• Keine Ergebnisse gefunden

Experimental Techniques for the Study of

N/A
N/A
Protected

Academic year: 2022

Aktie "Experimental Techniques for the Study of"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

School on Pulsed Neutrons - October 2007 - ICTP Trieste

Experimental Techniques for the Study of

Magnetism

Prof. Dr. Thomas Brückel

Institute for Scattering Methods Institute for Solid State Research Forschungszentrum Jülich GmbH

first compass

History: Loadstone Fe

3

O

4

( 800 BC)

100 A.D.

Chinese "south pointer"

"perpetual motion machine"

1269 Europe: Petrus Perigrinus

"Epostolia de Magnete"

what’what’s new ?s new ?

magnetic nanostructures correlated electron systems ...

The “Founding Fathers”

Albert FertUniv. Paris Sud Peter Grünberg IFF / FZ Jülich

• 2006 “European Inventor”

• 2007 “Stern-Gerlach-Medaille”

of the German Physical Society

• 2007 Japan-Prizeof the Science and Technology Foundation (JSTF)

• 2007 Wolf-Foundation-Prizein Physics, Israel

• 2004 Member of the

“Académie des Sciences”

Spintronics

"Spintronics“ / “Magnetoelectronics”:

Information transport, storage and processing using the spin of the electron (not just the charge!)

2007: Nobelprize in Physics

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

•Example: Resonance exchange scattering from mixed crystals

• Summary

Magnetic Nanostructures

Thin Film Multilayer:

Fe50Pt50 Nanoparticle Network by colloidal self organisation

Sun et al; Science 287 (2000), 1989

⇒Surfaces,

⇒Interfaces,

⇒Proximity effects

Interlayer Exchange Coupling

Peter Grünberg:

Interlayer Exchange Coupling in Fe/Cr Multilayers Phys. Rev. Lett. 57 (1986), 2442

Oscillatory coupling as function of interlayer thickness:

Co Cu Co

Co Cu Co

Ferromagnetic Antiferromagnetic

(2)

Giant Magnetoresistance (GMR)

P. Grünberg et al.

Phys. Rev. B 39 (1989), 4828 (and independently: A. Fert, Paris)

GMR-effect

Fe/Cr/Fe 1.5 %

Artificial Nano-Structures

→purpose designed properties

Applications: Hard Disks

GMR effect:

< 10 years from discovery in curiosity-driven fundamental research to application in computer storage, ABS sensors, …: multi billion $ !

Areal density

(Hitachi Global Storage Technologies) Terabits!

Applications: MRAM

MRAMMRAM

•100 Million storage elements per mm2

•1 /100 Million gram mass per cm2 Magnetic Random Access Memory:

independently 1988 A. Fert

"Spintronics":

Information transport, storage and processing with the spin of the electron (not the charge!)

Complex transition metal oxides:

High T

C

Superconductors; CMR-Manganates; …

New phenomena appear from the New phenomena appear from the bottom of the Fermi sea due to bottom of the Fermi sea due to electronic correlations:

electronic correlations:

• Magnetism

• Superconductivity

• Metal-insulator transition (CMR)

• Charge- & orbital order

• Multiferroica

Highly correlated electron systems

Materials

Combination in layered systems:

Magnetic Metals:

Combined with: - "non magnetic" metals: Cu, Cr, Mn - oxides as tunnel barriers: Al2O3

- semiconductors: Si

3d itinerant magnetism 4f localized moments

New materials

Dilute magnetic semiconductors: (Ga,Mn)As, Ge(Fe,Mn) Half-metals: La0.7Sr0.3MnO3, CrO2, Fe2O3

Colossal magnetoresistance effect: La0.7Ca0.3MnO3

Multiferroica: TbMnO3, LuFe2O4 Highly correlated electron systems!

Dimensionality

multilayer

surface

chains self-organized nano-

particle networks lithographic

stripes

clusters

crystal

1020macroscopic 1010 mesoscopic

103 nanoscopic 10 molecular magnet number of spins

number of spins

complex systems:

• interaction

• domains

• magnetization dynamics

single molecule magnet:

• “giant spin”

• quantum tunneling

• quantum interference

(3)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Resonance exchange scattering from mixed crystals

• Summary

Susceptibility and Magnetisation

M H

H M =χ⋅ linear response theory

→Internal structure? (atom positions, moment arrangement)

→Microscopic dynamics? (atom movements, spin dynamics)

⇒ Macroscopic properties (conductivity, susceptibility, ...) Scattering:

interaction sample ↔radiation weak

⇒ non-invasive, non destructive probe for structure & dynamics

Scattering

v N

μ

N

Generalised Susceptibility

linear response theory:

Fourier transform:

( ,) ( ,) 0

= ld H=

ldt M R t

R

Mβ β ( ,') ( '', ')'

' '

'

' t R R t tdt

R

t H

d l ld d

l d

∫ ∑∑ l

+ αβ

α

α χ

(, ') ( ) ( 0', ')

1 '

'

0 R R t t

e t t

Q iQR R ld d

dd

d

ld

=

αβ

αβ χ

χ

( )Q e dd( )Qtdt

t i

dd , ' ,

' 0

αβ ω

αβ ω χ

χ =∞ −

perturbation of magnetic system described by spacial and temporal varying magnetic field H (r, t)

system reaction:

local magnetisation M (r,t)

linear response theory→susceptibility )

, ( tr χ

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Resonance exchange scattering from mixed crystals

• Summary

Magnetic Structures

Mn2+

b=a a=4.873 Å

c=3.31 Å

Collinear Antiferromagnets:

F -

MnF2:

Modulated Structures:

Cr:

MnO:

Complex Structures:

Er6Mn23:

Rare Earth:

General description in Fourier representation:

=

k l k

e m ikR

mij ijexp( )

(4)

Neutron-Matter-Interaction

First Born Approximation: 2 2

|

|

|' 2 ⎟ |< >

⎜ ⎞

=⎛

Ω m k V k

d d

π σ

strong interaction n ↔nucleus

magnetic dipole-interaction with B-field of unpaired e- major

?

r d e r V

r d e r V e

r Q i

r k i r k i

3 3 '

) (

) (

=

Magnetic Interaction Potential

e-

ve

μe

R

B μn

n

magnetic moment of the neutron:

σ

γμ

=

μn N

magnetic field of the electron:

L

S B

B

B= +

dipolar field of the spin moment: ; 2 S

R R x

BS e3 μe=μB

⎟⎟⎠

⎜⎜⎝

×⎛μ

=

field due to the movement of the electron (Biot-Savart): L e3 R

R v c

B =e ×

n B m=−μ ⋅ V

Zeeman energy:

Magnetic Scattering Cross Section

σz Vm k

σz‘ k‘

2 z m z 2 2

n k' ' k

2 m d

d ⎟⎟ σ σ

⎜⎜

= π Ω

σ V

( ) z ( ) z 2

B

02 ' M Q

2 r 1 d

d σ σ

μ γ Ω= σ

σ cm 10 539 . 0 r0= 12 γ

→"equivalent scattering length" for 1 µB(S=

2

1): 2.696 fm ≈bco

( )Q Qˆ M( )Q Qˆ

M = × ×

( )Q=M( )re dr

M iQr3

( )r M( )r M ( )r

M = S + L

( )=μ ( )=μ δ( )

i i i

B B

Sr 2 Sr 2 r r S

M

1. Born approximation

Directional Dependence

Q k‘

M k

M

( )Q Qˆ M Qˆ

M = × ×

Illustration: scattering from the dipolar field Only the component of the magnetisation perpendicular to the scattering vector gives rise to magnetic scattering!

M || Q M

Q

Planes with equal phase factor

MQ M

Q

Pure Spin Scattering

Ri rik

tik Sik

Si

Atom i

Separation of intra-atomic quantities for localised moments:

( )=μ δ( ) +

=

ik ik ik

B ik S

i

ik R t ; M r 2 r r s

r

( )Q =M ( )re dr

M S iQr3

=

=

i iQR k iQt ik ik

ik r Q

i s e e s

e i i ik

Expectation value of the operator for the thermodynamic state of the sample:

( )=μ ( ) iQR i m

B f Q e S

2 Q

M i

( )= ρ( )

Atom r3 Q i s

mQ re dr

f

( ) ( ) 2

i R Q i i 2 m

0 f Q S e i

d r

dΩ=γ

σ

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

normalized form factor

sin(Θ/λ) nuclear scattering

orbital

x-ray spin Chromium

0.0 0.2 0.4 0.6 0.8 1.0

sin(Θ/λ) Q || b Q || a

a b

form factor

Form Factor: Spin, Orbit, Anisotropy

M(r)

λ

F

i. a. anisotrop:

in general anisotropic:

⇒ information on anisotropic magnetization density distribution!

(5)

Magnetic Bragg Diffraction from a Type I Antiferromagnet on a tetragonal body-centered lattice

nuclear structure factor (ignore F-):

magnetic structure factor Mn2+

F-

b=a a=4.873 Å

c=3.31 Å

MnF2

( ) ( )

2

0 ,

( , , ) ( , , )

i

i i Q r

nucl i

i

iQ r

mag i i

i

I h k l S h k l

S b e

S γr f Q S e

=

=

v N

μ

N

Magnetic Neutron Scattering

inelastic / quasielastic scattering:

directly related to generalized suszeptibility:

) ' , ' ( ) ' , , ' , ( ) ,

(rt rr tt Hr t

M =χ ⋅

magnetic excitations:

spinwaves, crystal field etc.

( 0)2 1 ' () 2 z z B n mag

Q M d r

dωσ =γ μ σ σ σ elastic scattering:

directly related to magnetization:

spin structures, magnetization densities

Molecular Magnets

Polyoxometalates (30 Fe3+spins) Mn 12 - acetate

(12 Mn spins)

Spin-Density Distribution

J. Luzón et al Physica B335 (2003),1

Crystal structure &

possible exchange pathways

Pure organic ferromagnet below TC=1.3K

Magnetization density from pol. neutron diffraction

in Molecular Magnet p-O2N·C6F4·CNSSN

Spin Excitations

I. Mirebeau et al PRL 83 (1999), 628

Low E excitations: neutron data and fit

Energy level diagram:

splitting of lowest S multiplett (S=10 ground state)

in Mn12-acetate Spin Cluster

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Resonance exchange scattering from mixed crystals

• Summary

(6)

Reflectometry

αi αf

Substrate Ferromagnet Diamagnet Ferromagnet

M1

M2

specular reflectivity αif

incident beam

specular reflectivity: vertical scattering length profile

Scattering Under Grazing Incidence

roughness

domains off-specular diffuse scattering αi≠αf

vertical correlations:

from 0.1 nm to 100 nm

lateral correlations: from 1 nm to 100 μm off-specular diffuse scattering:

Remagnetization Process

substrate Gd 450 Å

100 bilayers

TiNx

FeCoV TiNx FeCoV

H Magnetic gradient multilayer with 100 bilayers (“supermirror”):

remagnetization process

E. Kentzinger et al 2007

µ

0

H = 0.5 mT after saturation in -y direction (μ

0

H = -50 mT)

++ --

+- -+

Remagnetization Process

α

i

α

f

specular αi= αf

H B║ P

B⊥P

µ

0

H = 1.0 mT

µ

0

H = 2.0 mT

(7)

µ

0

H = 2.6 mT

µ

0

H = 3.1 mT

µ

0

H = 3.6 mT

µ

0

H = 4.0 mT

H

µ

0

H = 4.6 mT

µ

0

H = 5.0 mT

(8)

µ

0

H = 5.5 mT

µ

0

H = 6.0 mT

µ

0

H = 6.5 mT

µ

0

H = 7.0 mT

µ

0

H = 10 mT

µ

0

H = 15 mT

(9)

µ

0

H = 20 mT

µ

0

H = 25 mT

µ

0

H = 50 mT

µ

0

H = 100 mT

µ

0

H = 151 mT

µ

0

H = 200 mT

(10)

µ

0

H = 422 mT

H

µ0H = 1 mT:

µ0H = 3.8 mT:

µ0H = 5.6 mT:

Data

(HADAS @ FRJ-2)

µ0H = 1 mT:

µ0H = 3.8 mT:

µ0H = 5.6 mT:

Simulations within DWBA

E. Kentzinger et al

Importance of Polarization Analysis

with polarization analysis

Roughness of interfaces Magnetization of thin layers Magnetization of thick layers

lateral magnetic correlations parallel H (longitudinal)

lateral magnetic correlations perpendicular H (transverse)

unpolarized

Diffuse scattering from a supermirror→ lateral correlations

Summary: Supermirror

• increasing interface roughness from substrate to air: 7 Ǻ→14 Ǻ

• scattering length density ≈15% smaller than nominal (voids)

• thicknesses ≈5% lower than nominal

• no true remanence: magnetization fluctuations

• layers flip sequentially: thin bottom layers flip first!

• random anisotropy model for soft magn. nanocrystalline alloys

reversed layers as function of field coercive field and grain size vs layer thickness

U.Rücker, E.Kentzinger, B.Toperverg, F.Ott, Th. Brückel; Appl. Phys. A74 (2002), 607 E. Kentzinger et al; PRB submitted

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Resonance exchange scattering from mixed crystals

• Summary

(11)

Powder Diffraction

Chemical structure, but not

Magnetic Structure RT

10 K

E. Gorelik (2004)

Neutrons: La0.5Sr0.5MnO3 X-rays:

La

7/8

Sr

1/8

MnO

3

-Kristall

< 112>

T = 120 K

Perßon, Li, Mattauch, Kaiser, Roth, Heger (2004)

ESRF @ Grenoble, France 6 GeV

APS @ Argonne/Chicago, USA 7 GeV SPRING8, Japan, 8 GeV

Synchrotron Sources

X-Ray Probes of Magnetism

- Kerr-microscopy - Faraday effect

- Linear x-ray magnetic dichroism - Circular x-ray magnetic dichroism

- Spin resolved x-ray absorption fine structure SEXAFS - Magnetic x-ray diffraction (non-resonant scattering) - Resonant magnetic x-ray scattering (X-ray resonance

exchange scattering XRES) - Nuclear resonant scattering - Magnetic x-ray reflectivity - Magnetic Compton scattering

- Angular- and spin resolved photoemission

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

E

H E

H

H H E

E

interaction re-radiation

-e

-e

-e μ μ force

-eE

-eE

grad(μH)

torque Hxμ

E-dipole

H-quadr.

E-dipole

H-dipole σ

σ

σ

σ

σ

π,σ

π

π μ

De Bergevin & Brunel 1981

Nonresonant Scattering: Classical

Thomson scattering from charges

⇒ Structure

But: X-rays are electromagnetic radiation ⇒ non resonant magnetic x-ray

scattering

⇒ Magnetism

(12)

Cross Section for Magnetic X-Ray Scattering Non-relativistic treatment in second order perturbation theory (Blume 1985, Blume & Gibbs 1988)

•Hamiltonian for e-in e-m field:

))2 ( 2 (

1 Arj

c j e P j m

H=

+jiV(rij)

×

jsj Arj mc

e ( )

)) ( ( ) 2 ( ) (

2 Arj

c j e P jsj Erj mc

e ×

2) ) 1 ( ) (

(+ +

+ λω λ λ

k kc k ck

kinetic energy Coulomb interaction Zeeman energy -µ · H spin-orbit coupling -μ·H~s·(E×v) self energy of e-m-field

•Vector potential in plane wave expansion:

21

q Vq

c2 ) 2 r ( A =σ πω

⎟⎟

⎜⎜

r] q ei ) q ( c ) q ( r * q ei ) q ( c ) q (

[ε σ σ +ε σ + σ

×

H = Ho+ Hr+ Hint

e--system e-m-wave interaction

perturbation theory (Fermi's "golden rule")

first order for terms quadratic in A second order for terms linear in A

2 int ,, , ' ,

' fH k i

d k

dσ ε ε

Ω

Cross Section for Magnetic X-Ray Scattering

2 ' 2

2 2

' εε

ε ε

σ

fC

mc e d

d ⎥ ⋅

⎢ ⎤

=⎡

Ω

2

' '

2

2 2

' εε εε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

=⎡

Ω

non-resonant elastic scattering cross section:

re= 2.818 fm π/2 phase shift

interference~ fC· fM

Intensity ratio: ~106

2 f S NfM NM dc

~ IMC

I

λ

charge ~ |fC|2 magnetic~ |fM|2

h/mc = 2.426 pm

incident and final polarization

Cross Section: Nonresonant

cross section:

scattering geometry:

Polarization Dependence

2

' '

2

2 2

' εε εε

ε ε

λ σ

M C

C f

id mc f

e d

d ⎥ ⋅ +

⎢ ⎤

=⎡

Ω

Q=k’-k

Charge scattering: "NSF"

Magnetic scattering: "NSF" (S2, L2) –scattering plane + "SF" (S1, S3, L1) – in scattering plane

⇒ Separation S↔L

Amplitude-matrices:

to\from σ π

σ' ρ( Q) 0 π' 0 ρ(Q) cos2( θ)

<fC> for charge scattering: e-

E Hertz

Dipole Radiation

⇒ charge density ρ(Q)

to\from σ π

σ' S2⋅cosθ [(L1+S1)⋅cosθ +S3⋅sinθ]⋅sinθ π' [−(L1+S1)⋅cosθ +S3⋅sinθ]⋅sinθ

[

2 L2⋅sin2θ +S2

]

⋅cosθ

<fM> for the magnetic part:

⇒ spin density S(Q) and orbital angular momentum density L(Q)

50 m

5 mm properties calculable

small source size

wiggler clean ultra-high vacuum source

time structure

intense continuous spectrum highly collimated

undulators

. .

polarised

Synchrotron X-Ray Source

(13)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

Resonant Magnetic X-Ray Scattering

resonance exchange scattering

neutron scattering

resonant x-ray scattering

( )

2

0 M

mag E E i /2

E / d

d

Γ

α Ω

σ Hannon, Trammell, Blume & Gibbs

PRL 61 (1988), 1245 γL

III εF

2s 2p 2p

1s 1/2 3/2 4f 4f

s-p-d

up E down

exchange splitting

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

7942 eV 7938 eV 7935 eV 7933 eV

ω 0 1000 2000 3000

5 5.2 5.4 5.6 5.8

counts / sec

energy

7924 eV 7930 eV

0 20 40 60 80 100 120 140

0 50 100 150 200 250

7920 7925 7930 7935 7940 7945 7950

peak intensity [a.u.] flourescence yield [a.u.]

energy [eV]

GdS 9/2 1/2 1/2

LII edge

GdS: L

II

Edge Resonance

Brückel, Hupfeld, Strempfer, Caliebe, Mattenberger, Stunault, Bernhoeft, McIntyre; Eur. Phys. J B19 (2001); 475

) ( ) ( ) ( ) 1(

linE f circE f o E f E E

fres = + +

Dipole Approximation:

εε⋅ ++

= 1

F1 11 F ' ) E 0( f

ε×ε +

= 1

F1 11 F m ' i ) E circ( f

( )

ε ε +

= 1

F1 11 1 F F0 2 m m ' ) E lin( f Amplitudes:

Oscillator Strengths:

i 2 res 1 M

FM ωω Γ

= α

( ) ...2

' 1 ' '

2 2 2

'= + + +

Ω

⎜ ⎞

ε ε ε

λ ε ε ε ε

ε

σ E E

fres fM d i c fc mc

e d

d

Anomalous Scattering: Cross Section

XRES: Resonance Enhancements

thin films thin films

elements edge transition energy range [keV]

resonance strength

comment

3d K 1s 4p 5 - 9 weak small overlap

3d LI 2s → 3d 0.5 - 1.2 weak small overlap

3d LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f K 1s → 5p 40 - 63 weak small overlap

4f LI 2s 5d 6.5 - 11 weak small overlap

4f LII, LIII 2p → 5d 2p → 4f

6 - 10 medium dipolar

quadrupolar

4f MI 3s → 5p 1.4 - 2.5 weak small overlap

4f MII, MIII 3p 5d 3p 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar 4f MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap,

high spin polarisation of 4f 5f MIV, MII 3d 5f 3.3 - 3.9 strong dipolar, large overlap,

high spin polarisation of 5f

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• Example: Thin film magnetism

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Resonance exchange scattering from mixed crystals

• Summary

(14)

Gd

x

Eu

1-x

S-Phase-Diagram

0 10 20 30 40 50 60 70

0 0.2 0.4 0.6 0.8 1

T [K]

x GdxEu

1-xS

P AF FM

SG

insulator

metal

EuSEuS GdSGdS

Gd S

Gd

0.73

Eu

0.27

S: Resonances

dominant dipolar transitions 2p →dominant dipolar transitions 2p 5d5d

Gd

0.8

Eu

0.2

S: Temperature Dependence

0 0.2 0.4 0.6 0.8 1

0 10 20 30 40 50 60

M/Ms

T [K]

Eu0.2Gd 0.8S 9/2 1/2 1/2 Eu LII

Gd LII non resonant

Gd-resonance

Eu-resonance

Hupfeld, Schweika, Strempfer, Mattenberger, McIntyre, Brückel Europhys. Lett. 49 (2000), 92

Frustration Model Gd

1-x

Eu

x

S

JEE>O

Eu-spin triple (4.9 % for x = 0.8)

JEG<O JEE>O

Eu-spin pair (7.9 % for x = 0.8) JGE<O

single Eu-spin (5.2 % for x = 0.8) JGG<O

?

? ?

?

?

H = HGd-Gd+ HGd-Eu+ HEu-Eu

⇒ Perturbation Theory:

H‘: molecular field approximation ΔH = HEu-Eu: exact diagonalization for Eu- pairs, triples,... in the molecular field

H‘ ΔH

Sj Si Jij

H=

Heisenberg:

T-Dependence

"Frustration Model" Monte Carlo Simulation

Gd-Gd Gd-Eu Eu-Eu J1 -1.27 K -0.85 K +1.21 K J2 -2.82 K -1.86 K 0

Hupfeld, Schweika, Strempfer, Caliebe, Köbler, Mattenberger, McIntyre, Yakhou, Brückel

Eur. Phys. J. B 26 (2002), 273

Canted Versus Collinear States

GdS Gd0.8Eu0.2S Gd0.73Eu0.27S T/TN

0.25 0.02

collinear canted canted

(15)

Success!

Wolfgang Caliebe

&

Dirk Hupfeld

@

W1 – DORIS - HASYLAB

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

Scattering Methods for Orbital and Spin Physics Neutrons

powder samples

complex magnetic structures (spherical PA)

excitations

spin densities

complementarity (probes 4f moments directly, L- determination with “x-n technique”, …) XRES: element and band sensitive probe!

soft x-rays (magnetisation density profile, magnetic domain structure1 keV) for thin film magnetism (3d & 4f):

hard x-rays (spin polarisation in conduction band (dipole transitions)10 keV) for thin films and bulk 4f magnets:

HEX: High energy (100 keV) non resonant magnetic x-ray scattering

absolute determination of spin form factors (in part. 3d) Anomalous X-ray scattering:

Local distortions and orbital ordering

Referenzen

ÄHNLICHE DOKUMENTE

For the impact energies lower than needed to reach the crossings at and below 0.03 au, in the vicinity of the united atom 3d levels (equivalent to approximately 6 MeV

The decrease in the anisotropy usually ob- served in areal spectrum at the high energy side can easily be interpreted when we go to Figure 2c, where the isotropie part into level

During heavy ion-atom collisions noncharacteristic X rays in various colliding systems have been observed. The data available can be divided into three different groups:

The supervised training of deep neural networks for lung disease classification has three main problems: mismatch between the small input size of the neural network and the large

A Python code is written to compute the Magnetic Small-Angle Neutron Scattering (MSANS) patterns for the congurations obtained by micromagnetic simulations.. The results

In Chapter 2, we introduce the scientific basis of this thesis, which includes a short, general purpose description of the effects we rely on, fundamental x-ray optics, the

In the following, the LEED spin detector is discussed which utilizes low energy electron diffraction of the SE at a W(100) surface for polarization analysis: In case the

Figure B.7: Partial pressures of nitrogen of the best fitting models of the observation in March and July 2003 of V4743 Sgr (solid lines) compared with partial pressures of a