-6, 53 (1998).

imoto and H. Ohno, J. Electrochem. Soc., 147, 4168 (2000).

6. G. S. MacGlashan, Y. G. Andreev and P. Bruce, Nature, 398, 792 (1999).

1).

54. J.

ta, 48, 1939 (2003).

em, 8, 2627 (1998).

132 (1999).

, 26, 2895 (1993).

.

, 17, 7988 (2001).

M. Watanabe and T. Sakashita, Polymer solid

. Acta, 46, 1447 (2001).

71. N condary Batteries with Gelled Polymer Electrolytes, Advances in r Acedemic / Plenum

s, ic 4

47. P. Wasserscheid and T. Welton, Ionic Liquids, Wiley-VCH, (2003)..

48. P. Walden, Bulletins of the Academic Imperial Science, 1800 (1914).

49. T. Welton, Chemical Reviews, 99, 2071 (1999).

50. C. J. Bowlas, D. W. Bruce and K. R. Seddon, Liquid-crystalline ionic liquids, No. p. 6 (1996).

McCluskey, Chem. Commun. (Cambridge), 1431 (1999).

51. C. M. Gordon and A.

52. F. H. Hurley and J. Wier, Journal of the Electrochemical Society, 98, 203 (195 53. R. M. Pagni, Section: Advances in Molten Salts Chemistry, 6, 211-346 (1987).

S. Wilkes, Abstr. Pap. - Am. Chem. Soc., 221st, IEC (2001).

55. S. Shinkai and T. Kajiyama, Pure Appl. Chem., 60, 575 (1988).

56. F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar and P. V. Wright, Electrochimica Ac 57. C. M. Gordon, J. D. Holbrey, A. R. Kennedy and K. R. Seddon, J. Mater. Ch 58. C. T. Imrie, M. D. Ingram and G. S. McHattie, J. Phys. Chem. B, 103, 4

59. J. M. Tarascon and M. Armand, Nature (London, United Kingdom), 414, 359 (2001).

60. C. A. Angell, C. Liu and E. Sanchez, Nature (London), 362, 137 (1993).

. Hashimoto, K.

61. T Yamasaki, S. Koizumi and H. Hasegawa, Macromolecules 62. S. Koizumi, H. Hasegawa and T. Hashimoto, Macromolecules, 27, 4371 (1994).

63. T. Hashimoto, S. Koizumi and H. Hasegawa, Macromolecules, 27, 1562 (1994).

64. K. M. Lee, C. K. Lee and I. J. B. Lin, Chem. Commun., 9, 899 (1997) gmuir 65. L. Soubiran, E. Staples, I. Tucker, J. Penfold and A. Creeth, Lan

66. M. Watanabe, H. Tokuda and S. Muto, Electrochim. Acta, 46, 1487 (2001).

67. S. Kohjiya, Y. Ikeda, K. Miura, S. Shoji, Y. Matoba, electrolyte, Eur. Pat. Appl., 96-107272, 7(1996).

68. W. Shakespeare, Play - Richard III, (1593).

69. C. Svanberg, R. Bergman, L. Borjesson and P. Jacobsson, Electrochim

70. H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda and Y. Aihara, Journal of the Electrochemical Society, 150, A695 (2003).

. Yoshio, Section: Lithium-Ion Se

Lithium-Ion Batteries, 233-249, Ed. Van Schalkwijk, W.A. &.Scrosati, B., Klwe Publishers, (2002).

72. A. Webber and G. E. Blomberg, Section: Ionic Liquids for Lithium Ion Electrolytes and Related Batterie Advances in Lithium-Ion Batteries, 185-231, Ed. Van Schalkwijk, W.A. &.Scrosati, B., Klewer Academ Plenum Publishers, (2002).

Chapter 2

lesandro Volta’s dissimilar metals on opposite source, gen [3]. These are still or the future of positive and etween them. By 1812 the pplied voltage overpowered the attraction between rom the 20th century before the

[1] [4]

2.1.1.

Reasons for understanding ion-ion interactions:

Why are ion-ion interactions important? The answer to this question is quite simple as will be shortly later demonstrated in this section; they affect the equilibrium properties of ionic solutions when exposed to external applied electric fields. According to Bockris [5] the degree to which these interactions affect the properties of solutions will depend on the mean distance apart of the ions, i.e. on how densely a solution is populated with ions because the

Theory