• Keine Ergebnisse gefunden

110

investigated species to identify possible further processes that could ultimately lead to reduced Darwinian fitness of a species. However, the extreme sensitivity of an important Lake Baikal endemic amphipod to low levels of a chemical stressor underscores the necessity of water management strategies required to strictly avoid the chemical contamination of Lake Baikal waters.

References

Barbieri, E., and E. T. Paes. 2011. The use of oxygen consumption and ammonium excretion to evaluate the toxicity of cadmium on Farfantepenaeus paulensis with respect to salinity.

Chemosphere 84:9–16.

Bedulina, D. S., M. B. Evgen’ev, M. A. Timofeyev, M. V. Protopopova, D. G. Garbuz, V. V.

Pavlichenko, T. Luckenbach, Z. M. Shatilina, D. V. Axenov-Gribanov, A. N. Gurkov, I. M.

Sokolova, and O. G. Zatsepina. 2013. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. Molecular Ecology 22:1416–1430.

Bjerregaard, P., and M. H. Depledge. 1994. Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: the influence of salinity and calcium ion concentrations. Marine Biology 119:385–395.

Brouwer, M., C. Bonaventura, and J. Bonaventura. 1983. Metal-ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins - Stochiometry and structural and functional consequences. Biochemistry 22:4713–4723.

Buchwalter, D. B., D. J. Cain, C. A. Martin, L. Xie, S. N. Luoma, and T. Garland. 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proceedings of the National Academy of Sciences of the United States of America 105:8321–8326.

Campbell, P. G. C., O. Errecalde, C. Fortin, W. R. Hiriart-Baer, and B. Vigneault. 2002. Metal bioavailability to phytoplankton - applicability of the biotic ligand model. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 133:189–206.

Ciesielski, T. M., M. V. Pastukhov, S. A. Leeves, J. Farkas, S. Lierhagen, V. I. Poletaeva, and B. M.

Jenssen. 2016. Differential bioaccumulation of potentially toxic elements in benthic and pelagic food chains in Lake Baikal. Environmental Science and Pollution Research 23:15593–15604.

De Fur, P. L., C. P. Mangum, and B. R. McMahon. 1985. Cardivascular and ventilatory changes during ecdysis in the blue crab Callinectes sapidus Rathbun. Journal of Crustacean Biology 5:207–215.

Dzul Erosa, M. S., T. I. S. Medina, R. N. Mendoza, M. A. Rodriguez, and E. Guibal. 2001.

Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy 61:157–167.

Falkner, K. K., C. I. Measures, S. E. Herbelin, J. M. Edmond, and R. F. Weiss. 1991. The major and minor element geochemistry of Lake Baikal. Limnology and Oceanography 36:413–423.

Gaudy, R., J. P. Guerin, and P. Kerambrun. 1991. Sublethal effects of cadmium on respiratory metabolism, nutrition, excretion and hydrolase activity in Leptomysis lingvura (Crustacea, Mysidacea). Marine Biology 109:493–501.

112

Gronskaya, T. P., and T. E. Litova. 1991. Short characteristics of the water balance of Lake Baikal during 1962–1988. Pages 153–158. Monitoring of Lake Baikal Environment. Hydrometeoizdat, Leningrad.

Guppy, M., and P. Withers. 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews of the Cambridge Philosophical Society 74:1–40.

Heise, K., M. S. Estevez, S. Puntarulo, M. Galleano, M. Nikinmaa, H. O. Pörtner, and D. Abele.

2007. Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 177:765–777.

Hollis, L., J. C. McGeer, D. G. McDonald, and C. M. Wood. 2000. Protective effects of calcium against chronic waterborne cadmium exposure to juvenile rainbow trout. Environmental Toxicology and Chemistry 19:2725–2734.

Hynes, H. B. N. 1961. The invertebrate fauna of a Welsh mountain stream. Archives of Hydrobiology 57:344–388.

Jakob, L., D. V. Axenov-Gribanov, A. N. Gurkov, M. Ginzburg, D. S. Bedulina, M. A. Timofeyev, T. Luckenbach, M. Lucassen, F. J. Sartoris, and H. O. Pörtner. 2016. Lake Baikal amphipods under climate change: Thermal constraints and ecological consequences. Ecosphere 7:e01308.

Khalil, M. A., M. H. Donker, and N. M. van Straalen. 1995. Long-term and short-term changes in the energy budget of Porcellio scaber Latreille (Crustacea) exposed to cadmium polluted food.

European Journal of Soil Biology 31:163–172.

Khan, F. R., N. R. Bury, and C. Hogstrand. 2010. Cadmium bound to metal rich granules and exoskeleton from Gammarus pulex causes increased gut lipid peroxidation in zebrafish following single dietary exposure. Aquatic Toxicology 96:124–129.

Kozhova, O. M., and L. R. Izmest’eva. 1998. Lake Baikal - Evolution and Biodiversity. Backhuys Publishers, Leiden.

Kravtsova, L. S., E. B. Karabanov, R. M. Kamaltynov, S. K. Krivonogov, and D. Y. Shcherbakov.

2003. Macrozoobenthos of subaqueous landscapes in shoal of southern Baikal. 1. Local diversity of bottom population and peculiarities of its spatial distribution. Zoologicheskii Zhurnal 82:307–

317.

Kültz, D. 2005. Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology 67:225–257.

Lasenby, D. C., and J. Vanduyn. 1992. Zinc and cadmium accumulation by the opossum shrimp Mysis relicta. Archives of Environmental Contamination and Toxicology 23:179–183.

Lavoie, M., P. G. C. Campbell, and C. Fortin. 2012. Extending the Biotic Ligand Model to Account for Positive and Negative Feedback Interactions between Cadmium and Zinc in a Freshwater Alga. Environmental Science & Technology 46:12129–12136.

Lei, W., L. Wang, D. Liu, T. Xu, and J. Luo. 2011. Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon

yangtsekiense. Chemosphere 84:689–694.

Luoma, S. N., and P. S. Rainbow. 2005. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science & Technology 39:1921–1931.

Luoma, S. N., and P. S. Rainbow. 2008. Metal Contamination in Aquatic Environments - Science and Lateral Management. Camebridge University Press, Camebridge.

Lushchak, V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101:13–30.

Marsden, I. D., and P. S. Rainbow. 2004. Does the accumulation of trace metals in crustaceans affect their ecology - the amphipod example? Journal of Experimental Marine Biology and Ecology 300:373–408.

McGeer, J. C., S. Niyogi, and D. Scott Smith. 2011. Homeostasis and Toxicology of non-essential metals-3 - Cadmium. Fish Physiology 31:125–184.

Moore, M. V., S. E. Hampton, L. R. Izmest’eva, E. A. Silow, E. V. Peshkova, and B. K. Pavlov.

2009. Climate Change and the World’s “Sacred Sea”-Lake Baikal, Siberia. Bioscience 59:405–

417.

Moore, P., and A. Taylor. 1984. Gill area relationships in an ecological series of gammaridean amphipods (Crustacea). Journal of Experimental Marine Biology and Ecology 74:179–186.

Nemmiche, S., D. Chabane-Sari, M. Kadri, and P. Guiraud. 2011. Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion. Toxicology in Vitro 25:191–198.

OECD. 2012. OECD guideline for the testing of chemicals - Section 2: Effects on biotic systems;

Test No. 211: Daphnia magna reproduction test.

Philips, D. J. H., and P. S. Rainbow. 1994. Biomonitoring of trace aquatic contaminants.

Springer-Science + Business Media, Dordrecht.

Protopopova, M. V., V. V. Pavlichenko, R. Menzel, A. Putschew, T. Luckenbach, and C. E. W.

Steinberg. 2014. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications. Environmental Science and Pollution Research 21:14124–14137.

Rainbow, P. S. 1998. Phylogeny of trace metal accumulation in crustaceans. Pages 285–319.

Metal Metabolism in Aquatic Environments. Chapman & Hall, London.

Rainbow, P. S. 2002. Trace metal concentrations in aquatic invertebrates: why and so what?

Environmental Pollution 120:497–507.

114

Rainbow, P. S., F. Liu, and W.-X. Wang. 2015. Metal accumulation and toxicity: The critical accumulated concentration of metabolically available zinc in an oyster model. Aquatic Toxicology 162:102–108.

Rainbow, P. S., and S. N. Luoma. 2011. Metal toxicity, uptake and bioaccumulation in aquatic invertebrates-Modelling zinc in crustaceans. Aquatic Toxicology 105:455–465.

Rodriguez, E. M., R. Bigi, D. A. Medesani, V. S. Stella, L. S. L. Greco, P. A. R. Moreno, J. M.

Monserrat, G. N. Pellerano, and M. Ansaldo. 2001. Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity. Brazilian Journal of Medical and Biological Research 34:509–518.

Rosabal, M., L. Hare, and P. G. C. Campbell. 2014. Assessment of a subcellular metal

partitioning protocol for aquatic invertebrates: preservation, homogenization, and subcellular fractionation. Limnology and Oceanography-Methods 12:507–518.

Rusinek, O. T., V. V. Takhteev, D. P. Gladkochub, T. V. Khodzher, and N. M. Budnev. 2012.

Baikalovedenie (Baikalogy). Nauka, Novosibirsk.

Simkiss, K., and M. G. Taylor. 1995. Simkiss, K., Taylor, M.G., 1995. Transport of metals across membranes. In: Tessier, A., Turner, D.R. (Eds.), Wiley, New York, pp. 1–44. Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York.

Simmons, S. O., C.-Y. Fan, and R. Ramabhadran. 2009. Cellular Stress Response Pathway System as a Sentinel Ensemble in Toxicological Screening. Toxicological Sciences 111:202–225.

Smock, L. 1983. Relationships between metal concentrations and organism size in aquatic insects. Freshwater Biology 13:313–321.

Stephenson, M., and M. A. Turner. 1992. A field study of cadmium dynamics in periphyton and in Hyalella azteca (Crustacea: Amphipoda). Water, Air, and Soil Pollution 68:341–361.

Storey, K. B., and J. M. Storey. 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews 79:207–233.

Sulmon, C., J. van Baaren, F. Cabello-Hurtado, G. Gouesbet, F. Hennion, C. Mony, D. Renault, M. Bormans, A. El Amrani, C. Wiegand, and C. Gerard. 2015. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?

Environmental Pollution 202:66–77.

Tan, Q.-G., and W.-X. Wang. 2011. Acute Toxicity of Cadmium in Daphnia magna under Different Calcium and pH Conditions: Importance of Influx Rate. Environmental Science &

Technology 45:1970–1976.

Thorslund, J., J. Jarsjo, S. R. Chalov, and E. V. Belozerova. 2012. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. Journal of Environmental Monitoring 14:2780–2792.

Timofeyev, M. A., J. M. Shatilina, and D. I. Stom. 2001. Attitude to temperature factor of some endemic amphipods from Lake Baikal and Holarctic Gammarus lacustris Sars, 1863: A

comparative experimental study. Arthropoda selecta 10:93–101.

Timofeyev, M. A., Z. M. Shatilina, D. S. Bedulina, M. V. Protopopova, V. V. Pavlichenko, O. I.

Grabelnych, and A. V. Kolesnichenko. 2008. Evaluation of biochemical responses in Palearctic and Lake Baikal endemic amphipod species exposed to CdCl2. Ecotoxicology and

Environmental Safety 70:99–105.

Timofeyev, M., and Z. Shatilina. 2007. Different preference reactions of three Lake Baikal endemic amphipods to temperature and oxygen are correlated with symbiotic life. Crustaceana 80:129–138.

Timoshkin, O. A. 2009. Index of Animal Species Inhabiting Lake Baikal and its Catchment Area.

Nauka, Novosibirsk.

Vijver, M. G., C. A. M. Van Gestel, R. P. Lanno, N. M. Van Straalen, and W. Peijnenburg. 2004.

Internal metal sequestration and its ecotoxicological relevance: A review. Environmental Science

& Technology 38:4705–4712.

Von Der Ohe, P. C., and M. Liess. 2004. Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environmental Toxicology and Chemistry 23:150–156.

Wallace, W. G., B. G. Lee, and S. N. Luoma. 2003. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Marine Ecology Progress Series 249:183–197.

Wang, W.-X., and P. S. Rainbow. 2006. Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environmental Chemistry 3:395–399.

Weinberg, I. V., and R. M. Kamaltynov. 1998. Zoobenthos communities on stony beach of Lake Baikal. Zoologichesky Zhurnal 77:259–265.

Weiss, R. F., E. C. Carmarck, and V. M. Koropalov. 1991. Deep water renewal and biological production in Lake Baikal. Nature 349:665–669.

Wu, J. P., and H. C. Chen. 2004. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei).

Chemosphere 57:1591–1598.

Yoshioka, T., S. Ueda, T. Khodzher, I. Bashenkhaeva, L. Korovyakova, L. Sorokovikova, and L.

Gorbunova. 2002. Distribution of dissolved organic carbon in Lake Baikal and its watershed.

Limnology 3:159–168.

Zerbst-Boroffka, I., T. Grospietsch, I. Mekhanikova, and V. Takhteev. 2000. Osmotic and ionic hemolymph concentrations of bathyal and abyssal amphipods of Lake Baikal (Siberia) in relation to water depth. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 170:615–625.

116