• Keine Ergebnisse gefunden

Active nuclear transport is essential for survival following TNFα treatment

3 MATERIALS AND METHODS

5.5 Active nuclear transport is essential for survival following TNFα treatment

Ligation of TNFα to TNF-R1 elicits both pro- and anti-apoptotic responses, with the latter pathway relying on de novo synthesis of proteins such as c-IAP1, c-IAP2 and XIAP 183,184. Following an appropriate stimulus, cytoplasmic anchoring of the transcription factor NF-κB is abolished by unmasking of an NLS. NF-κB is then transported into the nucleus in an importin β dependent manner 19,185.

Since transcriptional activation takes place in the nuclear compartment, the effect of blockage of the importin β dependent import pathways on TNFα mediated apoptosis was determined.

Microinjection of ∆impβ sensitized HeLa cells to apoptosis in response to CHX/ TNFα treatment, as judged by an increased apoptosis rate when compared to uninjected cells. In addition to the blockage of import pathways, ∆impβ binding to nucleoporins is known to shut down NES-dependent and mRNA export 148. As a result, cellular homeostasis is presumably negatively affected.

Demonstrating the importance of nuclear translocation for NF-κB for cell survival, the rate of apoptosis was not diminished in the absence of the translational inhibitor for

∆impβ injected cells. Therefore, TNFα and ∆impβ displayed a synergistic effect in promoting cell death in microinjected HeLa cells. This is in agreement with the finding

that an NLS-containing peptide competing for importin α binding of NF-κB specifically inhibits NF-κB mediated inflammatory responses 186.

In the presence of this inhibitory peptide, TNFα and IL-6 production in response to LPS treatment was abolished in RAW macrophages. The action of the peptides was selective for NF-κB translocation since the response via the NF-κB independent Jak/

STAT transcription factor pathway was not affected.

In summary, the inhibition of active transport acts as an efficient substitute for translational inhibition. The absence of NF-κB induced transcription of anti-apoptotic factors results in a sensitization of HeLa cells to TNFα induced apoptosis.

Apart from the previous finding, the proper execution of nuclear apoptosis relies on active transport processes, as demonstrated in this work. Although caspase-3 serves as the trigger for the breakdown of chromatin structure, the induction does not rely on its presence in the nucleus. Nevertheless, caspase-3 lacking the prodomain faithfully translocates into the nucleoplasm, presumably to promote cellular demise by the cleavage of several substrates.

6 SUMMARY

The subcellular localization of caspase-3 in a healthy cell was determined to be mainly cytosolic. In response to apoptotic stimuli, the apoptotic protease enters the nucleus. The mechanism employed remains the subject of controversy. In the presented study, the subcellular localization and the mechanism of nuclear entry of caspase-3 was studied employing a microinjection model.

For this purpose, recombinant caspase-3 was overexpressed in E. coli and isolated in high purity. Fusion of GFP did not affect the the proteolytic properties of the enzyme as demonstrated by strong DEVD-afc cleavage by the recombinant protease.

Injection of recombinant caspase-3 elicited the morphological features associated with apoptosis, accompanied by rapid equilibration of the apoptotic effector across the nuclear envelope. Both the inhibition of caspase-9 and caspase-3 activity failed to result in retention of the protease in the cytoplasm. Additionally, the rearrangement of the catalytic subunits following proteolytic activation of caspase-3 did not influence its cellular distribution. At the same time, the significantly smaller 40 kDa dextran was excluded from the nuclear compartment. Therefore, passive diffusion can be ruled out as the mode for caspase-3 entry into the nucleus.

The observed accumulation of caspase-3 in the nuclear compartment relied on active transport processes, as demonstrated by the requirement for interaction with nucleoporins and energy dependence. The hypothetical import factors utilized by caspase-3 do not belong to the family of importins or transportins, as inhibition of these pathways failed to block caspase-3 accumulation in the nucleoplasm.

Under conditions of import inhibition nuclear apoptosis is altered, as demonstrated by impaired chromatin condensation and DNA cleavage. The presence of caspase-3 was not required in the nucleus for the induction of these morphological features, indicating that the effectors are imported via an importin β dependent pathway from the cytosol following initiation of apoptosis.

Inhibition of the importin β pathway sensitized HeLa cells to apoptosis, probably by preventing NF-κB dependent activation of transcription. Therefore, active transport processes are indispensable for mediating cellular resistance in response to TNFα ligation, as well as the proper execution of nuclear apoptosis.

7 ZUSAMMENFASSUNG

Die Effektorcaspase-3 nimmt in der Exekution der Apoptose eine zentrale Stellung ein.

Als Antwort auf apoptotische Stimuli findet eine teilweise Umverteilung der primär cytoplasmatisch lokalisierten Protease in den Zellkern statt. Inwieweit dies auf passive Diffusion oder aktive Transportprozesse zurückzuführen ist, konnte bisher nicht beantwortet werden. Um diese Kontroverse zu klären, wurden in der vorliegenden Arbeit Mikroinjektionsexperimente dazu benutzt, die subzelluläre Lokalisation der Caspase-3 und den Mechanismus für den Übertritt in das Nukleoplasma zu untersuchen.

Dazu wurde Caspase-3 in E. coli exprimiert und aufgereinigt. Da das rekombinante Protein hohe DEVD-afc spaltende Aktivität aufwies, lag keine Beeinflussung der Protease durch die Fusion an GFP vor.

Die Mikroinjektion aktiver Caspase-3 allein war ausreichend, apoptotische Veränderungen in der Zelle zu induzieren. Gleichzeitig zeigte ein schneller Anstieg der nukleären Fluoreszenz den Übertritt des Fusionsproteins in den Kern an. Die Beeinträchtigung der Selektivität der Kernporen konnte als Auslöser für die Translokation ausgeschlossen werden. Die Inhibition der Aktivität von Caspase-9 und Caspase-3 führte nicht zur Retention von Caspase-3 im Cytoplasma. Desweiteren war die Prozessierung der Caspase-3 nicht notwendig für eine effektive Anreicherung im Kern.

Gleichzeitig blieb aber das signifikant kleinere Dextran40 aus dem Kern ausgeschlossen, was passive Diffusion von Caspase-3 unwahrscheinlich macht.

Die Abhängigkeit der Caspase-3 Akkumulation von Energie und der Interaktion mit Nukleoporinen wies auf eine Beteiligung von aktiven Transportprozessen hin. Dieser Import erfolgte unabhängig von Importin β und Transportin. Eine Blockade dieser Transportwege konnte die Anreicherung der Caspase-3 im Kern nicht verhindern.

Gleichzeitig zog die Inhibition des aktiven Imports eine Reduktion der Chromatinkondensation und der DNA Degradation nach sich. Für die Einleitung der Kernapoptose ist damit die Präsenz der Caspase-3 im Kern nicht essentiell notwendig.

Stattdessen werden die benötigten Effektoren Importin β abhängig aus dem Cytosol importiert.

Die Inhibition des Importin β vermittelten Transports führte zu einer Sensitivierung von HeLa Zellen auf TNFα. Damit wird deutlich, dass aktive Transportvorgänge sowohl für die Resistenz gegen TNFα vermittelte Apoptose als auch für die Durchführung der Kernapoptose unentbehrlich sind.

8 REFERENCES

1. Raff, M. Cell suicide for beginners [news]. Nature 396, 119-22 (1998).

2. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-57. (1972).

3. Oberhammer, F. et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. Embo J 12, 3679-84. (1993).

4. Brown, D. G., Sun, X. M. & Cohen, G. M. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem 268, 3037-9. (1993).

5. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-6. (1980).

6. Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L.

Loss of Phospholipid Asymmetry and Surface Exposure of Phosphatidylserine Is Required for Phagocytosis of Apoptotic Cells by Macrophages and Fibroblasts. J Biol Chem 276, 1071-1077 (2001).

7. Newmeyer, D. D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-90 (2003).

8. Fadeel, B. Programmed cell clearance. Cell Mol Life Sci 60, 2575-85 (2003).

9. Savill, J. Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 53, 491-508 (1997).

10. Jaattela, M. Escaping cell death: survival proteins in cancer. Exp Cell Res 248, 30-43 (1999).

11. Vila, M. & Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4, 365-75 (2003).

12. Lorenz, H. M., Herrmann, M., Winkler, T., Gaipl, U. & Kalden, J. R. Role of apoptosis in autoimmunity. Apoptosis 5, 443-9 (2000).

13. Tartaglia, L. A. & Goeddel, D. V. Two TNF receptors. Immunol Today 13, 151-3 (1992).

14. Chinnaiyan, A. M. et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271, 4961-5 (1996).

15. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF- kappa B activation. Cell 81, 495-504.

(1995).

16. Poyet, J. L. et al. Activation of the ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization [In Process Citation]. J Biol Chem 275, 37966-77 (2000).

17. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. Embo J 15, 6189-96 (1996).

18. Takeuchi, M., Rothe, M. & Goeddel, D. V. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 271, 19935-42. (1996).

19. Beg, A. A. et al. I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev 6, 1899-913 (1992).

20. Schultz, D. R. & Harrington, W. J., Jr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 32, 345-69 (2003).

21. Hu, X. Proteolytic signaling by TNFalpha: caspase activation and IkappaB degradation. Cytokine 21, 286-94 (2003).

22. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-6. (1997).

23. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-32. (1997).

24. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [see comments]. Cell 90, 405-13 (1997).

25. Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-32 (2002).

26. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-89. (1997).

27. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-89 (1997).

28. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S.

Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1, 949-57 (1998).

29. Susin, S. A. et al. Two Distinct Pathways Leading to Nuclear Apoptosis. J Exp Med 192, 571-580 (2000).

30. Daugas, E. et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. Faseb J 14, 729-39 (2000).

31. Cande, C., Cecconi, F., Dessen, P. & Kroemer, G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115, 4727-34 (2002).

32. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-9. (2001).

33. Widlak, P., Li, L. Y., Wang, X. & Garrard, W. T. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates:

cooperation with exonuclease and DNase I. J Biol Chem 276, 48404-9 (2001).

34. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. (2000).

35. Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M. & Vaux, D. L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 152, 483-90. (2001).

36. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277, 432-8 (2002).

37. Suzuki, Y., Takahashi-Niki, K., Akagi, T., Hashikawa, T. & Takahashi, R.

Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 11, 208-16 (2004).

38. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor [see comments]. Nature 397, 441-6 (1999).

39. Adrain, C., Creagh, E. M. & Martin, S. J. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. Embo J 20, 6627-36. (2001).

40. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. Embo J 22, 4385-99 (2003).

41. Kuwana, T. et al. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 273, 16589-94. (1998).

42. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-90. (1998).

43. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.

(1998).

44. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J 17, 1675-87. (1998).

45. Stennicke, H. R., Renatus, M., Meldal, M. & Salvesen, G. S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350 Pt 2, 563-8 (2000).

46. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272, 17907-11 (1997).

47. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem J 326, 1-16.

(1997).

48. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028-42 (1999).

49. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis.

Cell 91, 443-6 (1997).

50. Han, Z., Hendrickson, E. A., Bremner, T. A. & Wyche, J. H. A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272, 13432-6 (1997).

51. Rotonda, J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3, 619-25 (1996).

52. Martin, S. J. et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell- free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. Embo J 15, 2407-16. (1996).

53. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312-6 (1998).

54. Nicholson, D. W. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem Sci 22, 299-306. (1997).

55. Slee, E. A., Adrain, C. & Martin, S. J. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6, 1067-74 (1999).

56. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 96, 10964-7 (1999).

57. Stennicke, H. R. et al. Caspase-9 can be activated without proteolytic processing. J Biol Chem 274, 8359-62 (1999).

58. Boatright, K. M. et al. A unified model for apical caspase activation. Mol Cell 11, 529-41 (2003).

59. Pop, C. et al. Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry 40, 14224-35. (2001).

60. Riedl, S. J. et al. Structural basis for the activation of human procaspase-7.

Proc Natl Acad Sci U S A 98, 14790-5 (2001).

61. Stennicke, H. R. et al. Pro-3 is a major physiologic target of caspase-8. J Biol Chem 273, 27084-90. (1998).

62. Paroni, G., Henderson, C., Schneider, C. & Brancolini, C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276, 21907-15. (2001).

63. Slee, E. A. et al. Ordering the cytochrome c-initiated caspase cascade:

hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144, 281-92 (1999).

64. Srinivasula, S. M. et al. The Ced-3/interleukin 1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. J Biol Chem 271, 27099-106. (1996).

65. Fujita, E., Egashira, J., Urase, K., Kuida, K. & Momoi, T. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ 8, 335-44 (2001).

66. Hirata, H. et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 187, 587-600 (1998).

67. Fernandes-Alnemri, T. et al. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55, 6045-52 (1995).

68. Meergans, T., Hildebrandt, A. K., Horak, D., Haenisch, C. & Wendel, A. The short prodomain influences caspase-3 activation in HeLa cells. Biochem J 349, 135-140 (2000).

69. Pelletier, M. et al. Caspase 3 activation is controlled by a sequence located in the N-terminus of its large subunit. Biochem Biophys Res Commun 316, 93-9 (2004).

70. Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10, 76-100 (2003).

71. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32- deficient mice. Nature 384, 368-72. (1996).

72. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [see comments] [published erratum appears in Nature 1998 May 28;393(6683):396]. Nature 391, 43-50 (1998).

73. Kothakota, S. et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-8. (1997).

74. Clem, R. J. et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95, 554-9 (1998).

75. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67, 2168-74 (1993).

76. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17, 2215-23 (1998).

77. Deveraux, Q. L. & Reed, J. C. IAP family proteins--suppressors of apoptosis.

Genes Dev 13, 239-52 (1999).

78. MacFarlane, M., Merrison, W., Bratton, S. B. & Cohen, G. M. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277, 36611-6 (2002).

79. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death.

Proc Natl Acad Sci U S A 98, 8662-7 (2001).

80. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874-7. (2000).

81. Liston, P. et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349-53 (1996).

82. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-4 (1997).

83. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791-800 (2001).

84. Chai, J. et al. Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769-80 (2001).

85. Sun, C. et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275, 33777-81 (2000).

86. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818-22 (1999).

87. Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J. C. & Takahashi, R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 276, 27058-63. (2001).

88. Silke, J. et al. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol 157, 115-24.

(2002).

89. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. Embo J 18, 5242-51 (1999).

90. Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004-8. (2000).

91. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-12. (2000).

92. Feldherr, C. M., Kallenbach, E. & Schultz, N. Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 99, 2216-22 (1984).

93. Rout, M. P. & Aitchison, J. D. The nuclear pore complex as a transport machine. J Biol Chem 276, 16593-6. (2001).

94. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J.

Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158, 915-27 (2002).

95. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4, 757-66 (2003).

96. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. Embo J 20, 1320-30. (2001).

97. Davis, L. I. The nuclear pore complex. Annu Rev Biochem 64, 865-96 (1995).

98. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm.

Annu Rev Cell Dev Biol 15, 607-60 (1999).

99. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences--a consensus?

Trends Biochem Sci 16, 478-81. (1991).

100. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148, 635-51 (2000).

101. Macara, I. G. Transport into and out of the nucleus. Microbiol Mol Biol Rev 65, 570-94, table of contents. (2001).

102. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. Embo J 21, 2664-71. (2002).

103. Newmeyer, D. D., Lucocq, J. M., Burglin, T. R. & De Robertis, E. M. Assembly in vitro of nuclei active in nuclear protein transport: ATP is required for nucleoplasmin accumulation. Embo J 5, 501-10 (1986).

104. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H.

RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91, 2587-91 (1994).

105. Bischoff, F. R., Krebber, H., Kempf, T., Hermes, I. & Ponstingl, H. Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport. Proc Natl Acad Sci U S A 92, 1749-53 (1995).

106. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80-2 (1991).

107. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Gorlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. Embo J 16, 6535-47 (1997).

108. Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 96, 9622-7 (1999).

109. Lanford, R. E., Kanda, P. & Kennedy, R. C. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46, 575-82 (1986).

110. Weis, K., Mattaj, I. W. & Lamond, A. I. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 268, 1049-53 (1995).

111. Imamoto, N. et al. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. Embo J 14, 3617-26 (1995).

112. Gorlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5, 383-92. (1995).

113. Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221-9. (1999).

114. Moroianu, J., Hijikata, M., Blobel, G. & Radu, A. Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci U S A 92, 6532-6 (1995).

115. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin

115. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin