• Keine Ergebnisse gefunden

A Note on the General Inverse Problem of Optimal Control Theory

N/A
N/A
Protected

Academic year: 2022

Aktie "A Note on the General Inverse Problem of Optimal Control Theory"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

RESEARCH M E M O R A N D U M

A N O T E O N T H E GENERAL I N V E R S E PROBLEM OF O P T I M A L C O N T R O L

T H E O R Y

J. C a s t i

A p r i l 1 9 7 4

SCHLOSS LAXENBURG 236 1 Laxen burg

AUSTRIA

(2)
(3)

R e s e a r c h Memoranda a r e i n f o r m a l p u b l i c a t i o n s r e l a t i n g t o o n g o i n g o r p r o j e c t e d areas o f re- s e a r c h a t IIASA. The v i e w s e x p r e s s e d a r e t h o s e o f t h e a u t h o r , a n d d o n o t n e c e s s a r i l y r e f l e c t t h o s e o f IIASA.

(4)
(5)

A Note on t h e General I n v e r s e Problem o f Optimal C o n t r o l Theory

J . C a s t i *

1. I n t r o d u c t i o n

A problem commonly f a c e d by t h e d e s i g n e r o f a c o n t r o l s y s t e m i s how t o choose a c r i t e r i o n f u n c t i o n which a c c u r a t e l y r e f l e c t s t h e f u n c t i o n a l o b j e c t i v e s o f t h e s y s t e m which y i e l d s a " s i m p l e " o p t i m a l c o n t r Q l law. S i n c e two d i f f e r e n t c o n t r o l laws may r e q u i r e r a d i c a l l y d i f f e r e n t p h y s i c a l s t r u c - t u r e s t o implement, t h e d e s i g n e r o b v i o u s l y d e s i r e s t o use t h a t l a w which imposes t h e minimal w e i g h t , c o s t , and complex- i t y r e q u i r e m e n t s upon h i s s y s t e m . Another way o f l o o k i n g a t t h i s q u e s t i o n i s t o a s k : " g i v e n a p a r t i c u l a r f e e d b a c k con- t r o l law, what i s t h e f a m i l y o f c r i t e r i o n f u n c t i o n s f o r which t h i s law i s o p t i m a l ? " T h i s i s t h e i n v e r s e problem o f o p t i m a l c o n t r o l t h e o r y .

Compared w i t h t h e d i r e c t p r o b l e m , t h e i n v e r s e problem h a s n o t b e e n a c t i v e l y s t u d i e d , a l t h o u g h i n t h e p a s t t e n y e a r s

t h e r e h a s been a growing body o f l i t e r a t u r e on t h e i m p o r t a n t s p e c i a l c a s e o f t h e p r o b l e m when t h e s y s t e m s dynamics and t h e c o n t r o l law a r e l i n e a r , t h e s o - c a l l e d " o p t i m a l r e g u l a t o r problem1' [l-61 and a few r e s u l t s have been o b t a i n e d f o r c e r - t a i n c l a s s e s o f n o n l i n e a r problems [7-81.

I n t h i s n o t e , we p r e s e n t e q u a t i o n s d e s c r i b i n g e q u i v a l e n t

* ~ n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s , Laxenburg, A u s t r i a and U n i v e r s i t y o f A r i z o n a , Tucson, A r i z o n a , U.S.A.

(6)

c r i t e r i a f o r a v e r y g e n e r a l c l a s s o f c o n t r o l p r o c e s s e s . S p e c i f i c a l l y , we c o n s i d e r t h e p r o b l e m o f m i n i m i z i n g

where u a n d v a r e r e l a t e d by t h e d i f f e r e n t i a l e q u a t i o n

The p r o b l e m we s t u d y i s t h e d e t e r m i n a t i o n o f a l l g which m i n i - mize J when t h e f u n c t i o n s h and v a r e g i v e n . Throughout t h i s p a p e r , we s h a l l assume t h a t v i s g i v e n i n " f e e d b a c k " form, i . e . v = v ( u , t ) . A s w i l l b e i n d i c a t e d b e l o w , o u r r e s u l t s c o n s t i t u t e t h e n a t u r a l g e n e r a l i z a t i o n o f t h o s e i n [l-61 t o tile n o n l i n e a r c a s e and i n c l u d e t h e p r e v i o u s r e s u l t s a s s p e c i a l c a s e s .

2 . The B a s i c E q u a t i o n s

The p r e c i s e s t a t e m e n t o f t h e p r o b l e m we c o n s i d e r i s : l e t u a n d v b e n , m-dimensional v e c t o r f u n c t i o n s o f t , r e s p e c - t i v e l y a n d l e t h ( u , v ) be an n - d i m e n s i o n a l v e c t o r - v a l u e d f u n c - t i o n o f u a n d v which i s c o n t i n u o u s l y d i f f e r e n t i a b l e i n e a c h component o f v . Assume t h a t g ( u , v ) i s a n unknown s c a l a r f u n c t i o n o f u and v which i s c o n t i n u o u s l y d i f f e r e n t i a b l e i n e a c h argument a n d t h a t v i s a g i v e n f e e d b a c k c o n t r o l law.

To a v o i d d e g e n e r a t e s i t u a t i o n s , we f u r t h e r assume t h a t g b e l o n g s t o a c l a s s of f u n c t i o n s f o r which t h e v a r i a t i o n a l p r o b l e m h a s a n o n t r i v i a l s o l u t i o n , e . g . g S t r i c t l y convex i n v.

(7)

We d e s i r e t o c l a s s i f y a l l f u n c t i o n s g w h i c h m i n i m i z e t h e f u n c t i o n a l

The f i r s t t a s k i s t o o b t a i n a n e q u a t i o n s a t i s f i e d by a l l

" o p t i m i z i n g " f u n c t i o n s g , t h e n we w i l l impose a d d i t i o n a l s t r u c t u r e on t h e a l l o w a b l e g i n o r d e r t o u t i l i z e t h e t h e o r e t - i c a l s o l u t i o n .

We b e g i n by o b s e r v i n g t h a t u n d e r t h e f o r e g o i n g assump- t i o n s on h a n d g , any o p t i m a l g must b e r e l a t e d t o t h e s y s - tem dynamics h by t h e H a m i l t o n - J a c o b i - B e l l m a n e q u a t i o n

- a f

= min [ g ( c , v ) t ( g r a d c f , h ( c , v ) ) ]

,

a T v

w h e r e g r a d c f ( c , T ) d e n o t e s t h e g r a d i e n t o f f r e l a t i v e t o t h e v e c t o r c , ( , ) d e n o t e s t h e u s u a l v e c t o r i n n e r p r o d u c t , and f ( c , T ) i s t h e o p t i m a l v a l u e f u n c t i o n , i . e . f = min J . S i n c e , a f o r t i o r i , v i s t h e o p t i m a l c o n t r o l f o r t h e unknown f u n c t i o n g , t h e H a m i l t o n - J a c o b i - B e l l m a n e q u a t i o n i s i n r e a l i t y e q u i v a - l e n t t o two e q u a t i o n s

f o r f , a n d

e x p r e s s i n g t h e f a c t t h a t v i s t h e m i n i m i z i n g c o n t r o l . I n Eq. ( 2 ) , dh i s t h e J a c o b i a n m a t r i x o f h r e l a t i v e t o v a n d

(8)

d e n o t e s t h e m a t r i x t r a n s p o s e .

E q u a t i o n s (1) a n d ( 2 ) may b e u t i l i z e d t o g i v e t h e f i r s t b a s i c r e s u l t :

Theorem 1. A l l f u n c t i o n s g which a r e o p t i m a l r e l a t i v e t o a g i v e n h and v s a t i s f y t h e d i f f e r e n t i a l e q u a t i o n

d

= ;iT. { " C , V ) ) t g r a d c [ ~ ( C ' V )

-

( ? ( c , v ) , h ( c , v ) ) ]

,

dh

'

where p ( c , v ) = A# g r a d v g + ( 1

-

A ' A ) Y , A = [(-I d v

1 ,

Y i s a n

a r b i t r a r y v e c t o r , and

#

d e n o t e s t h e p s e u d o - i n v e r s e o p e r a t i o n . P r o o f . From E q . ( 2 ) , g r a d c f =

-

p ( c , v ) . S u b s t i t u t i n g t h i s r e s u l t i n t o Eq. (I), we h a v e

D i f f e r e n t i a t i n g g r a d f w i t h r e s p e c t t o T, t a k i n g t h e g r a d i e n t

a

f C

o f r e l a t i v e t o c , and e q u a t i n g t h e two e x p r e s s i o n s s o ob- t a i n e d , we a r r i v e a t t h e e q u a t i o n o f t h e Theorem.

Remarks. ( i ) A l t h o u g h o f t h e o r e t i c a l i n t e r e s t , t h e e q u a - t i o n o f Theorem 1 i s o f l i m i t e d v a l u e i n t h e a b s e n c e o f

f u r t h e r s t r u c t u r e on g . However, a s w i l l b e shown by e x a m p l e s l a t e r , when we do p a r a m e t r i z e t h e c l a s s o f a l l o w a b l e g , t h e n t h e e q u a t i o n may b e e f f e c t i v e l y u t i l i z e d .

( i i ) The e q u a t i o n f o r g i s a l i n e a r s e c o n d - o r d e r p a r t i a l d i f f e r e n t i a l e q u a t i o n i n n t l v a r i a b l e s . C o n s e q u e n t l y , i t s g e n e r a l s o l u t i o n p o s e s s e r i o u s c o m p u t a t i o n a l ( a n d a n a l y t i c ) d i f f i c u l t i e s . U t i l i z i n g t h e f a c t t h a t knowledge o f v d e t e r - mines f , and c o n v e r s e l y , we now show how t o d e r i v e a n a l t e r n a - t i v e f i r s t - o r d e r p a r t i a l d i f f e r e n t i a l e q u a t i o n whose s o l u t i o n

(9)

c a n b e a p p r o a c h e d t h r o u g h t h e t h e o r y o f c h a r a c t e r i s t i c s . The r e s u l t we w i s h t o e s t a b l i s h i s

Theorem 2 . The o p t i m a l v a l u e f u n c t i o n f ( c , T ) s a t i s f i e s t h e f i r s t - o r d e r p a r t i a l d i f f e r e n t i a l e q u a t i o n

-

d

[af -

( g r a d f , h ) ] = 0

.

dT aT c ( 4 )

P r o o f . From Eq. ( l ) , we h a v e

s i n c e g d o e s n o t e x p l i c i t l y d e p e n d on T. U s i n g t h e e x p r e s s i o n i n E q u a t i o n ( 2 ) f o r g r a d v g , we h a v e

o r , upon c a r r y i n g o u t t h e d i f f e r e n t i a t i o n w i t h r e s p e c t t o T on t h e l e f t h a n d s i d e o f t h e e q u a t i o n ,

& [g -

( g r a d , f , h ) ] = 0

,

w h i c h was t o b e e s t a b l i s h e d .

E q u a t i o n ( 4 ) may b e u t i l i z e d t o o b t a i n f , .making u s e o f t h e o b v i o u s i n i t i a l c o n d i t i o n

(10)

Once t h e f u n c t i o n f i s known, we 0 b t a i . n g b y Eq. ( 1 ) a s

a

f

e ( c , v ) = r n ( c , T )

-

( g r a d c f , h )

.

3 . E x a m p l e s

( a ) We i l l u s t r a t e T h e o r e m 1 a n d 2 b y a p p l y i n g t h e m t o t h e s t a n d a r d l i n e a r r e g u l a t o r p r o b l e m . I n t h i s c a s e we h a v e T =

,

h ( c , v ) ~ = A C

+

Bv, v ( c , T ) = -Kc, w h e r e f o r t h e p r o b l e m t o b e w e l l - p o s e d we demand t h a t ( A , B ) b e c o n t r o l l a b l e a n d K b e s u c h t h a t A

-

EK i s a s t a b i l i t y m a t r i x . To p a r a m e t r i z e g , l e t us a s s u m e t h a t g h a s t h e q u a d r a t i c s t r u c t u r e

w h e r e Q i s a n unknown p o s i t i v e s e m i - d e f i n i t e m a t r i x . I n view.

o f t h e a s s u m e d l i n e a r s t r u c t u r e o f v , we may w r i t e

The o b j e c t i v e i s t o c h a r a c t e r i z e a l l Q s a t i s f y i n g Theorem 1.

I n t h e n o t a t i o n o f T h e o r e m 1, we h a v e

(11)

Thus, we s e e t h a t Q must s a t i s f y t h e e q u a t i o n

2 ( Q

+

K ' K

+

K ' B # ( A

-

BK))c

'

( A

-

bK)'(I

-

B#'B')~

,

f o r a r b i t r a r y y and c .

D i f f e r e n t c h o i c e s o f y y i e l d d i f f e r e n t e q u i v a l e n t Q t s . F o r example, y = 0 g i v e s

w h i l e i f y

=

c , we have

The o n l y s i t u a t i o n i n which t h e r e e x i s t s a unique Q c o r r e s p o n d i n g t o K i s when B#

=

Bel, i . e . when m = n and B i s n o n - s i n g u l a r .

( b ) Theorem 2 may b e i l l u s t r a t e d on a t r i v i a l m o d i f i c a t i o n of t h e f o r e g o i n g problem. Let g ( c , v ) h a v e

t h e p a r a m e t r i z e d form

(12)

w i t h , a s b e f o r e , v = -Kc. S i n c e , i n t h i s c a s e , f ( c ) h a s t h e f o r m

f ( c ) = T ( ~ , L ~ ) 1 L > 0 9

we h a v e

T h u s , a p p l y i n g Theorem 2 and k e e p i n g i n mind t h a t T = a f

-

i m p l i e s

-

= 0 , we s e e t h a t aT

f o r a l l c . Hence,

L(A

-

BK) = 1 ( Q + K'K) ,

Upon s y m m e t r i z i n g t h e q u a n t i t y 2LA a n d u s i n g t h e f a c t t h a t any o p t i m i z i n g c o n t r o l law K must h a v e t h e s t r u c t u r e K = B ' L , t h e ' a b o v e e q u a t i o n r e d u c e s t o t h e w e l l known e x p r e s s i o n f o r €2,

Q

-

K'K + LA + AIL = 0

.

Of c o u r s e , we want t o e l i m i n a t e L f r o m t h e f o r e g o i n g e q u a t i o n a n d d e a l d i r e c t l y w i t h t h e g i v e n d a t a K . T h i s i s a c c o m p l i s h e d by s o l v i n g t h e e q u a t i o n K = B'L f o r L, y i e l d i n g t h e s o l u t i o n

w h e r e C i s a n a r b i t r a r y s y m m e t r i c nxn m a t r i x . S u b s t i t u t i n g

(13)

t h i s r e s u l t i n t o t h e above e q u a t i o n g i v e s

Q

= K'K

-

[B#'K

-

( I

-

B # ' B ' ) c ] A

- A ~ [B#'K

-

( I

- B#'BI)C]

f o r d e t e r m i n i n g e q u i v a l e n t Q.

4 . D i s c u s s i o n

We h a v e p r e s e n t e d some new e q u a t i o n s r e l a t i n g a s p e c i f i e d f e e d b a c k c o n t r o l law t o a l l i n t e g r a l c r i t e r i a f o r which i t i s t h e o p t i m a l l a w u n d e r f i x e d dynamics. The e x a m p l e s p r e s e n t e d f o r t h e l i n e a r r e g u l a t o r c a s e may b e e x t e n d e d t o n o n - q u a d r a t i c c r i t e r i a by a s u i t a b l e p a r a m e t r i z a t i o n o f t h e c o s t f u n c t i o n g , e . g . e x p a n s i o n o f g i n t o a f i n i t e power s e r i e s , a F o u r i e r e x p a n s i o n , a n d s o f o r t h . The c o e f f i c i e n t s o f t h e e x p a n s i o n a r e t h e n d e t e r m i n e d by t h e e q u a t i o n s o f Theorems 1 o r 2 .

(14)

R e f e r e n c e s

Kalman, R . "When i s a L i n e a r S y s t e m O p t i m a l ? , n ASME J . B a s i c Enq. s e r . D 8 6 ( 1 9 6 4 ) , 51-60.

K r e i n d l e r , E. a n d J . H e d r i c k , "On t h e E q u i v a l e n c e o f Q u a d r a t i c Loss F u n c t i o n s , I n t

.

J

.

C o n t r o l , l l ( l 9 7 0 ) , 213-222.

Jameson, A . a n d E . K r e i n d l e r , " I n v e r s e P r o b l e m o f L i n e a r O p t i m a l C o n t r o l , " SIAM J . C o n t . E ( 1 9 7 3 ) , 1 - 1 9 .

M o l i n a r i , B. "Redundancy i n t h e O p t i m a l R e g u l a t o r Problem,"

IEEE T r a n s . Auto. C o n t . AC-16(1971), 8 3 - 8 5 .

B u l l o c k , T. a n d J . E l d e r , " Q u a d r a t i c P e r f o r m a n c e I n d e x G e n e r a t i o n f o r O p t i m a l R e g u l a t o r Design, P r o c . IEEE C o n f . Dec. a n d C o n t . , . Miami, F l a . Dec. 1 9 7 1 , 1 2 3 - 1 2 4 . M o l i n a r i , B . "The S t a b l e R e g u l a t o r P r o b l e m a n d I t s

I n v e r s e , " IEEE T r a n . Auto. C o n t . , A c - 1 8 ( 1 9 7 3 ) , 454-45.9.

T h a u , F . E . , "On t h e I n v e r s e Optimum C o n t r o l P r o b l e m f o r a Class o f N o n l i n e a r Autonomous Systems, I' IEEE T r a n s . A u t o . C o n t . , AC-12(1967), 6-4-681.

Moylan, P . a n d B . A n d e r s o n , " N o n l i n e a r R e g u l a t o r T h e o r y a n d an I n v e r s e O p t i m a l C o n t r o l P r o b l e ~ " IEEE T r a n . Auto. C o n t . , A c - 1 8 ( 1 9 7 3 ) , 460-465.

(15)

E r r a t a S h e e t

P l e a s e n o t e t h e f o l l o w i n g c h a n g e s :

P a g e 4 : T h e o r e m 1 i s f o o t n o t e d t o r e a d : *To a v o i d d e g e n e r a - c i e s i n t h e p r o b l e m s t a t e m e n t , we a s s u m e t h r o u g h o u t t h a t g r a d , g E R a n g e (=) dh

.

P a g e 7 : 1. T h e e q u a t i o n o n l i n e 6 s h o u l d r e a d : 2 ( Q + K f K ) c

= - ~ K ' B ~ ( A

-

BK)c

+ . . .

2 . T h e e q u a t i o n o n l i n e 8 s h o u l d r e a d :

2 ( Q

+

K ' K

+

K ' B # ( A

-

B K ) ) c = (A

-

B K ) ' ( I

-

B # B ' ) ~ 3 . Below t h e l a s t e q u a t i o n o f t h e p a g e , t h e s e n t e n c e

"Of c o u r s e , t h e o n l y c h o i c e s o f y t h a t a r e i n t e r e s t i n g a r e t h o s e w h i c h l e a d t o a p o s i t i v e s e m i - d e f i n i t e

Q . " s h o u l d b e a d d e d .

P a g e 8 : T h e l a s t s e n t e n c e s h o u l d r e a d : " w h e r e C i s a n y n x n m a t r i x s u c h t h a t L > O.* T h e f o o t n o t e r e a d s :

* N e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s i n t e r m s o f K a n d B a r e g i v e n i n [ 3 ] .

Referenzen

ÄHNLICHE DOKUMENTE

Growth properties of production rate, R&D intensity and technology intensity for quasioptimal feedbacks as functions of slopes are indicated on generated trajectories.. In the

We show that the value function of such problem may be approximated by the value function of problems with free end points (see Theorem 7.1). A result of the same

If a higher sanc- tion for the second crime means a lower sanction for the first crime and vice versa, cost minimizing deterrence is decreasing, rather than increasing, in the number

The water quality control is one of the fundamental categories of the general runoff control. In the following we will discuss a stochastic water quality control model which

Contribution and outline While there has been much work on deriving theoretical bounds for the problem and also in the design of metaheuristics, the optimality gaps between the

In fact, it is weIl known that there are infinitely many density distributions that are compatible with a given external potential Vj the solution (7-3) is not

Now the inverse scattering problems can be formulated as fol- lows: Given an incident plane wave u i and the corresponding near field pattern or far field pattern u ∞ , determine

Moreover, we prove that the previously defined notion of conditional nor- mality [8] implies conditional (strong) relative observabil- ity, which means that conditional strong