• Keine Ergebnisse gefunden

Formal Approach to Research Units Location

N/A
N/A
Protected

Academic year: 2022

Aktie "Formal Approach to Research Units Location"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

FORMAL APPROACH TO RESEARCH UNITS LOCATION

M i k h a i l M. D e n i s s o v S e r g e i A . I s t o m i n

S e p t e m b e r 1 9 7 9 WP-79-82

W o r k i n g P a p e r s a r e i n t e r i m r e p o r t s o n work o f t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s a n d h a v e r e c e i v e d o n l y l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e - s e n t t h o s e o f t h e I n s t i t u t e o r o f i t s N a t i o n a l Member O r g a n i z a t i o n s .

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A - 2 3 6 1 L a x e n b u r g , A u s t r i a

(2)
(3)

INTRODUCTION

T h i s p a p e r r e p r e s e n t s t h e r e s u l t s o f a t h r e e month s t u d y , i n which s e v e r a l J u n i o r S c i e n t i s t s from many c o u n t r i e s t o o k p a r t d u r i n g t h e summer o f 1 9 7 9 a t IIASA. While many of t h e s e r e s u l t s a r e n o t f u l l y c o m p l e t e d , and some r e p r e s e n t o n l y

p r e l i m i n a r y d i r e c t i o n s o f r e s e a r c h , w e f e e l t h a t t h e documenta- t i o n o f t h e e f f o r t s o f t h e J u n i o r S c i e n t i s t s i s j u s t i f i e d .

(4)
(5)

ABSTRACT

The formal description o f t h e effective location o f re- search units i s given here. It is proposed for t h e examination o f different location variations.

(6)
(7)

FORMAL APPROACH TO RESEARCH UNITS LOCATION

Mikhail M. Denissov Sergei A. Istomin

One of the basic problems of research center designing is the location of effective research units satisfying a number of constraints and requirements. Usually the city planner should analyze many possible variations in order to choose the best one.

This analysis is very difficult to do without a computer. The use of computers, however, demands a mathematical description of the problem and the creation of models to be used for the evalu- ation of different variations and the choice of the optimal one.

This paper attempts to give a formal description of the re- search units location problem and to use it for the evaluation of the different variations presented. The problem is considered as the space location of given research units volumes v(1,p) on the area S with boundary G in order to achieve the objective function values and to satisfy the constraints. It is assumed that all units are divided into L-types (1 = 1,2,

...,

L). The

index p is the index of a unit of type 1 (p = 1,2,

...,

PI), and

the volumes, v(l,p), of every unit are given. The location struc- ture should also satisfy the given number of efficiency criteria,

(8)

which will be described further in terms of the objective functions and constraints.

1. The minimization of engineering communcation cost is described by the objective function

where

.

.

enumerates the supply resources (water, gas, etc.) is the unit cost of the horizontal communication of the i-th resource;

is the unit cost of the vertical communication of the i-th resource;

is the area of the ground floor of the unit (1,p);

is the vertica- size of the unit ( 1 , ~ ) ;

is the distance from the origin of the i-th resource to the unit (1,p) ;

is the coefficient of communication density.

2. The accessibility of workers from public transportation sites to the research units is described by the objective function:

(9)

where

j enumerates the transport station considered;

L.(l,p) is the distance from the j-th transport station to 3 unit (1,p) ;

y(1,p) is the factor that takes into consideration the number of people working in unit (1,p)

.

3. Function and technological unit criterion means that all

4 4

- -

distances among units (1,p) (from

L,P

group) should be minimized.

This is described by the objective function

where

a(ll ,pf ;l" ,p") is the distance between units (1' ,pl) and (1" ,pH)

.

4. Territory use intensiveness criterion is described by the objective function:

so(l,p) is the ground floor area of the actual research unit

(10)

These four criteria make up the set of objective functions.

Other efficiency criteria will be described in terms of constraints:

1. The requirement for the simultaneous function of dif- ferent technological subsystems is described by

min a(1,p;l',pt) 2 Rl I 1' ,P' ,p

this constraint means that the distance a(l,p;lt,p') from the type 1 unit

-

to any other units from the given set should not be smaller than R1.

2. The qualitative growth requirement is satisfied by the introduction of maximum radii of influence

-

R1

3. The sufficient condition to satisfy the requirement of quantitative growth possibility is

and

(11)

where

and

are distances from unit (1 ,p) to unit l

*

p ) along x-axis and y-axis.

is the area needed for the future growth of unit (1

*

, p )

4. Areas which are not suitable for construction are excluded from the S territory,,

5. The environmental preservation criterion says that all influence radii R(lI,pI) should lie within the fixed area of in- fluence SI:

min a(lI: xGt yG) 2 R(l1) G

where

G is the boundary of S ;

a(lI; x G t yG) is the distance from the type l1 unit to the boundary point (xGt yG)

.

6. The unit height constraint is:

Z(l,p) 5

z

max 0

(12)

- 6 -

7 . The r e s e a r c h u n i t l o c a t i o n l e v e l i s Z ( 1 , p ) s u c h t h a t :

8 , The "wind" r e q u i r e m e n t means t h a t t h e r e s e a r c h u n i t s h o u l d be l o c a t e d o n t h e d o m i n a t i n g wind s i d e :

where

l w i s t h e o b j e c t which s h o u l d be l o c a t e d on t h e d o m i n a t i n g wind s i d e ;

a ( 1 ; x G O , y G O ) i s t h e d i s t a n c e f r o m t h e t y p e 1 u n i t t o t h e t a n g e n t p o i n t o f t h e normal t o t h e wind d i - r e c t i o n and t h e b o u n d a r y G .

9 . The f i x e d l o c a t i o n r e q u i r e m e n t means t h a t u n i t s w i t h f i x e d a r e a s s h o u l d be l o c a t e d f i r s t .

The f o r m a l d e s c r i p t i o n s u g g e s t e d a b o v e f o r t h e e f f e c t i v e re- s e a r c h u n i t l o c a t i o n p r o b l e m c a n b e u s e d f o r t h e d e r i v a t i o n o f t h e o p t i m a l l o c a t i o n v a r i a t i o n s . I n o r d e r t o d e r i v e i t , t h e methods f o r c a l c u l a t i n g t h e v a l u e s i n e x p r e s s i o n s ( 1 )

-

110) s h o u l d be de- f i n e d . A l g o r i t h m s f o r c a l c u l a t i n g o b j e c t i v e f u n c t i o n s ( 1 )

-

( 4 )

u n d e r c o n s t r a i n t s ( 5 )

-

( 1 0 ) s h o u l d a l s o be d e f i n e d , a n d , a t t h e f i n a l s t a g e , methods o f m u l t i o b j e c t i v e o p t i m i z a t i o n s h o u l d be u s e d , a s t h e p r e s e n c e o f s e v e r a l o b j e c t i v e f u n c t i o n s comes i n t o t h e v e c - t o r o p t i m i z a t i o n p r o b l e m , T h i s way t h e s u g g e s t e d f o r m a l a p p r o a c h c a n b e u s e d a s a b a s i s f o r t h e c r e a t i o n o f a n o p t i m i z a t i o n model.

H e r e , w e p r e s e n t a s i m p l e r e x p r e s s i o n o f t h e f o r m a l a p p r o a c h i n o r d e r t o compare t h e v a r i a t i o n s p r o p o s e d .

(13)

In order to make the comparison, all distances and expressions (1)

-

(4) should be measured from the geometrical centres of the units, and all units are assumed to have rectangular forms. Than,

where

are the boundary coor- dinates of unit (1,p)

,

zl(l,p) and z2(l,p) are vertical coordinates of the lowest and highest floors of the unit (1,p)

,

x and yi are coordinates of the origin of i-th resource, i

(14)

w h e r e

( x j ; y . ) a r e c o o r d i n a t e s o f t r a n s p o r t s t a t i o n j ; 3

y ( 1 , p ) i s t h e number o f p e o p l e w o r k i n g i n u n i t ( 1 , p )

.

I n c o n s t r a i n t 1 t h e v a l u e a ( 1 , p ; l ' , p ' ) i s t h e d i s t a n c e be- tween t h e n e a r e s t p o i n t s o f u n i t s ( 1 , p ) a n d ( l ' , p l ) , To c a l c u l a t e a ( l , p ; l ' , p l ) t h e f o l l o w i n g a l g o r i t h m i s s u g g e s t e d :

I , I f c o n d i t i o n s

y 1 ( 1 , ~ ) 5 y 1 ( l ' , ~ ' ) 5 y 2 ( l , p )

y l ( l , p ) 5 y 2 ( l 1 , p 1 )

~ ~ ( 1 . ~ 1

are s a t i s f i e d , t h e n

(15)

x l ( 1 , p )

-

x 2 ( 1 1 , p ' ) under x 2 ( l ' , p 1 )

<

x l ( 1 , ~ ) a ( l , p ; l ' , ~ ' ) =

x 1 p

-

x2 ( 1 , ~ ) under x 2 ( l ' , P I )

>

x l ( 1 , ~ )

11, I f c o n d i t i o n s

a r e s a t i s f i e d , t h e n

111. I f n e i t h e r ( 1 5 ) n o r ( 1 7 ) a r e s a t i s f i e d , t h e n I

(16)

where

x(l,p) = xl ( 1 , ~ ) x(ll,pl) = x2(l1,p1) y 1 ( 1 , ~ ) < y 1 (1' ,pqj

A, under

y(l,p) = y2(l,p) y(1',p1) = Y 1 (ll,p') x2(l,p) > X l (l',pl)

x(l,p) = x2(l,p) x(ll,pl) = x1 (ll,pl) Y 1 ( L P ) < Y1 (ll,pl)

B. under

Y ( ~ , P ) = ~ ~ ( 1 . p ) y(ll,pl) = y 1 (ll,p') x1 ( 1 , ~ ) < XI (I1 , P I )

x(~,P) =xl(l,p) x(ll,p') =x2(11,p') Y ~ ( ~ , P ) > yl(ll,plj

C. under

y(1.p) = y1 ( 1 , ~ ) y(l1,p1) = y2(l1,p') x1 ( 1 , ~ ) > x1 (1' ,pl)

x(l,p) = x2(l,p) x(ll,pl) = X I ( l l , p l ) Y l ( 1 , ~ ) > Y l (l1,pS)

D. under

In requirement (6)

* *

x1 (1 ,p)

-

x2(11,p1) under xl (1 ,PI > x2(18 8 ~ ' )

x(1 ,p)

* -

x(ll,pl) = (21)

* *

xl (11 ,PI)

-

x2(1 ,p) under xl (1' ,PI) > x2(1 9 2 ;

(17)

* *

(Y1 (1

,PI -

y2(11 ,PI under y1 (1 ,p)

>

y2(11 ,pl )

~ ( 1

* , P I - ,

= (22)

* *

Y P

-

y2 (1 ,p) under yl (1' ,p9)

>

y2 (1 ,p)

Usually S is a convex area. In this case every value x from area S corresponds to two boundary values of yG, and every value y from S corresponds to two boundary values x G'

x1 (11 ; p) corresponds to y1 1 G and y1 2G

,

x2(lI ; p) corresponds to y 21G and '22~

and

y 1 (lI,p) corresponds to x 11G and X12G

,

Y2 (lI,p) corresponds to x~~~ and x~~~

when the smaller value of the boundary coordinates in (23), (24) stands first. Then,

(18)

C o n s t r a i n t ( 8 ) c a n b e w r i t t e n a s f o l l o w s

The a l g o r i t h m s u g g e s t e d e n a b l e s o n e t o u s e a c o m p u t e r f o r t h e c a l c u l a t i o n o f o b j e c t i v e f u n c t i o n s , ( 1 )

-

( 4 ) , and f o r t h e v e r i f i - c a t i o n o f c o n s t r a i n t s , ( 5 )

-

( l o ) , Then, o n t h e b a s i s o f t h e c a l - c u l a t i o n o f ( 1 )

-

( 4 ) t h e d e c i s i o n maker c a n c h o o s e t h e b e s t l o c a - t i o n v a r i a t i o n .

Referenzen

ÄHNLICHE DOKUMENTE

If population growth falls but investment rates remain high the capital output rate would increase and the return to investment would fall.. The lower return

Following the same imperatives that were guiding the progress of the ESDP (civil- military synergies, coordination of national and EU efforts in the development of capabili-

The considered problem is related both to the uncertain employ- ment considered by [12] and to the competitive optimal stopping problem with priority (see [4]) or more generally

This directly implies two important features for mathemat- ical modeling: Firstly, it is a metric space containing all possible phylogenetic trees on n leaves, i.e., it is a

Comparing the Java and Lesser Sunda islands with the Sumatra margin we find the differences along the Sunda margin, especially the wider extent of the SZ off Sumatra, producing

between the deterministic solutions, as determined in Erlenkotter and Leonardi (forthcoming) or Leonardi and Bertuglia (1981), and the solutions obtained with the

The purpose of the present paper is to demonstrate how the interaction of the structural axiomatic core and the behavioral propensity function produces plausible outcomes in the

These three values have in common the following feature: First, the worth of the grand coalition is di- vided among the coalitions following either the Shapley value (Owen), or