• Keine Ergebnisse gefunden

Immune reconstitution

3. Discussion and future perspectives

3.5 Adoptive immunotherapy: current status and future perspectives

The three main technologies for the enrichment of clinical-grade antigen-specific T lymphocytes for the adoptive immunotherapy so far are:

(1) The adoptive transfer of in vitro expanded antigen-specific T cells with or without cloning [52, 133];

(2) The adoptive transfer of highly pure reversible pMHC multimer-isolated antigen-specific CD8+ CTLs (reversible pMHC streptamer technology from IBA TAGnology) sorted either directly from blood cells or after short-term in vitro stimulation [138];

(3) The adoptive transfer of isolated IFN-γ secreting antigen-specific cells (cytokine capture system technology (CliniMACS from Miltenyi Biotec), including CD8+ and CD4+ T cells, after short-term in vitro stimulation [102, 196, 197].

These techniques are successfully used in adoptive immunotherapy for the effective and fast treatment of HSCT- and SOT-related complications such as malignant tumors and infectious disease. Adoptive transfer of antigen-specific T lymphocytes offers the possibility to induce a beneficial GvI, GvL or GvT effect with reduced GvHD [198].

In the first approach, antigen-specific T cells can be expanded by repetitive antigen stimulation of in vitro cultured T cells with or without cloning [133]. This leads to antigen-specific CD8+ and/or CD4+ T cells depending on the antigen used. This technique has the disadvantage of a long-term and expensive in vitro cultivation before adoptive transfer. In contrast, the reversible pMHC streptamer and the cytokine capture system technology listed below offer the advantages of easy and fast methods that can readily be standardized with various malignant and infectious antigens for antigen-specific cellular immunotherapy approaches [133]. Because these described techniques are quite new, only a few studies are published about the enrichment of clinical-grade antigen-specific T cells [75, 95, 102, 134, 138, 171, 190], but the results are promising. Studies demonstrated a comparable safety of these infusions, while the products of the pMHC streptamer technology and the cytokine

capture technology had an excellent toxicity profile [102, 132, 134, 138]. Antigen-specific CD8+ CTLs isolated by the reversible pMHC multimer technology have a higher purity to CD8+ CTLs and CD4+ T helper cells isolated with the cytokine secretion system [102, 134, 138]. Moreover, the optimal or at least the minimal T-cell dose for the adoptive transfer in order to obtain desirable therapeutic effects, are still not know [52]. These few published studies only indicate an approximately value of the clinical relevant antigen-specific T-cell dose/infusion [102, 132, 134, 138]. The therapeutic effects of a variety of cell doses for the adoptive transfer have been reported for different treatments as followed:

(1) virus-specific

 0.2x105 – 1x105 CMV-specific T-cell lines/kg, administered in a single infusion [52, 199];

 4x107– 3x108 EBV-specific T cells/m2, administered in 1 or 2 infusions [52, 200];

 5x106 – 1x108 multivirus-reactive cell line/m2, administered in a single infusion [52, 201];

(2) tumor-specific

 0.11– 13.1x108 melanoma-specific T cells/infusion, administered in at least 3 infusions [52, 202];

 2.3x1010– 13.7x1010 melanoma-specific T cells/infusion [52, 203];

 ~5x1010 ex vivo selected and expanded autologous tumor-infiltrating lymphocytes (TILs) isolated from metastatic melanoma patients/infusion [52, 204].

In conclusion, the enormous progress in understanding T-cell biology and physiology, combined with novel technologies for generation, detection, expansion, and isolation of antigen-specific T cells have made the adoptive transfer effective for clinical application with highly promising perspectives [52]. This doctoral thesis provides more insight into the generation and selection of antigen-specific T lymphocytes, while the established strategies developed in this study can be used in both basic and clinical immunology. In the future, the greatest challenges are the technology design and improvements as well as the control of clinical trials to find the optimal conditions (e.g., selection of cell dose/infusion, purities of infused T cells, selection of cell subpopulations) for a successful in vivo expansion associated with a long-lasting immunity after adoptive transfer [102].

4. References

1. Oberbarnscheidt, M.H., Zecher, D., and Lakkis, F.G. The innate immune system in transplantation. Semin Immunol.

2. Parkin, J., and Cohen, B. (2001). An overview of the immune system. Lancet 357, 1777-1789.

3. Gulley, M.L., and Tang, W. Using Epstein-Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. Clin Microbiol Rev 23, 350-366.

4. Erridge, C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87, 989-999.

5. Gennery, A.R., and Cant, A.J. (2006). Applied physiology: Immune competence.

Current Paediatrics 16, 447-452.

6. Andersen, M.H., Schrama, D., Thor Straten, P., and Becker, J.C. (2006). Cytotoxic T cells. J Invest Dermatol 126, 32-41.

7. Agematsu, K., Nagumo, H., Oguchi, Y., Nakazawa, T., Fukushima, K., Yasui, K., Ito, S., Kobata, T., Morimoto, C., and Komiyama, A. (1998). Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 91, 173-180.

8. Baxter, D. (2007). The immunological principles underlying vaccine-induced protection in the occupational health setting. Occup Med (Lond) 57, 548-551.

9. Aucher, A., Magdeleine, E., Joly, E., and Hudrisier, D. (2008). Capture of plasma membrane fragments from target cells by trogocytosis requires signaling in T cells but not in B cells. Blood 111, 5621-5628.

10. Nestle, F.O., Burg, G., Fah, J., Wrone-Smith, T., and Nickoloff, B.J. (1997). Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 150, 641-651.

11. Kaech, S.M., Wherry, E.J., and Ahmed, R. (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2, 251-262.

12. Corradin, G. (1990). Antigen processing and presentation. Immunol Lett 25, 11-13.

13. Heath, W.R., and Carbone, F.R. (2001). Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1, 126-134.

14. Kloetzel, P.M., and Ossendorp, F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16, 76-81.

15. Sadasivan, B., Lehner, P.J., Ortmann, B., Spies, T., and Cresswell, P. (1996). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103-114.

16. York, I.A., and Rock, K.L. (1996). Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14, 369-396.

17. Li, P., Haque, M.A., and Blum, J.S. (2002). Role of disulfide bonds in regulating antigen processing and epitope selection. J Immunol 169, 2444-2450.

18. Rock, K.L. (2006). Exiting the outside world for cross-presentation. Immunity 25, 523-525.

19. Vyas, J.M., Van der Veen, A.G., and Ploegh, H.L. (2008). The known unknowns of antigen processing and presentation. Nat Rev Immunol 8, 607-618.

20. Knecht, E., Aguado, C., Carcel, J., Esteban, I., Esteve, J.M., Ghislat, G., Moruno, J.F., Vidal, J.M., and Saez, R. (2009). Intracellular protein degradation in mammalian cells:

recent developments. Cell Mol Life Sci 66, 2427-2443.

21. Hwang, I., and Ki, D. Receptor-mediated T cell absorption of antigen presenting cell-derived molecules. Front Biosci 16, 411-421.

22. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R.

(1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471.

23. Rock, K.L., and Goldberg, A.L. (1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17, 739-779.

24. Tanaka, K. (1998). Molecular biology of the proteasome. Biochem Biophys Res Commun 247, 537-541.

25. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R., and Wearsch, P.A. (2005).

Mechanisms of MHC class I-restricted antigen processing and cross-presentation.

Immunol Rev 207, 145-157.

26. Macdonald, I.K., Harkiolaki, M., Hunt, L., Connelley, T., Carroll, A.V., MacHugh, N.D., Graham, S.P., Jones, E.Y., Morrison, W.I., Flower, D.R., and Ellis, S.A. MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors. PLoS Pathog 6, e1001149.

27. Castellino, F., Boucher, P.E., Eichelberg, K., Mayhew, M., Rothman, J.E., Houghton, A.N., and Germain, R.N. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191, 1957-1964.

28. Nielsen, M., Lund, O., Buus, S., and Lundegaard, C. MHC class II epitope predictive algorithms. Immunology 130, 319-328.

29. Hsieh, C.S., deRoos, P., Honey, K., Beers, C., and Rudensky, A.Y. (2002). A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168, 2618-2625.

30. Pluger, E.B., Boes, M., Alfonso, C., Schroter, C.J., Kalbacher, H., Ploegh, H.L., and Driessen, C. (2002). Specific role for cathepsin S in the generation of antigenic peptides in vivo. Eur J Immunol 32, 467-476.

31. Calderwood, S.K., Gong, J., Theriault, J.R., Mambula, S.S., and Gray, P.J., Jr. (2008).

Cell stress proteins: novel immunotherapeutics. Novartis Found Symp 291, 115-131;

discussion 131-140. apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115, 2633-2639.

35. Fink, A.L. (1999). Chaperone-mediated protein folding. Physiol Rev 79, 425-449.

36. Hartl, F.U., and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.

37. Hightower, L.E., and Ryan, J.A. (1997). Are stress proteins part of a cell's solution to toxicity or are they part of the problem? Hepatology 25, 1279-1281.

38. Jaattela, M. (1999). Heat shock proteins as cellular lifeguards. Ann Med 31, 261-271.

39. Bendz, H., Ruhland, S.C., Pandya, M.J., Hainzl, O., Riegelsberger, S., Brauchle, C., Mayer, M.P., Buchner, J., Issels, R.D., and Noessner, E. (2007). Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem 282, 31688-31702.

40. Ackerman, A.L., Giodini, A., and Cresswell, P. (2006). A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25, 607-617.

41. Shen, L., and Rock, K.L. (2006). Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr Opin Immunol 18, 85-91.

42. Binder, R.J., and Srivastava, P.K. (2005). Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells.

Nat Immunol 6, 593-599.

43. Flechtner, J.B., Cohane, K.P., Mehta, S., Slusarewicz, P., Leonard, A.K., Barber, B.H., Levey, D.L., and Andjelic, S. (2006). High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J Immunol 177, 1017-1027.

44. Calderwood, S.K., Mambula, S.S., Gray, P.J., Jr., and Theriault, J.R. (2007).

Extracellular heat shock proteins in cell signaling. FEBS Lett 581, 3689-3694.

45. Kurotaki, T., Tamura, Y., Ueda, G., Oura, J., Kutomi, G., Hirohashi, Y., Sahara, H., Torigoe, T., Hiratsuka, H., Sunakawa, H., Hirata, K., and Sato, N. (2007). Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol 179, 1803-1813.

46. Lund, B.T., Chakryan, Y., Ashikian, N., Mnatsakanyan, L., Bevan, C.J., Aguilera, R., Gallaher, T., and Jakowec, M.W. (2006). Association of MBP peptides with Hsp70 in normal appearing human white matter. J Neurol Sci 249, 122-134.

47. Chen, T., Guo, J., Han, C., Yang, M., and Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J

50. Greene, L.E., Zinner, R., Naficy, S., and Eisenberg, E. (1995). Effect of nucleotide on the binding of peptides to 70-kDa heat shock protein. J Biol Chem 270, 2967-2973.

51. Kiang, J.G., and Tsokos, G.C. (1998). Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80, 183-201.

52. Jeras, M., Bricl, I., Zorec, R., and Svajger, U. Induction/engineering, detection, selection, and expansion of clinical-grade human antigen-specific CD8 cytotoxic T cell clones for adoptive immunotherapy. J Biomed Biotechnol 2010, 705215.

53. Sherwood, A.M., Desmarais, C., Livingston, R.J., Andriesen, J., Haussler, M., Carlson, C.S., and Robins, H. Deep Sequencing of the Human TCR{gamma} and TCR{beta} Repertoires Suggests that TCR{beta} Rearranges After {alpha}{beta} and {gamma}{delta} T Cell Commitment. Sci Transl Med 3, 90ra61.

54. Chung, C.S., Watkins, L., Funches, A., Lomas-Neira, J., Cioffi, W.G., and Ayala, A.

(2006). Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis. Am J Physiol Regul Integr Comp Physiol 291, R1338-1343.

55. Mincheva-Nilsson, L. (2003). Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod Biol Endocrinol 1, 120.

56. Garboczi, D.N., Ghosh, P., Utz, U., Fan, Q.R., Biddison, W.E., and Wiley, D.C.

(1996). Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134-141.

57. Gupta, S., Bi, R., and Gollapudi, S. (2005). Central memory and effector memory subsets of human CD4(+) and CD8(+) T cells display differential sensitivity to TNF-{alpha}-induced apoptosis. Ann N Y Acad Sci 1050, 108-114.

58. Gupta, S., Bi, R., Su, K., Yel, L., Chiplunkar, S., and Gollapudi, S. (2004).

Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol 39, 545-550.

59. Hinrichs, C.S., Borman, Z.A., Gattinoni, L., Yu, Z., Burns, W.R., Huang, J., Klebanoff, C.A., Johnson, L.A., Kerkar, S.P., Yang, S., Muranski, P., Palmer, D.C., Scott, C.D., Morgan, R.A., Robbins, P.F., Rosenberg, S.A., and Restifo, N.P. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117, 808-814.

60. Appleman, L.J., Berezovskaya, A., Grass, I., and Boussiotis, V.A. (2000). CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164, 144-151.

61. Bousso, P., and Albert, M.L. Signal 0 for guided priming of CTLs: NKT cells do it too. Nat Immunol 11, 284-286.

62. Kurts, C., Robinson, B.W., and Knolle, P.A. Cross-priming in health and disease. Nat Rev Immunol 10, 403-414.

63. Sharpe, A.H., and Freeman, G.J. (2002). The B7-CD28 superfamily. Nat Rev Immunol 2, 116-126.

64. Bour-Jordan, H., and Blueston, J.A. (2002). CD28 function: a balance of costimulatory and regulatory signals. J Clin Immunol 22, 1-7.

65. Kapsenberg, M.L. (2003). Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3, 984-993.

66. Lohr, J., Knoechel, B., Jiang, S., Sharpe, A.H., and Abbas, A.K. (2003). The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol 4, 664-669.

67. Ridge, J.P., Di Rosa, F., and Matzinger, P. (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474-478.

68. Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R., and Melief, C.J.

(1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480-483.

69. Russell, J.H., and Ley, T.J. (2002). Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20, 323-370.

70. Grossman, W.J., Revell, P.A., Lu, Z.H., Johnson, H., Bredemeyer, A.J., and Ley, T.J.

(2003). The orphan granzymes of humans and mice. Curr Opin Immunol 15, 544-552.

71. Podack, E.R., Hengartner, H., and Lichtenheld, M.G. (1991). A central role of perforin in cytolysis? Annu Rev Immunol 9, 129-157.

72. Gyurkocza, B., Rezvani, A., and Storb, R.F. Allogeneic hematopoietic cell transplantation: the state of the art. Expert Rev Hematol 3, 285-299.

73. Zhang, P., Chen, B.J., and Chao, N.J. Prevention of GVHD without losing GVL effect: windows of opportunity. Immunol Res 49, 49-55.

74. Vaughan, W., Seshadri, T., Bridges, M., and Keating, A. (2009). The principles and overview of autologous hematopoietic stem cell transplantation. Cancer Treat Res 144, 23-45.

75. Leen, A.M., Tripic, T., and Rooney, C.M. Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation. Expert Opin Biol Ther 10, 337-351.

76. Cohen, G., Carter, S.L., Weinberg, K.I., Masinsin, B., Guinan, E., Kurtzberg, J., Wagner, J.E., Kernan, N.A., and Parkman, R. (2006). Antigen-specific T-lymphocyte

function after cord blood transplantation. Biol Blood Marrow Transplant 12, 1335-1342.

77. Hanley, P.J., Cruz, C.R., Savoldo, B., Leen, A.M., Stanojevic, M., Khalil, M., Decker, W., Molldrem, J.J., Liu, H., Gee, A.P., Rooney, C.M., Heslop, H.E., Dotti, G., Brenner, M.K., Shpall, E.J., and Bollard, C.M. (2009). Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114, 1958-1967.

78. Merindol, N., Charrier, E., Duval, M., and Soudeyns, H. Complementary and contrasting roles of NK cells and T cells in pediatric umbilical cord blood transplantation. J Leukoc Biol 90, 49-60.

79. Fleischhauer, K., Locatelli, F., Zecca, M., Orofino, M.G., Giardini, C., De Stefano, P., Pession, A., Iannone, A.M., Carcassi, C., Zino, E., and La Nasa, G. (2006). Graft rejection after unrelated donor hematopoietic stem cell transplantation for thalassemia is associated with nonpermissive HLA-DPB1 disparity in host-versus-graft direction.

Blood 107, 2984-2992.

80. Mutis, T., Gillespie, G., Schrama, E., Falkenburg, J.H., Moss, P., and Goulmy, E.

(1999). Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 5, 839-842.

81. Mutis, T., Verdijk, R., Schrama, E., Esendam, B., Brand, A., and Goulmy, E. (1999).

Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 93, 2336-2341.

82. Billingham, R.E. (1966). The biology of graft-versus-host reactions. Harvey Lect 62, 21-78.

83. Tabbara, I.A., Zimmerman, K., Morgan, C., and Nahleh, Z. (2002). Allogeneic hematopoietic stem cell transplantation: complications and results. Arch Intern Med 162, 1558-1566.

84. Weisdorf, D., Hakke, R., Blazar, B., Miller, W., McGlave, P., Ramsay, N., Kersey, J., and Filipovich, A. (1991). Risk factors for acute graft-versus-host disease in histocompatible donor bone marrow transplantation. Transplantation 51, 1197-1203.

85. Remberger, M., Mattsson, J., Hassan, Z., Karlsson, N., LeBlanc, K., Omazic, B., Okas, M., Sairafi, D., and Ringden, O. (2008). Risk factors for acute graft-versus-host disease grades II-IV after reduced intensity conditioning allogeneic stem cell transplantation with unrelated donors: a single centre study. Bone Marrow Transplant 41, 399-405.

86. Margolis, J., and Vogelsang, G. (2000). Chronic graft-versus-host disease. J Hematother Stem Cell Res 9, 339-346.

87. Socie, G. (2004). Chronic graft-versus-host disease: clinical features and grading systems. Int J Hematol 79, 216-220.

88. Ferrara, J.L., Levine, J.E., Reddy, P., and Holler, E. (2009). Graft-versus-host disease.

Lancet 373, 1550-1561.

89. Bruno, B., Rotta, M., Patriarca, F., Mordini, N., Allione, B., Carnevale-Schianca, F., Giaccone, L., Sorasio, R., Omede, P., Baldi, I., Bringhen, S., Massaia, M., Aglietta, M., Levis, A., Gallamini, A., Fanin, R., Palumbo, A., Storb, R., Ciccone, G., and Boccadoro, M. (2007). A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 356, 1110-1120.

90. Kolb, H.J. (2008). Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112, 4371-4383.

91. Feuchtinger, T., Matthes-Martin, S., Richard, C., Lion, T., Fuhrer, M., Hamprecht, K., Handgretinger, R., Peters, C., Schuster, F.R., Beck, R., Schumm, M., Lotfi, R., Jahn, G., and Lang, P. (2006). Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134, 64-76.

92. Karlsson, H., Brewin, J., Kinnon, C., Veys, P., and Amrolia, P.J. (2007). Generation of trispecific cytotoxic T cells recognizing cytomegalovirus, adenovirus, and Epstein-Barr virus: an approach for adoptive immunotherapy of multiple pathogens. J Immunother 30, 544-556.

93. Rauser, G., Einsele, H., Sinzger, C., Wernet, D., Kuntz, G., Assenmacher, M., Campbell, J.D., and Topp, M.S. (2004). Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into recipients of allogeneic stem

96. Fujita, Y., Rooney, C.M., and Heslop, H.E. (2008). Adoptive cellular immunotherapy for viral diseases. Bone Marrow Transplant 41, 193-198.

97. Hebart, H., and Einsele, H. (2004). Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65, 432-436.

98. Lilleri, D., Fornara, C., Chiesa, A., Caldera, D., Alessandrino, E.P., and Gerna, G.

(2008). Human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 93, 248-256.

99. Broers, A.E., van Der Holt, R., van Esser, J.W., Gratama, J.W., Henzen-Logmans, S., Kuenen-Boumeester, V., Lowenberg, B., and Cornelissen, J.J. (2000). Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood 95, 2240-2245.

100. Bleakley, M., and Riddell, S.R. (2004). Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4, 371-380.

101. Bethge, W.A., Hegenbart, U., Stuart, M.J., Storer, B.E., Maris, M.B., Flowers, M.E., Maloney, D.G., Chauncey, T., Bruno, B., Agura, E., Forman, S.J., Blume, K.G., Niederwieser, D., Storb, R., and Sandmaier, B.M. (2004). Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood 103, 790-795.

102. Feuchtinger, T., Opherk, K., Bethge, W.A., Topp, M.S., Schuster, F.R., Weissinger, E.M., Mohty, M., Or, R., Maschan, M., Schumm, M., Hamprecht, K., Handgretinger, R., Lang, P., and Einsele, H. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116, 4360-4367.

103. Frey, N.V., and Porter, D.L. (2008). Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol 21, 205-222.

104. Kishi, Y., Kami, M., Oki, Y., Kazuyama, Y., Kawabata, M., Miyakoshi, S., Morinaga, S., Suzuki, R., Mori, S., and Muto, Y. (2000). Donor lymphocyte infusion for treatment of life-threatening respiratory syncytial virus infection following bone marrow transplantation. Bone Marrow Transplant 26, 573-576.

105. Papadopoulos, E.B., Ladanyi, M., Emanuel, D., Mackinnon, S., Boulad, F., Carabasi, M.H., Castro-Malaspina, H., Childs, B.H., Gillio, A.P., Small, T.N., and et al. (1994).

Infusions of donor leukocytes to treat Epstein-Barr virus-associated

lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 330, 1185-1191.

106. Yoshihara, S., Kato, R., Inoue, T., Miyagawa, H., Sashihara, J., Kawakami, M., Ikegame, K., Oka, Y., Sugiyama, H., Kawase, I., and Ogawa, H. (2004). Successful treatment of life-threatening human herpesvirus-6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen-haploidentical nonmyeloablative stem cell transplantation. Transplantation 77, 835-838.

107. Collins, R.H., Jr., Shpilberg, O., Drobyski, W.R., Porter, D.L., Giralt, S., Champlin, R., Goodman, S.A., Wolff, S.N., Hu, W., Verfaillie, C., List, A., Dalton, W., Ognoskie, N., Chetrit, A., Antin, J.H., and Nemunaitis, J. (1997). Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15, 433-444.

108. Drobyski, W.R., Keever, C.A., Roth, M.S., Koethe, S., Hanson, G., McFadden, P., Gottschall, J.L., Ash, R.C., van Tuinen, P., Horowitz, M.M., and et al. (1993). Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 82, 2310-2318.

109. Kolb, H.J., Schattenberg, A., Goldman, J.M., Hertenstein, B., Jacobsen, N., Arcese, W., Ljungman, P., Ferrant, A., Verdonck, L., Niederwieser, D., van Rhee, F., Mittermueller, J., de Witte, T., Holler, E., and Ansari, H. (1995). Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041-2050.

110. Porter, D.L., Roth, M.S., McGarigle, C., Ferrara, J.L., and Antin, J.H. (1994).

Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 330, 100-106.

111. Schmid, C., Labopin, M., Nagler, A., Bornhauser, M., Finke, J., Fassas, A., Volin, L., Gurman, G., Maertens, J., Bordigoni, P., Holler, E., Ehninger, G., Polge, E., Gorin, N.C., Kolb, H.J., and Rocha, V. (2007). Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25, 4938-4945.

112. Porter, D.L., and Antin, J.H. (1999). The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med 50, 369-386.

113. Walter, E.A., Greenberg, P.D., Gilbert, M.J., Finch, R.J., Watanabe, K.S., Thomas, E.D., and Riddell, S.R. (1995). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333, 1038-1044.

114. Hobeika, A., Osada, T., Serra, D., Peplinski, S., Hanson, K., Tanaka, Y., Niedzwiecki, D., Chao, N., Rizzieri, D., Lyerly, H., Clay, T., and Morse, M. (2008). Detailed analysis of cytomegalovirus (CMV)-specific T cells expanded for adoptive immunotherapy of CMV infection following allogeneic stem cell transplantation for malignant disease. Cytotherapy 10, 289-302.

115. Liu, Z., Savoldo, B., Huls, H., Lopez, T., Gee, A., Wilson, J., Brenner, M.K., Heslop, H.E., and Rooney, C.M. (2002). Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the prevention and treatment of EBV-associated post-transplant lymphomas. Recent Results Cancer Res 159, 123-133.

116. Lozza, L., Lilleri, D., Percivalle, E., Fornara, C., Comolli, G., Revello, M.G., and Gerna, G. (2005). Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol 35, 1795-1804.

117. Oelke, M., Maus, M.V., Didiano, D., June, C.H., Mackensen, A., and Schneck, J.P.

(2003). Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9, 619-624.

118. Paine, A., Oelke, M., Blasczyk, R., and Eiz-Vesper, B. (2007). Expansion of human cytomegalovirus-specific T lymphocytes from unfractionated peripheral blood mononuclear cells with artificial antigen-presenting cells. Transfusion 47, 2143-2152.

119. Peggs, K., Verfuerth, S., and Mackinnon, S. (2001). Induction of cytomegalovirus (CMV)-specific T-cell responses using dendritic cells pulsed with CMV antigen: a novel culture system free of live CMV virions. Blood 97, 994-1000.

120. Sun, Q., Pollok, K.E., Burton, R.L., Dai, L.J., Britt, W., Emanuel, D.J., and Lucas, K.G. (1999). Simultaneous ex vivo expansion of cytomegalovirus and Epstein-Barr

120. Sun, Q., Pollok, K.E., Burton, R.L., Dai, L.J., Britt, W., Emanuel, D.J., and Lucas, K.G. (1999). Simultaneous ex vivo expansion of cytomegalovirus and Epstein-Barr