• Keine Ergebnisse gefunden

Low Temperature Catalytic Partial Oxidation (LTCPO) of methane to syngas for Gas-To-Liquids applications

N/A
N/A
Protected

Academic year: 2022

Aktie "Low Temperature Catalytic Partial Oxidation (LTCPO) of methane to syngas for Gas-To-Liquids applications"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Low Temperature Catalytic Partial Oxidation (LTCPO) of methane to syngas for Gas-To-Liquids applications

Laboratory for Energy and Materials Cycles CH-5232 Villigen Switzerland

Phone: 0041-(0)56 310 2640 Fax: 0041-(0)56 310 2199 E-mail: stefan.rabe@psi.ch

S. Rabe, T.-B. Truong and F. Vogel

Š Results

Š RESULTS AND DISCUSSION

ATR

> 1000 °C CH4

O2 H2O

H2 + CO FT

LTCPO

< 800 °C CH4

O2 H2O

H2 + CO + CO2 AFT

Liquid Fuels Autothermal Reforming (ATR) and Fischer-Tropsch (FT)

Low Temperature Catalytic Partial Oxidation (LTCPO) and Advanced Fischer- Tropsch (AFT)

Liquid Fuels

66 66

Š EXPERIMENTAL

Š INTRODUCTION

Low Temperature Catalytic Partial Oxidation of methane (LTCPO)

• Proposed Technology Autothermal Reforming (ATR) operates at high temperatures ⇒ stable (and expensive) materials are needed

• LTCPO operates at low temperatures and higher steam-to-carbon ratios ⇒a CO2-rich syngas is produced

• Advanced Fischer Tropsch (AFT) Technology is currently developed (CO2active catalysts, dewatering membranes)

LTCPO-AFT could be a low cost alternative to ATR-FT technology

Key Parameters for an efficient LTCPO – GTL Process

• High methane conversions (> 95 % are needed))

• M factor of 2.1

I) CATALYSTS FOR THE LTCPO OF METHANE

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0 5 10 15 20 25 30

Number of Carbon Atoms Required H2 / C - Ratio (M factor)

FT - Synthesis of Paraffins: nCO + (2n+1) H2 → CnH2n+2 + n H2O

FT Diesel (H2-CO2) (CO+CO2) LTCPO: M =

Objectives

-To find suitable catalysts for the LTCPO of methane (noble metal catalysts) - Optimization of reaction conditions

- To study the methane activation on noble metal catalysts

-5 5 15 25 35 45 55 65 75 85 95

500 550 600 650 700

T / °C

XCH4;XH2O

XCH4: Thermodynamic Equilibrium Line

□:5%Ru/γ-Al2O3U: 0.3%Pt / γ-Al2O3+: 1%Pt / γ-Al2O3○: 0.6% Pt / SnO2 XH2O: Thermodynamic Equilibrium Line

p = 3 bar, O/C = 0.85; S/C = 2.9; WHSV = 96 g Feed/gcat/h

¾Pt catalysts: lower catalytic activity towards the LTCPO of methane (thermodynamic equilbrium was not achieved). M factors are too low for an efficient LTCPO- GTL process.

¾5%Ru/γ-Al2O3Catalyst: Activity close to the thermodynamic equilibrium

¾M factor is suitable for LTCPO-GTL.

¾A 1%Rh/5%Ce-ZrO2catalyst revealed similar performance.

¾Maximum conversion of 91 % was observed for the Ru catalyst at a pressure of 2 bars and an S/C ratio of 4-5.

II) ACTIVATION OF METHANE OVER Ru AND Rh CATALYSTS

™PULSE TGA EXPERIMENTS OVER PRE-OXIDIZED RUTHENIUM CATALYSTS

0 10 20 30 40 50 60 70 80

5Ru/g-Al2O3 5Ru/5Ce-g-Al2O3 1Rh/5Ce-ZrO2 XCH4 / %

Equilibrium

0 10 20 30 40 50 60 70 80

5Ru/g-Al2O3 5Ru/5Ce-g-Al2O3 1Rh/5Ce-ZrO2 XCH4 / %

Equilibrium

SR: WHSV = 77 h-1, 650 °C, ptot= 3.1 bar, S / C = 2.9 CPO: WHSV = 57 h-1, 650 °C, ptot= 3.1 bar, O / C = 0.85 STEAM REFORMING (SR) DRY CATALYTIC PARTIAL OXIDATION (CPO)

5Ru/γ-Al2O35Ru/5Ce-γ-Al2O3 1Rh/5Ce-ZrO2 5Ru/γ-Al2O35Ru/5Ce-γ-Al2O31Rh/5Ce-ZrO2 1Rh/5Ce-ZrO2> 5Ru/γ-Al2O3> 5Ru/5Ce-γ-Al2O3 1Rh/5Ce-ZrO2≈ 5Ru/γ-Al2O3≈ 5Ru/5Ce-γ-Al2O3

¾Dry CPO: similar results were for Rh and Ru catalysts

¾SR: The 1%Rh/5%Ce-ZrO2Catalyst is more active.

¾The presence of cerium seems to inhibit the SR activity of the ruthenium based catalysts

CH4+ H2O → CO + 3 H2 CH4+ 0.5 O2→ CO + 2 H2

™ACTIVATION OVER REDUCED Ru- AND Rh-CATALYSTS: TG-FTIR EXPERIMENTS

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

150 250 350 450 550 650 750 850

T / °C

TG / %

5% Ru - 5% Ce / Al2O3 1% Ru / Al2O3 5% Ru / Al2O3 1% Rh - 5% Ce / ZrO2 5% Ru / Al2O3 0.1% Rh / ZrO2 1% Ru / TiO2 5% Rh / Al2O3

I) METHANE DECOPMOSITION: CH4→C + 2 H2 II) TPO: C + O2→CO2

-5 0 5 10 15 20 25 30 35 40

0 100 200 300 400 500 600 700 800

Temp / ºC

Absorbance / A.U.

5% Ru - 5% Ce /Al2O3 1% Ru /Al2O3 5% Ru /Al2O3 1% Rh -5% Ce / ZrO2 5% Ru /Al2O3 0.1% Rh / ZrO2 1% Ru / TiO2 5% Rh /Al2O3

¾Activation / decomposition of methane to carbon (CH4 →C + 2 H2 ) occurs on reduced rhodium catalysts at much lower temperatures as on reduced ruthenium materials (450 °C compared to 675 °C)

¾Steam reforming activity seems to be strongly affected by the methane decomposition on reduced catalytic sites

¾In contrast, no correlation between dry CPO activity and methane activation is observed. The presence of oxygen therefore seems to influence the methane activation pathway

¾Temperature Programmed Oxidation (TPO) studies of the carbon deposits on the different catalysts revealed that the oxidation of the deposited carbon is enhanced on ceria/zirconia supports

Catalyst Preparation

¾Rhodium and ruthenium catalysts were prepared by impregnation of the support material with aqueous noble metal nitrate solutions. Platinum catalysts were prepared from a PtII(NH3)4(OH)2solution

¾Calcination in air at 550 °C for 3 h

LTCPO, Dry CPO and Steam Reforming Experiments

¾Continuous flow fixed-bed microreactor (glass lined stainless steel tube, 4 mm inner diameter) using air as oxidant

¾Catalyst particle size: 125-250 µm, dilutor: sea sand

¾Products were analyzed by on-line gas chromatography TG-FTIR Experiments

¾A Netzsch STA 409 thermogravimetric analyser coupled with a Bruker FTIR spectrometer was used

¾Pre-reduced catalyst (50 mg, 10 % H2in Ar, 650 °C, 1h)

¾After cooling to RT in an argon flow, the sample was heated up to 800 °C (10 °C / min) in a methane / argon flow (20 % CH4). The weight change was recorded

¾After cooling in an argon flow, temperature programmed oxidation (TPO) was performed (20 % O2in Ar).

Carbon dioxide was monitored by FTIR spectroscopy

5%Rh/γ-Al2O3

1%Rh/5%Ce-ZrO2

5%Rh/γ-Al2O3 1%Rh/5%Ce-ZrO2

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

0 20 40 60 80 100

t / min Int. CO2 / a.u.

-0.10 0.00 0.10 0.20 0.30 0.40 0.50

Int. CO / a.u.

98.6 98.8 99 99.2 99.4 99.6 99.8 100 100.2 100.4

TG / %

0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65

DTA / uV/mg

TG DTA Change from exothermic to endothermic

CO/CO2- Formation

Reaction Conditions

¾CH4: 0.5 ml/Pulse

¾T=550 °C

¾Pre-oxidized Ru Catalyst

¾Fully oxidized ruthenium surface (RuO2): Total Oxidation (CH4+ n RuO2→ CO2+ 2 H2O + 2 Ru ), Exothermic

¾Partially reduced ruthenium surface: CO formation (RuO(2-x)+ (2-x) CH4→ (2-x) CO + 2 (2-x) H2,, Endothermic

¾From TG-DTA: RuO0.27is most efficient for CO formation

Referenzen

ÄHNLICHE DOKUMENTE

Die Aufzeichnung erfolgt wahlweise auf einem ABUS Rekorder, 3rd Party Videomanagement Software oder lokal auf einer microSD-Karte.. Weiterhin ist die Kamera mit der ABUS

High resolution spatial measurements of species and temperature profiles inside the reactor combined with particle resolved CFD modeling of chemistry and flow is a promising approach

Диаметърът на дъното на съда за готвене/пържене трябва да съответства на големината на полето за готвене на индук- ционната печка. Особено при много малки

За по-добро използване на енергията диаметърът на котлона на печката трябва да съответства на дъното на съда за готвене

Price € Lieferzeit Delivery time Verbinder starr/flex für Überdruckbetrieb für Flexrohr ein- und doppellagig 80.. Adapter rigid/flex for pressurized operation flex

Telescope sliding ladder Klassik | Escalera telescópica Klassik | Телескопная лестница Klassik 34 Teleskopschiebeleiter Akzent SL.6065.AK.. Telescope sliding

Bright bars, flat bars and cold formed sections complete the product range of Marcegaglia stainless steel long products for applications including precision. engineering, food

2504480 Lower brush for boot cleaner 2507833 Side brush for boot cleaner, above 2509164 Side brush for boot cleaner, below 2509597, Pipe set for boot cleaner extra hm 2509598,