• Keine Ergebnisse gefunden

Precipitation microstructure and age-hardening response of an Mg-Gd-Nd-Zn-Zr alloy

N/A
N/A
Protected

Academic year: 2022

Aktie "Precipitation microstructure and age-hardening response of an Mg-Gd-Nd-Zn-Zr alloy"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

(2)

ContentslistsavailableatSciVerseScienceDirect

Materials Science and Engineering A

j ou rna l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m s e a

Precipitation microstructure and age-hardening response of an Mg–Gd–Nd–Zn–Zr alloy

J.H. Li

a,c,1

, G. Sha

a,b,∗

, T.Y. Wang

a

, W.Q. Jie

c

, S.P. Ringer

a,b

aAustralianCentreforMicroscopyandMicroanalysis,TheUniversityofSydney,MadsenBuildingF09,Sydney,NSW2006,Australia

bARCCentreofExcellenceforDesigninLightMetals,TheUniversityofSydney,Sydney,NSW2006,Australia

cStateKeyLaboratoryofSolidificationProcessing,NorthwesternPolytechnicalUniversity,Xi’an,710072,China

a r t i c l e i n f o

Articlehistory:

Received14December2010 Receivedinrevisedform11June2011 Accepted25October2011

Available online 3 November 2011

Keywords:

Magnesiumalloys Precipitation Agehardening Atomprobetomography Transmissionelectronmicroscopy

a b s t r a c t

PrecipitatesinanMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloyagedfortimesupto70hat200Chave beencharacterisedusingtransmissionelectronmicroscopyandatomprobetomography.Theprecipitate phasesknownas␤,␤and␤1occurduringthisageing.ThesoluteelementsNd,ZnandGdpartition significantlyintotheseprecipitates.Theenhancedageinghardeningresponseafteraged70hismainly attributedtotheprecipitationof␤and␤1withanumberdensitybyafactorof10lessthanthatof␤ and␤precipitatesformedafter3hageing.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Magnesiumalloysareattractiveduetotheirspecificstrength, providing potential for weight reduction in automotive and aerospaceapplications[1,2].TheMg–NdbasedalloyssuchasZM- 6 in Chinaand ML10 in Russia exhibit a strongage hardening responseandhavebeenusedinvariousstructuralairframecom- ponents.However,thehightemperaturemechanicalpropertiesof theseandotherMg–Ndbasedalloysareinadequatefortechnologi- calapplicationsabovetemperaturesof250C.Thedevelopmentof Mgalloysforthesehighertemperatureapplicationsremainsasig- nificantresearchtargetfortheinternationalmaterialscommunity [3–18]andthisisalsothegeneralsubjectofthiscontribution.

Heavyrareearth(HRE)elementssuchasNd,Gd,Y,Dy,Er,Sc,Tb andSm,havebeenusedwidelytoimprovethemechanicalproper- tiesofMgalloysatbothroomandelevatedtemperatures[3–12].

Indeed,mosthigh-strengthMgalloyssuchasWE54/43andQE22 containHREelements.ThelevelofalloyingadditionoftheHREele- mentsisacriticalconcerninalloydevelopmentanddesignbecause ofbothmaterialcostsandthedesiretohavethealloyaslightas

Correspondingauthorat:AustralianCentreforMicroscopyandMicroanalysis, TheUniversityofSydney,MadsenBuildingF09,Sydney,NSW2006,Australia.

Tel.:+61290369050;fax:+61293517682.

E-mailaddresses:jie-hua.li@hotmail.com(J.H.Li),gang.sha@sydney.edu.au (G.Sha).

1 Currentaddress:ChairofCastingResearch,theUniversityofLeoben,Austria.

possible.Thishasdrivensignificantresearchinrecenttimes:(e.g.) Nieatal.[17]havedemonstratedthatsmalladditionsofZnstim- ulateanagehardeningresponseinMg–GdalloysthatpossessGd contentsthatarebelowthelevelordinarilyassociatedwithasig- nificantageingresponse.Moreover,combinedadditionsofGdwith ZntoMg–Ndalloyshavebeenreportedtoimprovethemechani- calpropertiesofthealloys,particularlyatelevatedtemperatures [11,12].Itisexpectedthattheimprovementofmechanicalprop- ertiesoftheseMg–Gd–Nd–Znalloysshouldbecorrelatedtothe precipitatesmicrostructuresformedduringageingtreatment.To date,thereisalackofdetailedinvestigationstorevealtheevolu- tionofprecipitatesmicrostructureandthepartitioningofsolutes duringageingthesealloys.

In this paper, transmission electron microscopy (TEM) and atom probe tomography (APT) have been employed to char- acterise precipitates microstructures formed during ageing a quinary Mg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloy.Quantitative APTanalysisaimstorevealthepartitioningbehaviourofsolutes.

Comprehensivestructuralinformationobtainedfromacombina- tionofTEMandAPTcharacterisationswillhelptoelucidatethe precipitationreactionsandtounderstandthenanostructurepro- vidinghardeningeffectinthealloy.

2. Experimentalprocedures

TheMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloywasprepared from pure Mg (99.9%), Zn (99.9%), Nd (99.9%), Mg–28Gd and 0921-5093/$seefrontmatter.Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.msea.2011.10.092

(3)

2 J.H.Lietal./MaterialsScienceandEngineeringA534 (2012) 1–6

Fig.1.AgehardeningresponseofMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloyaged at200C.Forcomparison,theresultoftheGd-freealloyisalsoincluded.

Mg–33Zr (wt.%) master alloys in an electric resistance furnace undertheprotectionofananti-oxidizingflux,andthencastinto asandmould.Solutiontreatmentwasperformedinasaltbathat 520Cfor18h,followedbyquenchingintocoldwaterandthen ageingin oilat200Cfor upto100h. Vickershardnesstesting wasperformedusingaLECOHardnessTester(LV700AT)with10N loadand15sdwelltime.EachdatapointreportedinFig.1repre- sentsanaverageofatleast10measurements.Thefoilspecimens forTEMwere preparedby twinjetelectro-polishing ina solu- tionof25%HClO4and75%methanolcooleddownto−40Cwith avoltageof20V,andthenusinglow energybeamionthinning forsurfacecleanness.TEMexaminationswereperformedusinga CM12operatingat120kVandaJEOL-3000Foperatingat300kV.

Thesamplesforatomprobeanalysiswerecutandmechanically groundtosquarerodsofapproximately0.5mm×0.5mm×15mm, andthensharpenedbymicro-electro-polishing.APTanalyseswere performedusinganImagoLEAPTM3000operatingataspecimen temperatureof20K,20%pulsefractionandunderultrahighvac- uumconditions.

Atom probe data sets were carefully reconstructed using an approach outlined recently by Gault and co-workers [19].

The maximum separation algorithm was employed to identify solute-richprecipitatesandtheconcentrationofthematrixwas measuredafter removingidentifiedprecipitates[20,21].Nd, Gd and Znwereselected as precipitationsolutesand a separation distance of 0.8nm and the minimum size of 15 solute atoms wereused intheprecipitateidentification[22].A selectionbox analysismethod wasused tomeasure precipitate composition.

Suchmethodscanconvolutenon-systematicerrorswhereirreg- ularmorphologiesareinvolved.Selectionboxmethodsalsotend to minimise the influence of ion trajectory overlaps that can occurinmulti-componentsystemssuchashere,whereelements withwidely varying evaporative fields are involved. The aver- agecompositionofprecipitateswasmeasuredfromtheircentral 2nmregion.

3. Resultsanddiscussion

3.1. AgehardeningresponseoftheMg–Gd–Nd–Zn–Zralloy

Fig. 1 reveals the age hardening response of the quinary Mg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%) alloy.For comparison, the resultof theGd-free alloyis alsoincluded. It is clearthat the age hardening response of the alloy containing 3.6wt% Gd is higher than that of Gd-freealloy. It should be noted that the

hardnessof thequinary alloyincreasedquicklyduring thefirst 1.5h at 200C, witha hardnessincrease from 65HV of an as- quenched sample to 85HV of a sample aged for 1.5h. The 20HV hardness increment is equivalent to 30% of the initial hardness of the as-quenched sample. This fast age-hardening response canbedirectly correlatedtothestrongerpartitioning ofNdinMg–Ndbasedalloys[13].Thenitreachedaplateau-like range before reachingpeak hardnessafter 70h. Furtherageing led toover-ageing and a progressive decrease in hardness.On thebasis of theseresults, thesamples agedat 0h(as-quench), 3h, 14h and 70h were selected for TEM observationand APT analysis.

3.2. TEMcharacterisationofprecipitatesinthe Mg–Gd–Nd–Zn–Zralloy

Fig.2showsatypicalbrightfield(BF)TEMimageandthecor- respondingselectedareaelectrondiffraction(SAED)patternand energydispersiveX-ray(EDX)spectratakenfromtheas-quench Mg–3.6Gd–2.8Nd–0.6Zn–0.4Zr (wt.%) alloy.Only some particles containingZr(Fig.2c)arerarelydistributedinthe␣-Mgmatrix.

No otherprecipitatesarepresent inthemicrostructure(Fig.2a and b). These Zr particles were believed to play an important roleinthegrainrefinementofMgalloy,buthavenogreateffect ontheprecipitationstrengthening due totheirsparsedistribu- tion.

Fig.3showsaseriesofrepresentative[0110]MgBFTEMimages andthecorrespondingSAEDpatternsofsamplesagedat200Cfor 3h,14hand70h.Notwithstandingthewell-knowndifficultiesin achievinglarge,uniformlythinregionsoffoilinMgalloyscontain- ingmultipleHREs,thismicroscopyconfirmsthepresenceofafine anduniformdispersionofprecipitatesinalloftheseageingcon- ditions.Afterageingfor3h,theSAEDpatternin[0110]Mgzone axisoftheMgmatrix,asshowninFig.3b,wasobservedcontain- ingtheweakdiffractionstreaksat1/2(2110)Mgand1/2(2114)Mg (markedwithawhitearrow),indicatingthat␤precipitatesformed inthealloy.The␤phasepossessesaDO19crystalstructurewith ahexagonalunitcellofa=b=0.64nmandc=0.52nm[8]andit wasreportedtohaveastoichiometryMg3X[10].The␤precipi- tateshaveageneralhabitplaneparallelto{21 10}Mg.Inaddition tothoseweakdiffractionstreaksof␤precipitates,theextremely weakdiffractionof␤precipitatesat1/2(2112)Mg,markedwitha blackarrowinFig.3b,wasobservedinthe[0110]MgSAEDpattern.

Thissuggeststhatalownumberdensityof␤precipitatesco-exist withthemorenumerous␤precipitatesatthisstageofageing.The

phaseisknowntohaveabase-centredorthorhombicunitcell a=0.640nm,b=2.223nm,c=0.521nm[8]andstoichiometryMg5X [10].

Afterageingfor14h,diffractionintensityat1/2(2112)Mgwas stronger in the[0110]Mg SAEDpatterns (markedwitha black arrow in Fig.3d),suggesting that more ␤ precipitatesformed.

Afterageingfor70h, aweakdiffractionspotclearlyadjacentto 1/2(2110)Mg,as marked witha black box in Fig.3f, indicates thepresenceof␤1 inthemicrostructure.Thisphasepossessesa face-centredcubicunitcellwitha=0.72nmandstoichiometryof Mg3X[6,8,10].Theorientationrelationshipsbetweentheprecipi- tatessuchas␤,␤,␤1andthematrixareinagreementwiththose reportedpreviously[6,8,10].Thus,theprecipitationsequencein thisquinaryMgalloyduringageingissupersaturatedsolidsolution (SSSS)→␤(D019)→␤(bco)→␤1(fcc).␤phase(aface-centred cubicunitcellwitha=2.223nmandstoichiometryofMg3X[6])has beenconsideredtotheequilibriumphaseinthealloy,itmayeven- tuallyprecipitate,althoughitwasnotobservedover70hageingat 200C.

(4)

Fig.2.TEMbrightfieldimage(a),correspondingSAEDpattern(b)andEDXanalysis(c)takenfromtheas-quenchMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloy.

3.3. APTcharacterisationofprecipitatesintheMg–Gd–Nd–Zn–Zr alloy

Fig. 4 provides a series of three-dimensional atom maps recorded from atom probe experiments on specimens of the Mg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloyafterageingat200C for(a)3h(b)14hand(c)70h.Itisclearthatallthreeofthemain soluteelements,Nd,GdandZnweredirectlyimagedwithinthe precipitates.Usingthezonelinesandpolesobservedfromthefield desorptionimageavailableinatomprobemicroscopy,theview directionsofthetomogramsprovidedcanbespecificallydefined, e.g.theviewdirectionofimagesinFig.4a–cis[0001]Mg.Byexam- iningasmallregimemarkedwithwhitesolidlinesinFig.4aata highmagnification,atomicplanes(0110)Mgand(0111)Mgwere clearlyresolvedinFigs.5aandb.Threeelongatedprecipitatesare present in thesmall volume.A platelet precipitate habitingon {0110}Mg isprobably␤.Thissuggestionisconsistentwiththe habitplane{0110}Mg of␤ inMg alloysreportedin literatures [16,18].Arodprecipitatehabitingon{2110}Mgonlyseparatedby oneortwoatomicplanesfromthe␤plateletmaybeidentifiedas

,asseeninFig.5b.Byexaminingtheprecipitatesfromdifferent viewdirections,wefoundthatmostprecipitateswereelongated withtheirlongitudinalaxisparallelto[0001]Mg.Thisobservation isinagreementwithpreviousTEMobservationsfor␤,␤and␤1

[6,10].

Fromthe[0001]Mgviewdirection,thesizeoflargeprecipitates wasfoundtoincreasewithageingtime(Fig.4),whichisnoteasyto seefromthewholeanalysedvolumeduetotheoverlapofthehigh numberdensityofprecipitates(Fig.4b).Mostoftheprecipitates

formedbetween3hand70hageinghaveelongatedmorphology along[0001]Mg,whichareeffectiveobstaclestobasalslip[23].It isalsonoteworthythatthenumberdensityofprecipitatesappears tobehighestinthesampleaged3handthatthisprogressively decreaseswhencomparedtothenumberdensitiesofprecipitates afterageingfor14hand70h.Ouranalysisoftotalnumberdensity revealsthattherearelessprecipitatesbyafactorof10inthesam- pleaged70hat200Ccomparedtothesampleaged3handyetthe hardnessis10%higherinthe70hsample.Thedecreaseinprecipi- tatenumberdensityisincontrasttoanincreaseinhardnesswith increasingageingtimefrom3hto70h,probablyimplyingthatthe differentprecipitatesformedunderdifferentageingtimehadthe differentpotencyinproducingstrengtheningeffect.Giventhatthe formationofmore␤and␤1precipitateswiththeincreaseofageing timeasrevealedbyTEMcharacterisationdescribedpreviously,we canconcludethatthe␤and␤1aremorepotenthardeningobsta- clesthanthe␤phaseinthealloy.Interestingly,similarconclusion hasbeendrawninafewotherMg–REalloysincludingWE54alloy aged at 250C [6] and Mg–2.0Gd–1.2Y–1.0Zn–0.2Zr (at.%)alloy agedat225C[10],wherethepeak-agedmicrostructurecontains predominantlythe␤and␤1phases.

Theaveragecompositionsoflargeprecipitatesformedatdif- ferent ageing time are shown in Fig. 6a. Since APT chemical compositionanalysisindicatedthatsoluteconcentrationincrease withprecipitatesize,andTEMSAEDanalysisconfirmedtheco- existenceof␤and␤,␤and␤1indifferentageingconditions,it isreasonabletoassumeherethatlargeprecipitatemeasuredat3h shouldbecorrespondingto␤,andlargehigh-solute-concentration precipitatesobservedat70hcorrespondto␤1.TheGdconcentra- tionwithinthelargeprecipitateswaseffectivelyunchangedduring

(5)

4 J.H.Lietal./MaterialsScienceandEngineeringA534 (2012) 1–6

Fig.3. [0110]MgbrightfieldTEMimagesandcorrespondingSAEDpatternsfromthemicrostructureofMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloysamplesagedat200C forvarioustimes:(aandb)3h,(candd)14hand(eandf)70h.

Fig.4.CombinedatommapsofNd(red),Gd(blue)andZn(green)obtainedfromMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloysamplesagedat200Cfor(a)3h,(b)14hand (c)70h,inaviewdirectionclosetothe[0001]Mgzoneaxis.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thearticle.)

(6)

Fig.5.Highresolutionimagesofasmallregion(asmarkedwithwhitesolidlinesinFig.3a)obtainedfromMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloysamplesagedat200C for3h,inviewdirectionscloseto[2 110]Mg(a)and[0001]Mg(b)zoneaxesrespectively.

Fig.6.Soluteconcentrationsoflargeprecipitates(a)andmatrix(b)inMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr(wt.%)alloysamplesagedat200Cfrom3hto70h.

70hofageingat200C.However,theZnandNdconcentrations withintheprecipitatesincreasedwithincreasingageingtime.The Nd:Znratiooftheprecipitateswasapproximately1.6:1through- outtheageingsequenceexaminedhere,whichissimilarto,though slightlylessthanthe2:1ratioreportedfromTEM-basedenergy dispersiveX-rayspectroscopy(EDXS)microanalysisof␤precipi- tatesinasimilaralloy[16].TheprecipitateswererichestinNdof allsolutesandtheconcentrationofthiselementincreasedfrom

∼11 to∼15at.%duringageing.Thisisalsoclosetotheaverage compositionof15at.%measuredbyEDXS[16].Acombinedcon- centrationofMgandZnis84at.%,andacombinedconcentration ofNdandGdis16at.%inlargeprecipitates(likely␤)formedafter ageingfor3h.Thisgivesthelargeprecipitateswithastoichimetry of(Mg,Zn)5(Nd,Gd).Thestoichimetryisconsistentwith␤having Mg5NdreportedinbinaryMg–Ndalloy[13].Incontrast,thecom- positionofthelargeprecipitatesformedafterageingfor70hthat werethoughttobe␤1phaseonthebasisoftheSAEDanalysis,Fig.3, gives(Mg,Zn)4(Nd,Gd).ThisisincontrastwithMg3Xproposedby previousresearch[6,8,10].FurtherAPTinvestigationisnecessary tomeasurethechemistryof␤1 inover-agedsample.Ithasbeen reportedthattheprecipitatesformedinbinaryMg–Ndalloyspos- sessarangeofcompositionsfromMg5NdtoMg9Nd[16,18].We concludethatthetransformationsfrom␤to␤and␤1arerelated tofurtherenrichmentofNd,ZnandGdsolutesintheprecipitates.

Thesoluteconcentrationsinthematrixdecreasedduringageingat 200Cfrom3hto70h,asindicatedinFig.6b.Theseresultsindicate thatsignificantsoluteshavepartitionedintotheprecipitates.The lowconcentrationsofNd,GdandZnmeasuredinthematrixafter ageingfor70hindicatethattheequilibriumsolubilityofNdshould belessthan0.13at.%inthisMgalloyandthatthesolubilityofGd shouldbelowerthan0.23at.%.ThismayexplainwhyGddoesnot seemtopartitionintoanyofthe␤,␤,or␤1precipitatesphases observedintheselowGdcontentalloys[16].

4. Conclusion

TheprecipitatesequenceintheMg–3.6Gd–2.8Nd–0.6Zn–0.4Zr (wt.%)alloyduringageingat200Cover70his␤→␤→␤1.The precipitateshavea lamella-likemorphologywithalongitudinal axisparallelto[0001]Mg.ThesoluteelementsNd,ZnandGdpar- titionsignificantlyintotheprecipitates(␤,␤ and␤1).Thepeak hardnessat70hisincoincidencewithalownumberdensityofpre- cipitates(␤and␤1)inthemicrostructureofthealloybutwitha highfractionofthetotalsolutesassociatedwithprecipitation.The enhancedageinghardeningresponseafteraged70hwasmainly attributedtotheprecipitationof␤and␤1precipitateswithanum- berdensitybyafactorof10lessthanthatof␤and␤precipitates formedafter3hageing.

Acknowledgments

The authors are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis ResearchFacility(AMMRF)nodeattheUniversityofSydney.J.H.

LialsowishestothanktheChinaScholarshipCouncilforfinancial support. Thiswork is partly supportedby theDoctorate Foun- dationofNorthwesternPolytechnicalUniversityundergrantno.

(CX200705).

References

[1]B.Smola,I.Stulíková,F.vonBuch,B.L.Mordike,Mater.Sci.Eng.A324(2002) 113–117.

[2]J.Grobner,R.Schmid-Fetzer,J.AlloysCompd.320(2001)296–301.

[3]S.M.He,X.Q.Zeng,L.M.Peng,X.Gao,J.F.Nie,W.J.Ding,J.AlloysCompd.427 (2007)316–323.

[4]B.L.Mordike,Mater.Sci.Eng.A324(2002)103–112.

[5] V.Neubert,I.Stulíková,B.Smola,B.L.Mordike,M.Vlanch,A.Bakkar,J.Pelcová, Mater.Sci.Eng.A462(2007)329–333.

(7)

6 J.H.Lietal./MaterialsScienceandEngineeringA534 (2012) 1–6

[6]J.F.Nie,B.C.Muddle,ActaMater.48(2000)1691–1703.

[7]I.Stulikova,B.Smoloa,B.L.Mordike,Phys.StatusSolidiA190(2002)5–7.

[8]T.Honma,T.Ohkubo,K.Hona,S.Kamado,Mater.Sci.Eng.A395(2005)301–306.

[9]J.H.Li,W.Q.Jie,G.Y.Yang,ActaMetall.Sinca10(2007)1077–1081.

[10]T.Honma,T.Ohkubo,S.Kamado,K.Hono,ActaMater.55(2007)4137–4150.

[11]J.H.Li,W.Q.Jie,G.Y.Yang,Trans.NonferrousMet.Soc.China18(2008)s27–s32.

[12]J.H.Li,W.Q.Jie,G.Y.Yang,RareMet.Mater.Eng.37(2008)1751–1754.

[13] T.J.Pike,B.Noble,J.LessCommonMet.30(1973)63.

[14]P.A.Nuttall,T.J.Pike,B.Noble,Metallography13(1980)3.

[15] R.Wilson,C.J.Bettles,B.C.Muddle,J.F.Nie,Mater.Sci.Forum419–422(2003) 267–272.

[16] L.R.Gill,G.W.Lorimer,P.Lyon,Adv.Eng.Mater.9(2007)784–792.

[17]J.F.Nie,X.Gao,S.M.Zhu,Scr.Mater.53(2005)1049–1053.

[18]P.J. Apps, H. Karimzadeh,J.F. King, G.W. Lorimer,Scr. Mater. 48(2003) 1023–1028.

[19]M.P.Moody,B.Gault,L.T.Stephenson,D.Haniel,S.P.Ringer,Ultramicroscopy 109(2009)815–824.

[20]J.M.Hyde,C.A.English,Microstructuralprocessesinirradiatedmaterials,in:

R.G.E.Lucas,L.Snead,M.A.J.Kirk,R.G.Elliman(Eds.),MRS2000FallMeeting Symposium,Boston,MA,2001,p.27.

[21] D.Vaumousse,A.Cerezo,P.J.Warren,Ultramicroscopy95(2003)215.

[22]G.Sha,J.H.Li,W.Q.Jie,S.P.Ringer,in:K.U.Kainer(Ed.),Proceedingsof8th InternationalConferenceonMagnesiumAlloysandtheirApplications,Wiley- VCHVerlagGmbH&Co.KGaA,Weinheim,2009,pp.40–46.

[23] J.F.Nie,Scr.Mater.48(2003)1009–1015.

Referenzen

ÄHNLICHE DOKUMENTE

P.A.Midgley and M.Weyland, “3D Electron Microscopy in the Physical Sciences: the Development of Z-contrast and EFTEM Tomography”, Ultramicroscopy 96 (2003) 413. The

At the Department of Applied Physics at Chalmers University of Technology different electron microscopy techniques and atom probe tomography (APT) are used to

To obtain a distribution map of a certain element one can acquire (i) a sequential series of EELS spectra from different positions on the specimen (EELS spectrum imaging)

Average particle size was evaluated by Debye-Scherrer’s formula and compared with size-distribution statistics taken from an image analysis of transmission electron

One of the possible important applications of metal nanoparticles is in the medical field, for instance in the early detection and treatment of cancer, Because of the dimensions

Preliminary examination of a specimen heat-treated at 1073 K suggested that there are at least two different precipitates in the alloy system: the -phase that exists at

Magnesium alloys have great potential for the application in automotive and aerospace application due to their high specific strength [1]. The Mg-Zn based alloys, i.e. However,

Transmission electron microscopy (TEM) and atom probe tomography (APT) characterization of solute clustering and the precipitation process during the early stage of ageing in Mg-RE